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Can ML predict thermodynamic stability?

https://matbench-discovery.materialsproject.org/models

If yes, which ML method works best?

What discovery acceleration can we expect?

Matbench Discovery

https://matbench-discovery.materialsproject.org/models


Dielectric Materials Discovery
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Can we deploy ML-guided discovery into practice?



MACE-MP
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What else can foundation models trained for discovery do?



Why Matbench Discovery?
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ARTICLE OPEN

A critical examination of compound stability predictions
from machine-learned formation energies
Christopher J. Bartel 1✉, Amalie Trewartha1, Qi Wang2, Alexander Dunn 1,2, Anubhav Jain 2 and Gerbrand Ceder 1,3✉

Machine learning has emerged as a novel tool for the efficient prediction of material properties, and claims have been made that
machine-learned models for the formation energy of compounds can approach the accuracy of Density Functional Theory (DFT).
The models tested in this work include five recently published compositional models, a baseline model using stoichiometry alone,
and a structural model. By testing seven machine learning models for formation energy on stability predictions using the Materials
Project database of DFT calculations for 85,014 unique chemical compositions, we show that while formation energies can indeed
be predicted well, all compositional models perform poorly on predicting the stability of compounds, making them considerably
less useful than DFT for the discovery and design of new solids. Most critically, in sparse chemical spaces where few stoichiometries
have stable compounds, only the structural model is capable of efficiently detecting which materials are stable. The nonincremental
improvement of structural models compared with compositional models is noteworthy and encourages the use of structural
models for materials discovery, with the constraint that for any new composition, the ground-state structure is not known a priori.
This work demonstrates that accurate predictions of formation energy do not imply accurate predictions of stability, emphasizing
the importance of assessing model performance on stability predictions, for which we provide a set of publicly available tests.

npj Computational Materials �����������(2020)�6:97� ; https://doi.org/10.1038/s41524-020-00362-y

INTRODUCTION
Machine learning (ML) is emerging as a novel tool for rapid
prediction of material properties1–6. In general, these predictions
are made by fitting statistical models on a large number of data
points. Because of the scarcity of well-curated experimental data
in materials science, these input data are often obtained from
Density Functional Theory (DFT) calculations housed in one of the
many open materials databases7–12. In principle, once these
models are trained on this immense set of quantum chemical
data, the determination of properties for new materials can be
made in orders of magnitude less time using the trained models
compared with computationally expensive DFT calculations.
Of particular interest is the use of ML to discover new materials.

The combinatorics of materials discovery make for an immensely
challenging problem—if we consider the possible combinations
of just four elements (A, B, C, and D), from any of the ~80 elements
that are technologically relevant, there are already ~1.6 million
quaternary chemical spaces to consider. This is before we consider
such factors as stoichiometry (ABCD2, AB2C3D4, etc.) or crystal
structure, each of which add substantially to the combinatorial
complexity. The Inorganic Crystal Structure Database (ICSD) of
known solid-state materials contains ~105 entries13, several orders
of magnitude less than the 1010 quaternary compositions
identified as plausible using electronegativity- and charge-based
rules14. This suggests that (1) there is ample opportunity for new
materials discovery and (2) the problem of finding stable materials
may resemble the needle-in-a-haystack problem, with many
unstable compositions for each stable one. The immensity of this
problem is a natural fit for high-throughput ML techniques.
In this work, we closely examine whether recently published ML

models for formation energy are capable of distinguishing the
relative stability of chemically similar materials and provide a
roadmap for doing the same for future models. We show that

although the formation energy of compounds from elements can
be learned with high accuracy using a variety of ML approaches,
these learned formation energies do not reproduce DFT-
calculated relative stabilities. While the accuracy of these models
for formation energy approaches the DFT error (relative to
experiment), DFT predictions benefit from a systematic cancella-
tion of error15,16 when making stability predictions, while ML
models do not. Of particular concern for most ML models is the
high rate of materials predicted to be stable that are not stable by
DFT, impeding the use of these models to efficiently discover new
materials. As a result, we propose more critical evaluation
methods for ML of thermodynamic quantities.

RESULTS
The relationship between formation energy and stability
A necessary condition for a material to be used for any application
is stability (under some conditions). The thermodynamic stability
of a material is defined by its Gibbs energy of decomposition, ΔGd,
which is the Gibbs formation energy, ΔGf, of the specified material
relative to all other compounds in the relevant chemical space.
Temperature-dependent thermodynamics are not yet tractable
with high-throughput DFT and have only sparsely been addressed
with ML17, so material stability is primarily assessed using the
decomposition enthalpy, ΔHd, which is approximated as the total
energy difference between a given compound and competing
compounds in a given chemical space15,16,18,19. For the purpose of
this study, we will directly compare ML predictions and DFT
calculations of ΔHd, hence the lack of entropy contributions is not
an issue.
The quantity ΔHd is obtained by a convex hull construction in

formation enthalpy (ΔHf)-composition space. Figure 1a shows an
example for a binary A–B space, having three known compounds,

