Problem Sheet 2

Exercise 1: (*Representations*) Recall the following notions from the lecture:

- (a) What is a representation?
- (b) What is a homomorphism (intertwiner) between two representations?
- (c) What is a subrepresentation?
- (d) What are reducible and irreducible representations?
- (e) Recall Schur's lemma.
- (f) Argue that complex representations of finite groups are fully decomposable.

Exercise 2: (Representations of Abelian groups)

- (a) Show that all irreducible representations of a finite group G are one-dimensional if and only if G is Abelian. (Hint: What is the sum of the squares of the dimensions of the irreducible representations?)
- (b) What are the irreducible representations of the cyclic group \mathbb{Z}_n ?

Exercise 3: (Orthogonality relation) Let (ρ_1, V_1) and (ρ_2, V_2) be two irreducible (finite dimensional complex) representations of a finite group *G*. Choose basis of V_1 and V_2 , and let $(\rho_1(g))_{ij}$ and $(\rho_2(g))_{ab}$ be the representation matrices with respect to these basis. Then use Schur's lemma to show:

(a) If ρ_1 and ρ_2 are inequivalent, then

$$\sum_{g \in G} (\rho_1(g^{-1}))_{ij} (\rho_2(g))_{ab} = 0$$

for all i, j, a, b.

(b) If on the other hand $\rho_1 = \rho_2$, then

$$\frac{1}{|G|} \sum_{g \in G} (\rho_1(g^{-1}))_{ij} (\rho_2(g))_{ab} = \frac{1}{\dim(V_1)} \delta_{i,b} \delta_{j,a} \, .$$

(c) Deduce that

$$\frac{1}{|G|} \sum_{g \in G} \chi_{\rho_1}(g^{-1}h) \chi_{\rho_2}(g) = \begin{cases} \frac{\chi_{\rho_1}(h)}{\dim(\rho_1)}, & \text{if } \rho_1 \cong \rho_2\\ 0, & \text{otherwise} \end{cases}$$

Exercise 4: (Symmetric and antisymmetric products) Let (ρ, V) be a finite dimensional representation. Consider the tensor product representation $\rho \otimes \rho$ on $V \otimes V$. Define $\sigma: V \otimes V \longrightarrow V \otimes V$ by $\sigma(v_1 \otimes v_2) = v_2 \otimes v_1$ for all $v_1, v_2 \in V$.

(a) Show that the tensor product decomposes into the sum $V \otimes V = S^2 V \oplus \Lambda^2 V$ of spaces of symmetric and antisymmetric tensors $S^2 V = \{v \in V \mid \sigma(v) = v\}$ and $\Lambda^2 V = \{v \in V \mid \sigma(v) = -v\}$, and that these are invariant subspaces in $V \otimes V$. (Hint: Consider the projectors $\frac{1}{2}(1 \pm \sigma) : V \otimes V \longrightarrow V \otimes V$.)