
Janosh Riebesell Lecturer: Carlo Ewerz January 27th, 2010

Statistical Mechanics
Second Exam

General remarks

• Please use a separate sheet for every exercise.

• Write your name and your group on every sheet.

• You are not allowed to use calculators, paper (except blank sheets) or formula cards.

1 Short questions (10 points)

a) What is the mean occupation number 〈nν〉 for a bosonic and for a fermionic system with
energy levels Eν? (3 points)

b) Consider a system consisting of two identical non-interacting particles. Each particle can
have exactly three distinct energies ǫ1 = −ǫ, ǫ2 = 0, and ǫ3 = +ǫ. The system is in
thermal contact with a heat bath of temperature T . Determine the canonical partition
sum of the system for the case where both particles are distinguishable. (2 points)

c) Shortly explain what characterizes Bose-Einstein condensation. (2 points)

d) Specify the thermodynamic quantities to which the energy fluctuations (in the canonical
ensemble) and the particle number fluctuations (in the grand canonical ensemble) are
related. (3 points)

a) The expected number of bosons/fermions in a state |ν〉 with energy Eν is determined by
Bose-Einstein/Fermi-Dirac statistics,

〈n±
ν 〉 = −

1

β

∂

∂Eν
ln(Z±

g ) =
gν

eβ (Eν−µ) ∓ 1
, (1)

where gν counts the degeneracy of Eν and β = 1
kBT

.

b) Since the particles are non-interacting, the partition function factorizes. For a single particle,

Z1
c =

3
∑

i=1

e−βǫ1 = eβǫ + 1 + e−βǫ. (2)

For both,
Zc = (Z1

c )
2 = e2βǫ + 2eβǫ + 3 + 2e−βǫ + e−2βǫ. (3)

The degeneracies in front of each Boltzmann factor coincide with the number of times
an energy level appears in the table below. They sum up to the total number of states
1 + 2 + 3 + 2 + 1 = 9.

E −2ǫ −ǫ 0 −ǫ 0 ǫ 0 ǫ 2ǫ

ǫ • • • • ••

0 • • •• • •

−ǫ •• • • • •

If instead the particles were indistinguishable, we would have Zc =
1
2!(Z

1
c )

2.
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c) Bose-Einstein condensation is the phenomenon of macroscopic accumulation of bosons in
the ground state wave function below a critical temperature T < Tc. Tc is close to absolute
zero and determined by the particle density n(z = 1) at zero chemical potential (z = eβµ).

d) The expected energy in the canonical ensemble is

〈E〉 =
1

Zc

∑

i

Eie
−βEi = −

∂ lnZc

∂β
. (4)

Its derivative w.r.t. temperature gives

CV =
∂〈E〉

∂T
=

1

Zc

∑

i

Ei
Ei

kBT 2
e−βEi −

1

Zc

∂Zc

∂T
〈E〉

=
1

kBT 2

(

〈E2〉 − 〈E〉2
)

=
1

kBT 2
σ2
E .

(5)

Thus in the canonical ensemble, heat capacity and energy fluctuations are directly related.

In the grand canonical ensemble, the expected particle number is

〈N〉 =
1

Zg

∞
∑

N=0

NzNZc =
1

Zg

1

β

∂

∂µ

∞
∑

N=0

zNZc =
1

β

∂

∂µ
lnZg. (6)

The number fluctuations can be written

1

β2

∂2

∂2µ
lnZg =

1

β

∂

∂µ
〈N〉 =

1

Zg

∞
∑

N=0

N2zNZc −

(

1

Zg

∞
∑

N=0

NzNZc

)2

= 〈N2〉 − 〈N〉2 = σ2
N .

(7)

Thus

σ2
N = −

1

β

∂2Ω

∂2µ
=

V

β

∂2p

∂2µ
, (8)

where we identified the grand potential Ω = − 1
β
lnZg, inserted Ω = −pV and used that

the grand canonical ensemble keeps the volume fixed. The (isothermal) compressibility is
defined

κT = −
1

V

∂p

∂V
=

V 2

N2

∂2p

∂2µ
, (9)

i.t.o. which (8) reads

σ2
N =

N2

βV
κT . (10)

Thus the grand canonical ensemble relates compressibility and number fluctuations.

2 One-dimensional Ising Model (10 points)

Consider N spins in a chain which can be modeled using the one-dimensional Ising model

H = −J
N−1
∑

n=1

snsn+1, (11)

Where a spin has the values sn = ±1.

a) Calculate the partition function. (5 points)

b) Calculate the heat capacity per spin. (5 points)
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a) The partition function is the sum over all 2N possible states s = {s1, . . . , sN} ∈ SN = {±1}N

weighted by their energy H(s) according to Boltzmann’s factor e−βH(s),

Zc =
∑

s∈SN

e−βH(s) =
∑

s1∈{±1}

. . .
∑

sN∈{±1}

eβJ
∑N−1

n=1
snsn+1 =

N−1
∏

n=1

∑

sn∈{±1}

eβJsnsn+1

∑

sN∈{±1}

= 2
N−1
∏

j=1

(

eβJ + e−βJ
)

= 2
[

2 cosh(βJ)
]N−1

,

(12)

where we used that
∑

sn∈{±1} e
βJsnsn+1 = 2 cosh(βJ) regardless of the sign of sn+1.

b) The Ising chain’s energy is

U = −
∂ lnZc

∂β
= −(N − 1)

sinh(βJ)

cosh(βJ)
J = −(N − 1)J tanh(βJ). (13)

which results in the per-spin heat capacity

c =
C

N
=

1

N

∂U

∂T
=

1

N

∂U

∂β

∂β

∂T
=

(N − 1)J

NkBT 2

(

J −
sinh2(βJ)

cosh2(βJ)
J

)

≈ kB
β2J2

cosh2(βJ)
, (14)

where we used sinh2(x) = cosh2(x)− 1 and N ≫ 1.

