ML-guided Materials Discovery & Synthesis

Matbench Discovery

arXiv:2308.14920 (cond-mat)

[Submitted on 28 Aug 2023]

Matbench Discovery -- An evaluation framework for machine learning crystal stability prediction

Janosh Riebesell, Rhys E. A. Goodall, Anubhav Jain, Philipp Benner, Kristin A. Persson, Alpha A. Lee

🗂 A **4**.

🛢 Tr

Met

Can ML predict thermodynamic stability?

- If yes, which ML method works best?
- What discovery acceleration can we expect?

https://matbench-discovery.materialsproject.org/models

	/home • /api • /contribute • /data • /models • /preprint							
	Le	eade	rboard					
Sort models by stability clas	sification metrics, by pr	redicted	convex hull dis	stance regression	s metrics or by the	ir tun time.		
	Sort 10	best mo	dels asc des	c by:				
Model Name Accu	Model Name Accuracy DAF F1 MAE Precision R^2 RMSE TNR TPR Run time							
heading	color best				worst			
						Mach		
	CHGNet V M3GNet V							
🗊 Repo 🐵 DOI 🗉 Preprint 🖿 Files	🖓 Repo	DOI	E Preprint	Files	🖓 Repo 💩	DOI 🗈 Prep	orint 🌐 We	ebsite 🖿 Files
ed 2023-07-14	2022-05-13 日 Added 2023-03-03 日 Published 2023-03-01 日 Added 2022-09-20 日 Published 2022-02-05							
M params 🛛 🖓 Missing preds: 7,735	💐 413k params		G Missing pr	eds: 0 (0.00%)	⊡ Benchmark	version: 1	G Missing (oreds: 353
(3.01%)	Training set: MP	PTrj (1.58M	from 146k materials)				(0.14%)	
ning set: MPTrj (1.58M from 146k materials)	Metrics				Training set	t: MPF.2021.2.	8 (188k from 62	8k materials)
CS	Accuracy	0.84	R^2	0.68	Metrics			
uracy 0.87 R ² 0.66	DAF	3.04	RMSE	0.1 eV / atom	Accuracy	0.8	R^2	0.58
3.5 RMSE 0.1 eV / atom	F1	0.61	TNR	0.86	DAF	2.65	RMSE	0.12 eV / atom
0.67 TNR 0.88	MAE 0.06	eV / atom	TPR	0.74	F1	0.58	TNR	0.8
0.06 eV / atom TPR 0.78	Precision	0.52	Run time	142.48 h	MAE	0.07 eV / atom	TPR	0.79
cision 0.58 Run time 111.9 h					Precision	0.45	Run time	83.65 h

Dielectric Materials Discovery

arXiv:2401.05848 (cond-mat)

[Submitted on 11 Jan 2024]

Pushing the Pareto front of band gap and permittivity: **ML-guided search for** dielectric materials

Janosh Riebesell, T. Wesley Surta, Rhys Goodall, Michael Gaultois, Alpha A Lee

Can we deploy ML-guided discovery into practice?

MACE-MP

What else can foundation models trained for discovery do?

arXiv:2401.00096 (physics)

[Submitted on 29 Dec 2023]

A foundation model for atomistic materials chemistry

Ilyes Batatia, Philipp Benner, Yuan Chiang, Alin M. Elena, Dávid P. Kovács, Janosh Riebesell, Xavier R. Advincula, Mark Asta, William J. Baldwin, Noam Bernstein, Arghya Bhowmik, Samuel M. Blau, Vlad Cărare, James P. Darby, Sandip De, Flaviano Della Pia, Volker L. Deringer, Rokas Elijošius, Zakariya El-Machachi, Edvin Fako, Andrea C. Ferrari, Annalena Genreith-Schriever, Janine George, Rhys E. A. Goodall, Clare P. Grey, Shuang Han, Will Handley, Hendrik H. Heenen, Kersti Hermansson, Christian Holm, Jad Jaafar, Stephan Hofmann, Konstantin S. Jakob, Hyunwook Jung, Venkat Kapil, Aaron D. Kaplan, Nima Karimitari, Namu Kroupa, Jolla Kullgren, Matthew C. Kuner, Domantas Kuryla, Guoda Liepuoniute, Johannes T. Margraf, Ioan-Bogdan Magdău, Angelos Michaelides, J. Harry Moore, Aakash A. Naik, Samuel P. Niblett, Sam Walton Norwood, Niamh O'Neill, Christoph Ortner, Kristin A. Persson, Karsten Reuter, Andrew S. Rosen, Lars L. Schaaf, Christoph Schran, Eric Sivonxay, Tamás K. Stenczel, Viktor Svahn, Christopher Sutton, Cas van der Oord, Eszter Varga-Umbrich, Tejs Vegge, Martin Vondrák, Yangshuai Wang, William C. Witt, Fabian Zills, Gábor Csányi

Why Matbench Discovery?

