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Problem 1.1 (Compton Scattering):
Consider the Compton scattering process e−γ → e−γ in QED. Use the Feyman rules on page
4 to derive the amplitude for the tree level diagram,

ǫin (k) ǫout (k
′)

u (p) u (p′)

= iM1 = i(−ie)2ur(~p
′)/ǫout

(

/p+ /k +m
)

(p+ k)2 −m2
/ǫinus(~p). (1)

Also compute the contribution from

ǫin (k) ǫout (k
′)

u (p) u (p′)

The total amplitude, at order e2, is the sum of these two diagrams. Show that, if ǫin is replaced
by the incoming photon momentum k, then the total amplitude vanishes. Check that the same
holds true if ǫout is replaced by k′.

Hint: You may find
(

/p−m
)

u(~p) = 0 useful.

Problem 1.2 (e−e+ → µ−µ+ Scattering Amplitude):
For this question, use the fact that a muon, µ±, is a Dirac fermion with mass mµ ≫ me and
satisfies the same Feynman rules as the electron.

a.) Using the Feynman rules for QED on page 4, show that the amplitude for e−e+ → µ−µ+

is given, at lowest order in e, by,

e+

e−

µ+

µ

p′, s′

q′, r′

p, s

q, r

= iM = −i(−ie)2
[ver(~q)γµu

e
s(~p)][u

m
s′ (~p

′)γµvmr′ (~q
′)]

(p+ q)2 + iε
(2)

where the superscripts e and m denote whether the spinors satisfy the Dirac equation for
the electrons or muons. Briefly comment as to why this is the only contributing diagram
unlike for e−e+ → e−e+ scattering.
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b.) Prove the following identities:

i.) Tr(γµγν) = 4ηµν

ii.) Tr(γµγνγσ) = 0

iii.) Tr(γµγνγσγρ) = 4(ηµνησρ − ηµσηνρ + ηµρηνσ)

iv.)
∑

s,s′
[vs′(p

′)γνus(p)]
∗[vs′(p

′)γµus(p)] = 4[pνp′µ + pµp′ ν − (p.p′ +m2)ηµν ]

Hint: You may find the following relations useful,

∑

s

us(~p)us(~p) = γ.p+m,

∑

s

vs(~p)vs(~p) = γ.p−m.
(3)

c.) Let m,M denote the electron and muon masses, respectively. Show that

∑

srs′r′

|M|2 =
e4

s2
Tr[(γ.p′ +M)γµ(γ.q′ −M)γν ]Tr[(γ.p+m)γν(γ.q −m)γµ] (4)

where s = (p+ q)2.

d.) This can be simplified further, assuming that the momentum components are sufficiently
large enough and thus, one can neglect the electron and muon masses as a good approxi-
mation.

θ

ee+

µ

µ+

In the centre-of-mass frame,

~q = −~p; ~q ′ = −~p ′; (5)

and q0 = p0 = |~p |; q′ 0 = p′ 0 = |~p ′ | (6)

by setting m =M = 0. Show that

∑

srs′r′

|M|2 =
32e4

s2
[p.p′q.q′ + p.q′q.p′] = 4e4

(

1 + cos2 θ
)

(7)

where θ is the scattering angle in the centre-of-mass frame.

Problem 1.3 (Symmetries of classical electrodynamics):
We consider classical massless electrodynamics,

LED = −
1

4
FµνF

µν + ψγµ(i∂µ + Aµ)ψ (8)

where the field strength is defined as Fµν = ∂µAν − ∂νAµ. This theory is invariant under local
U(1) gauge transformations, with the fields transforming as,

ψ −→eiα(x)ψ,

Aµ −→Aµ + ∂µα(x).
(9)

a.) Find the equations of motion for the gauge and fermion fields.
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b.) The energy-momentum tensor, T µν , is the conserved Noether current associated to the space-
time translations

xµ −→x′
µ
= xµ − aνδµν , (10)

with

Aµ(x) −→A′

µ(x
′) = Aµ(x),

ψ(x) −→ψ′(x′) = ψ(x).
(11)

i.) Show that, for classical electrodynamics, it is given by

T µν = −F µρ∂νAρ + δµν
1

4
F ρσFρσ + iψγµ∂νψ. (12)

Hint: Noether’s theorem states that given a symmetry transformation parameterised
by1 εa inducing the infinitesimal transformations

xµ −→x′µ = xµ − εaEµa +O(ε2),

χi(x) −→χ′

i(x) = χi(x) + εa∆ai +O(ε2),
(13)

where χi is any of the fields, there exists a conserved current, Jµa , given by:

Jµa =
∂L

∂(∂µχi)
∆ai − EµaL. (14)

ii.) Show that T µν is not gauge invariant.

c.) We may restore gauge invariance by “improving” the energy-momentum tensor. A con-
served current, Jµa , can always be improved with the help of a (non-conserved) antisym-
metric tensor, Lµνa = −Lνµa .

i.) Show that the improved current

J̃µa = Jµa + ∂νL
µν
a (15)

is also conserved and gives rise to the same conserved charge, Q̃a, as that of J
µ
a .

Hint: Recall that Qa =
∫

d3xJ0
a .

ii.) Now, focussing on the limit ψ, ψ → 0 for simplicity, use the equations of motion to find
the antisymmetric tensor Lρµν that improves the energy-momentum tensor, restoring
gauge invariance, i.e.

Θµ
ν

∣

∣

ψ=0=ψ = (T µν + ∂ρL
µρ
ν )

∣

∣

ψ=0=ψ
= −F µρFνρ + δµν

1

4
F ρσFρσ. (16)

d.) Finally, massless electrodynamics has one additional symmetry: spacetime symmetries are
enhanced with scale invariance:

xµ −→x′µ = e−βxµ;

Aµ(x) −→A′

µ(x
′) = eβAµ(x); β ∈ R

ψ(x) −→ψ′(x′) = e
3β

2 ψ(x);

(17)

in addition to the usual Poincaré invariance.

i.) Show that the action S =
∫

d4x LED is invariant under scale transformations.

ii.) Show that the associated current, Sµ, can be written as:

Sµ = xνT µν + Uµ, (18)

and give the expression of Uµ.

1a runs over the number of independent transformations, e.g. a = 1 for a U(1) symmetry or a = ν = 0, . . . , 3
for spacetime translations
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The Feynman Rules for QED

Incoming fermions: ψ
p, s

uψs (p) ψ
+

p, s
vψs (p)

Outgoing fermions: ψ
p, s

uψs (p) ψ
+

p, s
vψs (p)

Incoming photon:
γ

k

µ ǫµin(k)

Outgoing photon:

γ

k

µ ǫµout(k)

Vertices:

ψ
+

γ

ψ−

q

p

k

−ieγµ

Photon propagator:
µ

k

ν −iηµν
k2+iε

Fermion propagator:
k

i(/k+mψ)
k2−m2

ψ
+iε

Table 1: ψ and ψ are fermions and antifermions, e.g. the electron and positron respectively,
and their electric charge is indicated.
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