3 Ideal quantum gases (10 points)

Note: a) and b) can besolved independently.

a) A system of N non-interacting, spin-12 fermions are confined to move in two dimensions.
They are confined within a rectangular area with dimensions Lx and Ly. The wave
vectors allowed by periodic boundary conditions are k = 2π

Lx
nxex + 2π

Ly
nyey, where nx

and ny can take on all positive and negative integer values. The energy for a single

fermion is given by ǫ = ~
2
k
2

2m .

i) Determine N(k), the number of single-particle states with wavevector magnitude
smaller than k. (1 point)

ii) Determine D(ǫ), the density of single-particle states as a function of their energy ǫ.
(2 points)

iii) Find an expression for the total energy E of the system of fermions at T = 0. (2
points)

b) Now, we consider a system of N non-interacting bosons that have no spin degrees of
freedom. They are distributed among 3 single-particle states: Υ1 and Υ2 with energy
ǫ = 0 and Υ3 with energy ǫ = ∆.

i) Write down a closed form expression for the partition function Z(T ) for the system of

bosons. The following formulae may be useful:
∑N

n=0 x
n = 1−xN+1

1−x
and

∑N
n=0 (N −

n+ 1)xn = (N+1)−(N+2)x+xN+2

(1−x)2
. (1 point)

ii) Determine the internal energy E in the limit of large N at low temperatures kBT ≪
N∆. (3 points)

iii) Shortly explain why E is not an extensive variable in this model at low temperature.
(1 point)

Note: iii) can be solved independently from ii).
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a) Ideal Fermi gas

i) The k-space region of wavevectors up to a given magnitude is a disk of area πk2. The

k-space area occupied by a single particle state is 1
2
2π
Lx

2π
Ly

= 2π2

A
, where the factor of 1

2
is due to the spin degeneracy gs = 2s+ 1 = 2. The number of states with wavevector
magnitude smaller than k is thus

N(k) =
πk2

2π2/A
=

Ak2

2π
. (15)

kx

ky

2π
Lx

2π
Ly

N(k)

ii) The (single-particle) density of states is

D(ǫ) =
∂

∂ǫ
N(k) =

∂

∂ǫ

A

2π

2m

~2
ǫ =

Am

π~2
, (16)

independent of ǫ.

iii) We can calculate the system’s total Energy E by integrating ǫ times the density of
states D(ǫ) times the number n(ǫ) of particles with energy ǫ over all energies,

E =

∫ ∞

0
ǫD(ǫ)n(ǫ) dǫ, (17)

where n(ǫ) is given by the Fermi-Dirac distribution1

n(ǫ) =
1

eβ(ǫ−µ)+1
, (18)

plotted below for different temperatures.

0.5 1 1.5 2

0.5

1

∝ 1/β

ǫ/µ

n(ǫ) kBT = 1
5µ

kBT = 1
25µ

T = 0

1Note that we already took care of the spin degeneracy gs = 2 in the density of states D(ǫ), so we don’t need to
include another factor of gs in n(ǫ).
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At T = 0, n(ǫ) becomes a step function dropping from gs to zero at the chemical
potential µ. Thus the integral (17) simplifies to

E =

∫ µ

0
ǫD(ǫ) dǫ =

1

2

Am

π~2
µ2 =

Nµ

2
=

2π~2

Am
N2, (19)

where we inserted the Fermi energy ǫF for µ(T = 0) obtained from (15) rewritten as

N(ǫ) =
Am

π~2
ǫF ⇒ ǫF =

π~2N

Am
, (20)

At T = 0 all energy levels from ǫ = 0 up to the chemical potential µ are fully occupied.
Thus the second-to-last expression in (19) reflects that the total energy is just the
average single-particle energy µ

2 times the number of particles.

b) Ideal Bose gas

i) The canonical partition function of a single boson in this three-state system is

Z1
c =

3
∑

i=1

e−βǫi = 2 + e−β∆. (21)

Since the N bosons are non-interacting, the total partition function is just

Zc =
1

N !
(Z1

c )
N =

1

N !

(

2 + e−β∆
)N

, (22)

where 1
N ! ensures correct counting of states for indistinguishable particles.

ii) The internal energy is

E = −
∂ lnZc

∂β
=

∆N

1 + 2eβ∆
. (23)

At very high temperatures, we expect thermal fluctuations to be so strong that all
single-particle states are equally occupied. Indeed, (23) suggests that E → N∆

3 for
T → ∞, i.e. β → 0. For low temperatures on the other hand, the denominator of (23)
diverges (assuming ∆ > 0) and we get E = 0. This is consistent with the interpretation
that near absolute zero, all bosons coalesce into either of the two zero-energy ground
states.

iii) If all particles occupy states of zero energy, E is not extensive at low temperatures
because it remains zero no matter the size of the system.
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