Heidelberg University	1	2	3	4	Σ
Björn Malte Schäfer					

General Relativity (MKTP3) Summer Term 2015

Exercise sheet 1 Tim Tugendhat (tugendhat@uni-heidelberg.de) **13 April 2015** Due: 9:15h, 20 April 2015

1. (10 points) Gravitational train

Figure 1: Map of the earth.

In order to save CO_2 emissions from air traffic, the governments of France and New Zealand have decided, very realistically, to bore a tunnel through the centre of the earth, directly connecting their landmasses with a straight tube, through which a train can travel without any friction and solely accelerated by gravitational pull.

(a) How long does it take for the train to travel one way if Earth's radial density $\rho(r)$ follows

i.
$$\rho(r) = \rho_0 = 5.5 \,\mathrm{g \, cm^{-3}}$$
, and
ii. $\rho(r) = \rho_1 R_{\rm E}/r = 3.7 \,\mathrm{g \, cm^{-3}} R_{\rm E}/r$,
for $0 < r \le R_{\rm E}$.

- (b) Assume there was a similar tunnel between Berlin and London. How long would that journey take, assuming constant density ρ_0 ?
- (c) What is the period T of a hypothetical satellite that orbits the Earth on its surface? Why is it exactly the same as the time for the return journey for the train?

2. (10 points) Lagrangian uniqueness

Consider the Langrangian for point mass within a potential V,

$$\mathcal{L}(q, \dot{q}, t) = \frac{1}{2}m\dot{q}^2 - V(q),$$
(1)

and

(a) show that the equations of motion (Euler-Lagrange equations) won't change for transformations of the type

$$\mathcal{L} \to \mathcal{L}'(q, \dot{q}, t) = \alpha \mathcal{L}(q, \dot{q}, t) + \frac{\mathrm{d}}{\mathrm{d}t} f(q, t), \qquad (2)$$

or, in other words, that the action

$$S = \int \mathrm{d}t \, \mathcal{L}(q, \dot{q}, t)$$

is invariant under scaling by an arbitrary number α and gauge transformations which add a total time derivative of an arbitrary function f(q, t)to the Lagrangian.

- (b) What is the physical interpretation of the property you just showed?
- (c) Show that under the infinitesimal transformation $q \rightarrow q + dq$, the Lagrangian gains a contribution of potential energy that can be written in the familiar form Fds. This means that in this case, we don't have homogeneity of space.
- (d) Give an example of a symmetry that the above Lagrangian \mathcal{L} does exhibit, and name the associated conserved quantity.

3. (10 points) Newton's space rope

Consider a rope that is connected to the surface of the Earth on the equator. It is affected by the gravitational force

$$F_{\rm G}(r) = G \frac{Mm}{r^2},$$

as well as a centrifugal force

$$F_{\rm C}(r) = \frac{mv^2}{r} = m\omega^2 r.$$

- (a) Write the forces as integrals along the rope axis. Assume a constant length-density σ .
- (b) At what point do the two forces cancel out, i.e. how long does the rope have to be to be in an equilibrium? Use the dimensionless variable $\xi = x/R_{\rm E}$ to express its length in Earth radii.
- (c) What is the orbital velocity of the outermost point of the rope? (You can assume that the rope is rigid)
- 4. (10 points) **Keplerian orbits** Given the Lagrangian

$$\mathcal{L} = \frac{1}{2}m\left(\dot{r}^2 + r^2\dot{\varphi}^2\right) - U(r),\tag{3}$$

we're going to find whether Keplerian orbits are closed.

- (a) Name q_i and \dot{q}_i . What assumption about the shape of the orbits has been made? Is this a sensible choice given what you know about planetary orbits?
- (b) What is the physical interpretation of the three summands?
- (c) What is the total Energy of the system $\mathcal{E} = \sum E_i$? Where applicable, write it in terms of the canonical momentum in φ -direction,

$$p_{\varphi} = \frac{\partial \mathcal{L}}{\partial \dot{\varphi}}.$$

(d) From the above, you can easily arrive at

$$\frac{\mathrm{d}r}{\mathrm{d}t} = \sqrt{\frac{2}{m} \left(\mathcal{E} - U(r)\right) - \frac{p_{\varphi}^2}{m^2 r^2}}.$$
(4)

Page 3

Try to express $d\varphi$ in terms of dr! (Tip: $p_{\varphi} = mr^2 \frac{d\varphi}{dt}$). Extra question: What condition needs to apply that φ describes a closed curve?

(e) From equation 4, we can immediately see that $\dot{r} = 0$ iff

$$\mathcal{E} = U + \frac{p_{\varphi}^2}{2m^2r^2} = U + \frac{1}{2}mr^2\dot{\varphi}^2.$$

What very special form of orbit do we have in this case of $\dot{r} = 0$? Given

$$U = G\frac{Mm}{r},$$

produce a plot of $\mathcal{E}(r)$ for $M = 2 \times 10^{30}$ kg, $m = 1 \times 10^{24}$ kg, $\dot{\varphi} = 2 \times 10^{-7}$ s⁻¹. If done correctly, you show

If done correctly, you should see a minimum at $r \approx 150 \times 10^6$ km. Guess whose potential you just plotted!

5. (5 points) Extra: Mechanical similarty

(a) A team of astronauts lands on Mars. They transmit their first steps on the red planet live on TV and in order to prove that it's not a hoax, one of them uses a simple pendulum of length l = 1 m to show to the audience that they are really on Mars. As the gravitational constant g is supposedly lower on Mars than in a TV studio on Earth, the pundulum should have a larger period $T \propto \sqrt{l/g}$. Can you, as TV audience, distinguish between a lower gravitational constant g and a slower passage of time? Could this still be a hoax?

"There is no royal road to geometry." - Euclid