Problem Sheet 1

Exercise 1: (Definitions)

(a) Define what a group is and show from the axioms that left-identity and -inverses are also right-identity and -inverses, and that identity and inverses are unique.
(b) What is a group homomorphism? Show that the map $\mathbb{Z} \longrightarrow \mathbb{Z}_{n}, z \longmapsto[z]$ is a group homomorphism.
(c) What is a subgroup? Show that the rotations form a subgroup $\mathbb{Z}_{n} \subset D_{n}$ of the dihedral group D_{n}.
(d) What are conjugacy classes? Determine all conjugacy classes of D_{4} and D_{5}. What about general D_{n} ?
(e) What is a normal subgroup $H \triangleleft G$ of a group G ? Give an example of a nontrivial normal subgroup of D_{5}. Show that kernels $\operatorname{ker}(\varphi)=\{g \in G \mid \varphi(g)=e\}$ of group homomorphisms $\varphi \in \operatorname{Hom}\left(G, G^{\prime}\right)$ are normal subgroups of G. Argue that the special unitary $n \times n$-matrices $\mathrm{SU}(n)=\{A \in \mathrm{U}(n) \mid \operatorname{det}(A)=1\}$ form a subgroup of $\mathrm{U}(n)$ and that it is normal: $\mathrm{SU}(n) \triangleleft \mathrm{U}(n)$.
(f) Show that for any normal subgroup $H \triangleleft G$, the quotient G / H has the structure of a group. Show that $\mathbb{Z}_{n} \triangleleft D_{n}$ and $D_{n} / \mathbb{Z}_{n} \cong \mathbb{Z}_{2}$.
(g) Let N and H be groups and $\vartheta \in \operatorname{Hom}(H, \operatorname{Aut}(N))$ be a group homomorphism from the group H into the group of invertible group homomorphisms from N to itself. Show that the product set $N \times H$ together with the multiplication

$$
(n, h) \cdot\left(n^{\prime}, h^{\prime}\right)=\left(n \vartheta(h)\left(n^{\prime}\right), h h^{\prime}\right)
$$

defines a group. It is called the semidirect product and denoted by $N \rtimes_{\vartheta} H$.

Exercise 2: (Finite groups)

(a) Let G be a finite group with a prime number of elements. What can you say about G ?
(b) Write the multiplication table of \mathbb{Z}_{3} and the respective embedding $\mathbb{Z}_{3} \hookrightarrow S_{3}$ into the symmetric group.

Exercise 3: (Symmetric group)

(a) Write the permutation

$$
\pi=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
3 & 1 & 5 & 2 & 4 & 6
\end{array}\right)
$$

as product of non-intersecting cycles.
(b) What is the order of S_{3} ? How many conjugacy classes does S_{3} have? Determine their sizes, and give a representative of each one.
(c) Show that $H=\{e,(1,2)\} \subset S_{3}$ is a subgroup. Is it normal?

