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Problem 2.1 (Path integral and time-ordering):
Show, by using the steps of the derivation of the path integral presented in the lecture, that

∫ q(tF )≡qF

q(tI)≡qI

DqDp q(t1) q(t2) e
i S[q,p] = 〈qF , tF |TqH(t1)qH(t2) |qI , tI〉 . (1)

Put special emphasis on showing how the time-ordering appears.

Problem 2.2 (Quantum mechanical oscillator and path integral):
The transition amplitude between a state |qa,〉 at t = 0 and |qb〉 at t = T can be schematically
expressed as

〈qb| e
−iH t |qa〉 =

∫ q(T )≡qb

q(0)≡qa

Dq ei S[p] (2)

where the integral is done over all the possible trajectories connecting the points q(0) ≡ qa and

q(T ) ≡ qb and S[q] =
∫ T

0
dtL[q, q̇].

In the case of free fields, H = 1
2m

p2, the transition amplitude is simple to calculate. Show that

〈qb| e
−i 1

2m
p
2 T |qa〉 =

∫

dp 〈qb|p〉 e
−i 1

2m
p2 T 〈p|qa〉 =

=

∫

dp

2π
e−i p(qb−qa) e−i 1

2m
p2 T =

√

m

2π i T
ei

m

2T
(qa−qb)

2

.

We are now going to determine, in a few steps, the amplitude in the case of an harmonic
oscillator. The system is characterised by a Lagrangian density

L =
m

2
q̇2 −

mω2

2
q2 .

a) Recall that the classical trajectory qc(t) is found by minimising the action:

−
δS

δq(t)
= m q̈(t) +mω2q(t) = 0 (3)

and imposing the boundary conditions q(0) = qa and q(T ) = qb. An arbitrary trajectory q(t)
can then be decomposed as q(t) ≡ qc(t)+y(t) with the boundary conditions y(0) = y(T ) = 0.

b) Convince yourself that the following expression for the action is exact

S[q] = S[qc] +

∫ T

0

dt
δS[q]

δq(t)

∣

∣

∣

q(t)=qc(t)
y(t) +

1

2

∫ T

0

∫ T

0

dt dt′
δ2S[q]

δq(t)δq(t′)

∣

∣

∣

q(t)=qc(t)
y(t) y(t′) . (4)



Then show that we can write

δ2S[q]

δq(t)δq(t′)
= −m

d2

dt2
δ(t− t′)−mω2δ(t− t′) (5)

so that

S[q] = S[qc] +
m

2

∫ T

0

dt
(

ẏ2(t)− ω2y2(t)
)

=: S[qc] + S[y] . (6)

Then our initial amplitude reads
∫

D ei S[q] = ei S[qc]
∫

Dy ei S[y] . (7)

c) Show that

S[qc] =
mω

2 sin(ω T )

(

(q2b + q2a) cos(ω T )− 2 qaqb
)

. (8)

Hint: T is not connected to ω by a relation like T ∼ 1/2πω.

d) At this point it is convenient to introduce functions (Cn is a constant to determine)

yn(t) = Cn sin

(

nπ t

T

)

(9)

such that they are orthonormal on the interval [0, T ]:
∫ T

0
dt yn(t)ym(t) = δnm.

These can be used as a basis to expand any function y(t), satisfying our boundary conditions,
as

y(t) =
∞
∑

n=1

anyn(t) (10)

by means of a set of constants an. Then show that

S[y] =
m

2

∞
∑

n=1

λn a
2
n (11)

and determine the constant quantities λn.

e) The integral measure can be expressed as (accept it as a postulate, but try to think about
it):

Dy = J
∞
∏

n=1

dan , (12)

for some constant J . Knowing this, show that

Fω(T ) :=

∫

Dy ei S[y] = J
∞
∏

n=1

√

2 π i

mλn

. (13)

f) We know the exact value of Fω(T ) for the case of free fields, ω = 0: recall indeed that
in this case F0(T ) =

√

m
2π i T

. On the other hand, one can also calculate F0(T ) by the
same procedure we developed until now: show that the λn coefficients, when ω = 0, read
λ
(0)
n = n2π2

T 2 .
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g) Then we can write

Fω(T )

F0(T )
=

∞
∏

n=1

√

λ
(0)
n

λn

=
∞
∏

n=1

(

1−
ω2T 2

π2n2

)

−
1

2

. (14)

Deduce from this that

Fω(T ) =

√

mω

2π i sin(ω T )
(15)

and, finally, collect everything and write up the result for the transition amplitude!
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