1Department of Materials Science & Engineering, University of California, Berkeley, Berkeley, CA 94720, USA. 2Energy Technologies Area, Lawrence Berkeley National Laboratory,
Berkeley, CA 94720, USA. 3Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. ✉email: cbartel@berkeley.edu; gceder@berkeley.edu
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MP = Training Set     WBM = Test Set
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Predicting stable crystalline compounds using chemical
similarity
Hai-Chen Wang1, Silvana Botti 2 and Miguel A. L. Marques 1✉

We propose an efficient high-throughput scheme for the discovery of stable crystalline phases. Our approach is based on the
transmutation of known compounds, through the substitution of atoms in the crystal structure with chemically similar ones. The
concept of similarity is defined quantitatively using a measure of chemical replaceability, extracted by data-mining experimental
databases. In this way we build 189,981 possible crystal phases, including 18,479 that are on the convex hull of stability. The
resulting success rate of 9.72% is at least one order of magnitude better than the usual success rate of systematic high-throughput
calculations for a specific family of materials, and comparable with speed-up factors of machine learning filtering procedures. As a
characterization of the set of 18,479 stable compounds, we calculate their electronic band gaps, magnetic moments, and hardness.
Our approach, that can be used as a filter on top of any high-throughput scheme, enables us to efficiently extract stable
compounds from tremendously large initial sets, without any initial assumption on their crystal structures or chemical
compositions.

npj Computational Materials �����������(2021)�7:12� ; https://doi.org/10.1038/s41524-020-00481-6

INTRODUCTION
The quest for new materials is one of the most important
endeavors of materials science1,2. The discovery of materials with
tailored properties hold the promise of improving existing
technologies, but also of enabling new disruptive applications3.
Unfortunately, there exist many examples of technologies that
remain in the realm of science fiction due to the unavailability of
adequate materials4,5. This may happen because known com-
pounds are toxic, rare, or too expensive for industrial, large scale
use, or simply because no material is known with good enough
properties6–8.
It is clear that the number of imaginable materials is extremely

large, as it derives from the combinatorial problem of arranging
chemical elements of the periodic table in all possible stoichio-
metries and dynamically stable crystal structures9. This number is,
however, reduced as most combinations are not prone to
experimental synthesis2. There are several reasons for this: the
crystal structure may describe a high-energy polymorph that can
not be stabilized, the stoichiometry itself may be highly unstable
to decomposition to other compounds, or it may simply be that
there is no easy thermodynamically favored reaction path for
experimental synthesis. In spite of these problems, there remains a
very large number of experimentally reachable materials, of which
we know only a small fraction10.
For the past decades, we have witnessed spectacular advances

in computational materials science. One of the main reasons for
this was the progression of density functional theory (DFT)11,12

that, thanks to its excellent accuracy combined with remarkable
computational efficiency, has become the workhorse method for
the theoretical study of materials13. Favored by the advent of
faster supercomputers and better software, DFT opened the way
for extensive numerical studies of large datasets of compounds14.
These so-called high-throughput studies15, whose results are
conveniently stored in online databases, have greatly extended

our knowledge of materials and have already lead to the discovery
of a variety of compounds with improved properties15–18.
There are several strategies that can be used for the theoretical

search of materials18,19. One of the most prominent approaches
for inorganic solids is "component prediction”, following the
definition of ref. 19, meaning that one scans the composition space
of a prototype structure searching for stable materials, instead of
scanning the space of possible crystal structures for a given
composition19–21.
In this context, we use the word "stable” to denote thermo-

dynamical stability, i.e., compounds that do not transform or
decompose (even in infinite time) to other different phases or
stoichiometrically compatible compounds9. It is true that meta-
stable materials, like diamond, are also synthesizable and
advances in chemistry have made them more accessible22,23.
Nevertheless, thermodynamically stable compounds are in gen-
eral easier to produce and handle. The usual criterion for
thermodynamic stability is based on the energetic distance to
the convex hull24: the energy distance of a compound to the
convex hull is hence a measure of its instability.
Using high-throughput approaches, the whole periodic table

has already been scanned for a series of prototypes of relevant
crystal structures. The most extensive studies of this kind can be
found in the aflowlib database25 that, at present, includes more
than 2 million compounds. Unfortunately, this number is dwarfed
by the total number of possibilities. Just for ternary intermetallics,
there are 1391 structure-types known experimentally26 and there
are ~500,000 possibilities of combining three metallic elements for
each of these prototypes. Moreover, ternary structures can be
rather complex: the average number of atoms in the unit cell turns
out to be 14, but the majority of intermetallic ternary prototypes is
considerably larger26. The situation is obviously even worse for
quaternary or multinary systems. Considering that a DFT calcula-
tion scales with the cube of the number of atoms in the unit cell,

1Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06120 Halle (Saale), Germany. 2Institut für Festkörpertheorie und -Optik, Friedrich-Schiller-Universität Jena and
European Theoretical Spectroscopy Facility, Max-Wien-Platz 1, 07743 Jena, Germany. ✉email: miguel.marques@physik.uni-halle.de
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10 models benchmarked to date
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UIP = universal interatomic potentials   GNN = graph neural network   RF = random forest  

DAF = discovery acceleration factor   BO = Bayesian optimization

Model F1 ↑ DAF ↑ Prec ↑ Acc ↑ TPR ↑ TNR ↑ MAE ↓ RMSE ↓ R2
 ↑ Training Size Model Type

MACE 0.67 3.50 0.58 0.87 0.78 0.88 0.06 0.10 0.66 1.6M (145.9K) UIP-GNN

CHGNet 0.61 3.04 0.52 0.84 0.74 0.86 0.06 0.10 0.69 1.6M (145.9K) UIP-GNN

M3GNet 0.58 2.65 0.45 0.80 0.79 0.80 0.07 0.12 0.58 188.3K (62.8K) UIP-GNN

ALIGNN 0.56 2.92 0.50 0.83 0.65 0.87 0.09 0.15 0.27 154.7K GNN

MEGNet 0.51 2.70 0.46 0.81 0.57 0.86 0.13 0.20 -0.28 133.4K GNN

CGCNN 0.51 2.63 0.45 0.81 0.59 0.85 0.14 0.23 -0.62 154.7K GNN

CGCNN+P 0.51 2.40 0.41 0.78 0.67 0.80 0.11 0.18 0.03 154.7K GNN

Wrenformer 0.48 2.13 0.36 0.74 0.69 0.75 0.10 0.18 -0.04 154.7K Transformer

BOWSR 0.44 1.91 0.32 0.68 0.74 0.67 0.12 0.16 0.14 133.4K BO-GNN

Voronoi RF 0.34 1.51 0.26 0.67 0.51 0.70 0.14 0.21 -0.31 154.7K Fingerprint

Dummy 0.19 1.00 0.17 0.68 0.23 0.77 0.12 0.18 0.00

WIP submissions for: Nequip, Allegro, PFP from Matlantis, GNoMe from DeepMind



Main Take Aways

- ML force fields = winning ML methodology for materials discovery  👑


- ML stability predictions have improved a lot since Bartel et al. 2021!


- ML4Mat might be at similar inflection point as NLP after transformer paper

- found the right architecture (MLIPs)

- next: generate more data to build complete map of PES asap
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Pushing the Pareto front of band gap and 
dielectric constant
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Part 2

Does ML-guided discovery succeed in practice when 
applied to dielectrics discovery?
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Custom web app for real-time collaborative synthesis selection
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https://janosh.github.io/dielectrics

Dielectric constant  and band gap  = anti-correlated but both essential in electronic applicationsεtotal Egap

We optimize figure of merit ΦM = εtotal ⋅ Egap



XRD Fits of Bi2Zr2O7 and CsTaTeO6
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Dielectric Characterization of Bi2Zr2O7 and CsTaTeO6
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MACE-MP-0 Foundation Model
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Can ML potentials predict 
DFT lattice vibrations (aka phonons)?
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Part 3
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@dataclass 
class PhononMaker(Maker): 
    """ 
    Maker to calculate harmonic phonons with a force field. 

    Calculate the harmonic phonons of a material. Initially, a tight structural 
    relaxation is performed to obtain a structure without forces on the atoms. 
    Subsequently, supercells with one displaced atom are generated and accurate 
    forces are computed for these structures. With the help of phonopy, these 
    forces are then converted into a dynamical matrix. To correct for polarization 
    effects, a correction of the dynamical matrix based on BORN charges can 
    be performed. The BORN charges can be supplied manually. 
    Finally, phonon densities of states, phonon band structures 
    and thermodynamic properties are computed. 

    .. Note:: 
        It is heavily recommended to symmetrize the structure before passing it to 
        this flow. Otherwise, a different space group might be detected and too 
        many displacement calculations will be generated. 
        It is recommended to check the convergence parameters here and 
        adjust them if necessary. The default might not be strict enough 
        for your specific case.

https://github.com/materialsproject/atomate2

PhononMaker
Compare MACE/CHGNet with PhononDB PBE data using

Can ML potentials reproduce 
DFT lattice vibrations (aka phonons)?

https://github.com/materialsproject/atomate2


Phonon Bands + DOS from MACE-MP
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 = CHGNet / MACE frequency 
of highest optical phonon mode

ωmax



PBE vs ML imaginary phonon modes
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Future Research Directions

- Design large-scale phonon benchmark since thermodynamic stability seems "solved"

- How to address PES softness?

- What are good metrics to compare ML foundation models going forward?

- How to commoditize foundation models / make them usable by non-experts to 

unlock their full utility?

- How to best train foundation models on multiple modalities (slabs, defects, 

amorphous, 2D, molecules, ...)
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