ARTICLE **OPEN** A critical examination of compound stability predictions from machine-learned formation energies

Christopher J. Bartel $(\mathbf{D}^{1} \boxtimes$, Amalie Trewartha¹, Qi Wang², Alexander Dunn $(\mathbf{D}^{1,2})$, Anubhav Jain (\mathbf{D}^{2}) and Gerbrand Ceder $(\mathbf{D}^{1,3} \boxtimes$

Check for updates

MP = Training Set WBM = Test Set

Model	F1 ↑	DAF ↑	Prec ↑	Acc ↑	TPR ↑	TNR ↑	$\textbf{MAE} \downarrow$	RMSE ↓	R² ↑	
MACE	0.67	3.50	0.58	0.87	0.78	0.88	0.06	0.10	0.66	
CHGNet	0.61	3.04	0.52	0.84	0.74	0.86	0.06	0.10	0.69	
M3GNet	0.58	2.65	0.45	0.80	0.79	0.80	0.07	0.12	0.58	
ALIGNN	0.56	2.92	0.50	0.83	0.65	0.87	0.09	0.15	0.27	morgo
MEGNet	0.51	2.70	0.46	0.81	0.57	0.86	0.13	0.20	-0.28	merge
CGCNN	0.51	2.63	0.45	0.81	0.59	0.85	0.14	0.23	-0.62	
CGCNN+P	0.51	2.40	0.41	0.78	0.67	0.80	0.11	0.18	0.03	
Wrenformer	0.48	2.13	0.36	0.74	0.69	0.75	0.10	0.18	-0.04	
BOWSR	0.44	1.91	0.32	0.68	0.74	0.67	0.12	0.16	0.14	
Voronoi RF	0.34	1.51	0.26	0.67	0.51	0.70	0.14	0.21	-0.31	
Dummy	0.19	1.00	0.17	0.68	0.23	0.77	0.12	0.18	0.00	

Stability criterion: $E_{above MP hull} \leq 0$

MP = Training Set WBM = Test Set

WBM energy above MP convex hull (eV/atom)

10 models benchmarked to date

Model	F1 ↑	DAF ↑	Prec ↑	Acc ↑	TPR ↑	TNR ↑	MAE ↓	RMSE ↓	R² ↑	Training Size	Model Type
MACE	0.67	3.50	0.58	0.87	0.78	0.88	0.06	0.10	0.66	1.6M (145.9K)	UIP-GNN
CHGNet	0.61	3.04	0.52	0.84	0.74	0.86	0.06	0.10	0.69	1.6M (145.9K)	UIP-GNN
M3GNet	0.58	2.65	0.45	0.80	0.79	0.80	0.07	0.12	0.58	188.3K (62.8K)	UIP-GNN
ALIGNN	0.56	2.92	0.50	0.83	0.65	0.87	0.09	0.15	0.27	154.7K	GNN
MEGNet	0.51	2.70	0.46	0.81	0.57	0.86	0.13	0.20	-0.28	133.4K	GNN
CGCNN	0.51	2.63	0.45	0.81	0.59	0.85	0.14	0.23	-0.62	154.7K	GNN
CGCNN+P	0.51	2.40	0.41	0.78	0.67	0.80	0.11	0.18	0.03	154.7K	GNN
Wrenformer	0.48	2.13	0.36	0.74	0.69	0.75	0.10	0.18	-0.04	154.7K	Transformer
BOWSR	0.44	1.91	0.32	0.68	0.74	0.67	0.12	0.16	0.14	133.4K	BO-GNN
Voronoi RF	0.34	1.51	0.26	0.67	0.51	0.70	0.14	0.21	-0.31	154.7K	Fingerprint
Dummy	0.19	1.00	0.17	0.68	0.23	0.77	0.12	0.18	0.00		

UIP = universal interatomic potentials GNN = graph neural network RF = random forest

DAF = discovery acceleration factor BO = Bayesian optimization

- WIP submissions for: Nequip, Allegro, PFP from Matlantis, GNoMe from DeepMind

Main Take Aways

- ML force fields = winning ML methodology for materials discovery
- ML stability predictions have improved a lot since Bartel et al. 2021!
- ML4Mat might be at similar inflection point as NLP after transformer paper
 - found the right architecture (MLIPs)
 - next: generate more data to build complete map of PES asap

Pushing the Pareto front of band gap and dielectric constant

Does ML-guided discovery succeed in practice when applied to dielectrics discovery?

Part 2

Discovery Pipeline

Generation Mode

Discovery Pipeline

Generation Mode

Discovery Pipeline

Drop existing MP compositions

Generation Mode

Discovery Pipeline

Custom web app for real-time collaborative synthesis selection

Dielectric constant ε_{total} and band gap E_{gap} = anti-correlated but both essential in electronic applications

CsTaTeO6 (mp-1225854:W \rightarrow Te)

We optimize figure of merit $\Phi_M = \varepsilon_{\text{total}} \cdot E_{\text{gap}}$

https://janosh.github.io/dielectrics

(e) Fluorite Fm3m Rietveld fit for Bi₂Zr₂O₇

(f) $Bi_2Zr_2O_7$ structural model

(g) Isolated Zr/BiO_8 polyhedra

Dielectric Characterization of Bi₂Zr₂O₇ and CsTaTeO₆

MACE-MP-0 Foundation Model

arXiv:2401.00096 (physics)

