Quantum Field Theory II
Lecturer: Jürgen Berges
Tutor: Viraf Mehta

Institut für Theoretische Physik
Universität Heidelberg
Sommersemester 2014/15

Assignment 2

Due: Week beginning 27.04.2015.

Problem 2.1 (Path integral and time-ordering):

Show, by using the steps of the derivation of the path integral presented in the lecture, that

$$
\begin{equation*}
\int_{q\left(t_{I}\right) \equiv q_{I}}^{q\left(t_{F}\right) \equiv q_{F}} \mathcal{D} q \mathcal{D} p q\left(t_{1}\right) q\left(t_{2}\right) e^{i S[q, p]}=\left\langle q_{F}, t_{F}\right| T \mathbf{q}_{H}\left(t_{1}\right) \mathbf{q}_{H}\left(t_{2}\right)\left|q_{I}, t_{I}\right\rangle \tag{1}
\end{equation*}
$$

Put special emphasis on showing how the time-ordering appears.

Problem 2.2 (Quantum mechanical oscillator and path integral):

The transition amplitude between a state $\left|q_{a}\right\rangle$ at $t=0$ and $\left|q_{b}\right\rangle$ at $t=T$ can be schematically expressed as

$$
\begin{equation*}
\left\langle q_{b}\right| e^{-i H t}\left|q_{a}\right\rangle=\int_{q(0) \equiv q_{a}}^{q(T) \equiv q_{b}} \mathcal{D} q e^{i S[p]} \tag{2}
\end{equation*}
$$

where the integral is done over all the possible trajectories connecting the points $q(0) \equiv q_{a}$ and $q(T) \equiv q_{b}$ and $S[q]=\int_{0}^{T} d t \mathcal{L}[q, \dot{q}]$.
In the case of free fields, $H=\frac{1}{2 m} \mathbf{p}^{2}$, the transition amplitude is simple to calculate. Show that

$$
\begin{aligned}
\left\langle q_{b}\right| e^{-i \frac{1}{2 m} \mathbf{p}^{2} T}\left|q_{a}\right\rangle=\int d p\left\langle q_{b} \mid p\right\rangle & e^{-i \frac{1}{2 m} p^{2} T}\left\langle p \mid q_{a}\right\rangle= \\
& =\int \frac{d p}{2 \pi} e^{-i p\left(q_{b}-q_{a}\right)} e^{-i \frac{1}{2 m} p^{2} T}=\sqrt{\frac{m}{2 \pi i T}} e^{i \frac{m}{2 T}\left(q_{a}-q_{b}\right)^{2}} .
\end{aligned}
$$

We are now going to determine, in a few steps, the amplitude in the case of an harmonic oscillator. The system is characterised by a Lagrangian density

$$
\mathcal{L}=\frac{m}{2} \dot{q}^{2}-\frac{m \omega^{2}}{2} q^{2} .
$$

a) Recall that the classical trajectory $q_{c}(t)$ is found by minimising the action:

$$
\begin{equation*}
-\frac{\delta S}{\delta q(t)}=m \ddot{q}(t)+m \omega^{2} q(t)=0 \tag{3}
\end{equation*}
$$

and imposing the boundary conditions $q(0)=q_{a}$ and $q(T)=q_{b}$. An arbitrary trajectory $q(t)$ can then be decomposed as $q(t) \equiv q_{c}(t)+y(t)$ with the boundary conditions $y(0)=y(T)=0$.
b) Convince yourself that the following expression for the action is exact

$$
\begin{equation*}
S[q]=S\left[q_{c}\right]+\left.\int_{0}^{T} d t \frac{\delta S[q]}{\delta q(t)}\right|_{q(t)=q_{c}(t)} y(t)+\left.\frac{1}{2} \int_{0}^{T} \int_{0}^{T} d t d t^{\prime} \frac{\delta^{2} S[q]}{\delta q(t) \delta q\left(t^{\prime}\right)}\right|_{q(t)=q_{c}(t)} y(t) y\left(t^{\prime}\right) . \tag{4}
\end{equation*}
$$

