Problem Sheet 2

Exercise 1: (Representations) Recall the following notions from the lecture:
(a) What is a representation?
(b) What is a homomorphism (intertwiner) between two representations?
(c) What is a subrepresentation?
(d) What are reducible and irreducible representations?
(e) Recall Schur's lemma.
(f) Argue that complex representations of finite groups are fully decomposable.

Exercise 2: (Representations of Abelian groups)

(a) Show that all irreducible representations of a finite group G are one-dimensional if and only if G is Abelian. (Hint: What is the sum of the squares of the dimensions of the irreducible representations?)
(b) What are the irreducible representations of the cyclic group \mathbb{Z}_{n} ?

Exercise 3: (Orthogonality relation) Let $\left(\rho_{1}, V_{1}\right)$ and (ρ_{2}, V_{2}) be two irreducible (finite dimensional complex) representations of a finite group G. Choose basis of V_{1} and V_{2}, and let $\left(\rho_{1}(g)\right)_{i j}$ and $\left(\rho_{2}(g)\right)_{a b}$ be the representation matrices with respect to these basis. Then use Schur's lemma to show:
(a) If ρ_{1} and ρ_{2} are inequivalent, then

$$
\sum_{g \in G}\left(\rho_{1}\left(g^{-1}\right)\right)_{i j}\left(\rho_{2}(g)\right)_{a b}=0
$$

for all i, j, a, b.
(b) If on the other hand $\rho_{1}=\rho_{2}$, then

$$
\frac{1}{|G|} \sum_{g \in G}\left(\rho_{1}\left(g^{-1}\right)\right)_{i j}\left(\rho_{2}(g)\right)_{a b}=\frac{1}{\operatorname{dim}\left(V_{1}\right)} \delta_{i, b} \delta_{j, a}
$$

(c) Deduce that

$$
\frac{1}{|G|} \sum_{g \in G} \chi_{\rho_{1}}\left(g^{-1} h\right) \chi_{\rho_{2}}(g)= \begin{cases}\frac{\chi_{\rho_{1}}(h)}{\operatorname{dim}\left(\rho_{1}\right)}, & \text { if } \rho_{1} \cong \rho_{2} \\ 0, & \text { otherwise }\end{cases}
$$

Exercise 4: (Symmetric and antisymmetric products) Let (ρ, V) be a finite dimensional representation. Consider the tensor product representation $\rho \otimes \rho$ on $V \otimes V$. Define $\sigma: V \otimes V \longrightarrow V \otimes V$ by $\sigma\left(v_{1} \otimes v_{2}\right)=v_{2} \otimes v_{1}$ for all $v_{1}, v_{2} \in V$.
(a) Show that the tensor product decomposes into the sum $V \otimes V=S^{2} V \oplus \Lambda^{2} V$ of spaces of symmetric and antisymmetric tensors $S^{2} V=\{v \in V \mid \sigma(v)=v\}$ and $\Lambda^{2} V=\{v \in V \mid \sigma(v)=-v\}$, and that these are invariant subspaces in $V \otimes V$. (Hint: Consider the projectors $\frac{1}{2}(1 \pm \sigma): V \otimes V \longrightarrow V \otimes V$.)