[Submitted on 29 Dec 2023]

A foundation model for atomistic materials chemistry

Ilyes Batatia, Philipp Benner, Yuan Chiang, Alin M. Elena, Dávid P. Kovács, Janosh Riebesell, Xavier R. Advincula, Mark Asta, William J. Baldwin, Noam Bernstein, Arghya Bhowmik, Samuel M. Blau, Vlad Cărare, James P. Darby, Sandip De, Flaviano Della Pia, Volker L. Deringer, Rokas Elijošius, Zakariya El-Machachi, Edvin Fako, Andrea C. Ferrari, Annalena Genreith–Schriever, Janine George, Rhys E. A. Goodall, Clare P. Grey, Shuang Han, Will Handley, Hendrik H. Heenen, Kersti Hermansson, Christian Holm, Jad Jaafar, Stephan Hofmann, Konstantin S. Jakob, Hyunwook Jung, Venkat Kapil, Aaron D. Kaplan, Nima Karimitari, Namu Kroupa, Jolla Kullgren, Matthew C. Kuner, Domantas Kuryla, Guoda Liepuoniute, Johannes T. Margraf, Ioan–Bogdan Magdău, Angelos Michaelides, J. Harry Moore, Aakash A. Naik, Samuel P. Niblett, Sam Walton Norwood, Niamh O'Neill, Christoph Ortner, Kristin A. Persson, Karsten Reuter, Andrew S. Rosen, Lars L. Schaaf, Christoph Schran, Eric Sivonxay, Tamás K. Stenczel, Viktor Svahn, Christopher Sutton, Cas van der Oord, Eszter Varga–Umbrich, Tejs Vegge, Martin Vondrák, Yangshuai Wang, William C. Witt, Fabian Zills, Gábor Csányi

Can ML potentials predict DFT lattice vibrations (aka phonons)?

Part 3

Can ML potentials reproduce DFT lattice vibrations (aka phonons)?

https://github.com/materialsproject/atomate2

atomate2 Public	🖒 Edit Pins 👻 💿 Unwatch	n 12 👻 양 Fork	54 - 🛧 Starred 104 -				
ᢞ main ▾ 양 ♡	Go to file +	<> Code -	About ô				
Mark sch 🚥 3 people	● c9e1376 · 3 minutes ago ℃)2,504 Commits	atomate2 is a library of computational materials science workflows				
.github	Update GitHub Actions v	last month	materialsproject.github.io/at				
b docs	Enable all ruff rules by d	3 days ago	automation dft vasp				
src/atomate2	Mark schema fields with	3 minutes ago	materials-science				
tests	Mark schema fields with	3 minutes ago					
Codecov.yml	Update .codecov.yml	2 years ago	View license				
🗋 .gitattributes	Update .gitattributes	2 years ago	Solution Code of conduct				
] .gitignore	Add doctrees to gitignore	8 months ago	-∿- Activity ☆ 104 stars				
.pre-commit-config.yaml	Auto-update pre-commit	3 days ago	• 12 watching				
ADMIN.md	bump min emmet-core to	3 months ago	ళి 54 forks				
CHANGELOG.md	Add optional 3rd static fo	last month					
CODE_OF_CONDUCT	Refactor docs	2 years ago	Releases 11				

taclass ss PhononMaker(Maker):

Maker to calculate harmonic phonons with a force field.

Calculate the harmonic phonons of a material. Initially, a tight structural relaxation is performed to obtain a structure without forces on the atoms. Subsequently, supercells with one displaced atom are generated and accurate forces are computed for these structures. With the help of phonopy, these forces are then converted into a dynamical matrix. To correct for polarization effects, a correction of the dynamical matrix based on BORN charges can be performed. The BORN charges can be supplied manually. Finally, phonon densities of states, phonon band structures and thermodynamic properties are computed.

.. Note::

It is heavily recommended to symmetrize the structure before passing it to this flow. Otherwise, a different space group might be detected and too many displacement calculations will be generated. It is recommended to check the convergence parameters here and adjust them if necessary. The default might not be strict enough for your specific case.

PBE vs MACE phonon band width ω_{max}

PBE vs ML imaginary phonon modes

57% of 105 test structures are PBE-dynamically unstable

Future Research Directions

- Design large-scale phonon benchmark since thermodynamic stability seems "solved"
- How to address PES softness?
- What are good metrics to compare ML foundation models going forward? - How to commoditize foundation models / make them usable by non-experts to
- unlock their full utility?
- How to best train foundation models on multiple modalities (slabs, defects, amorphous, 2D, molecules, ...)

Acknowledgements

Rhys Goodall

Michael Gaultois

Yuan Chiang

Gábor Csányi

Philipp Benner

Shyue Ping Ong

Aaron Kaplan

Bowen Deng

Wesley Surta

Alpha Lee

Kristin Persson

Anubhav Jain

Questions?