Then show that we can write

$$
\begin{equation*}
\frac{\delta^{2} S[q]}{\delta q(t) \delta q\left(t^{\prime}\right)}=-m \frac{d^{2}}{d t^{2}} \delta\left(t-t^{\prime}\right)-m \omega^{2} \delta\left(t-t^{\prime}\right) \tag{5}
\end{equation*}
$$

so that

$$
\begin{equation*}
S[q]=S\left[q_{c}\right]+\frac{m}{2} \int_{0}^{T} d t\left(\dot{y}^{2}(t)-\omega^{2} y^{2}(t)\right)=: S\left[q_{c}\right]+S[y] . \tag{6}
\end{equation*}
$$

Then our initial amplitude reads

$$
\begin{equation*}
\int \mathcal{D} e^{i S[q]}=e^{i S\left[q_{c}\right]} \int \mathcal{D} y e^{i S[y]} \tag{7}
\end{equation*}
$$

c) Show that

$$
\begin{equation*}
S\left[q_{c}\right]=\frac{m \omega}{2 \sin (\omega T)}\left(\left(q_{b}^{2}+q_{a}^{2}\right) \cos (\omega T)-2 q_{a} q_{b}\right) . \tag{8}
\end{equation*}
$$

Hint: T is not connected to ω by a relation like $T \sim 1 / 2 \pi \omega$.
d) At this point it is convenient to introduce functions (\mathcal{C}_{n} is a constant to determine)

$$
\begin{equation*}
y_{n}(t)=\mathcal{C}_{n} \sin \left(\frac{n \pi t}{T}\right) \tag{9}
\end{equation*}
$$

such that they are orthonormal on the interval $[0, T]: \int_{0}^{T} d t y_{n}(t) y_{m}(t)=\delta_{n m}$.
These can be used as a basis to expand any function $y(t)$, satisfying our boundary conditions, as

$$
\begin{equation*}
y(t)=\sum_{n=1}^{\infty} a_{n} y_{n}(t) \tag{10}
\end{equation*}
$$

by means of a set of constants a_{n}. Then show that

$$
\begin{equation*}
S[y]=\frac{m}{2} \sum_{n=1}^{\infty} \lambda_{n} a_{n}^{2} \tag{11}
\end{equation*}
$$

and determine the constant quantities λ_{n}.
e) The integral measure can be expressed as (accept it as a postulate, but try to think about it):

$$
\begin{equation*}
\mathcal{D} y=J \prod_{n=1}^{\infty} d a_{n} \tag{12}
\end{equation*}
$$

for some constant J. Knowing this, show that

$$
\begin{equation*}
F_{\omega}(T):=\int \mathcal{D} y e^{i S[y]}=J \prod_{n=1}^{\infty} \sqrt{\frac{2 \pi i}{m \lambda_{n}}} \tag{13}
\end{equation*}
$$

f) We know the exact value of $F_{\omega}(T)$ for the case of free fields, $\omega=0$: recall indeed that in this case $F_{0}(T)=\sqrt{\frac{m}{2 \pi i T}}$. On the other hand, one can also calculate $F_{0}(T)$ by the same procedure we developed until now: show that the λ_{n} coefficients, when $\omega=0$, read $\lambda_{n}^{(0)}=\frac{n^{2} \pi^{2}}{T^{2}}$.
g) Then we can write

$$
\begin{equation*}
\frac{F_{\omega}(T)}{F_{0}(T)}=\prod_{n=1}^{\infty} \sqrt{\frac{\lambda_{n}^{(0)}}{\lambda_{n}}}=\prod_{n=1}^{\infty}\left(1-\frac{\omega^{2} T^{2}}{\pi^{2} n^{2}}\right)^{-\frac{1}{2}} . \tag{14}
\end{equation*}
$$

Deduce from this that

$$
\begin{equation*}
F_{\omega}(T)=\sqrt{\frac{m \omega}{2 \pi i \sin (\omega T)}} \tag{15}
\end{equation*}
$$

and, finally, collect everything and write up the result for the transition amplitude!

