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ASSIGNMENT 2

Due: Week beginning 27.04.2015.

Problem 2.1 (Path integral and time-ordering):
Show, by using the steps of the derivation of the path integral presented in the lecture, that
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Put special emphasis on showing how the time-ordering appears.

Problem 2.2 (Quantum mechanical oscillator and path integral):
The transition amplitude between a state |g,,) at t = 0 and |g) at ¢ = T can be schematically
expressed as
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where the integral is done over all the possible trajectories connecting the points ¢(0) = ¢, and

a(T) = g and Slq] = J dt L]q.d].

In the case of free fields, H = ﬁpQ, the transition amplitude is simple to calculate. Show that
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We are now going to determine, in a few steps, the amplitude in the case of an harmonic
oscillator. The system is characterised by a Lagrangian density
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a) Recall that the classical trajectory g.(t) is found by minimising the action:

_% — m(t) +mwiq(t) = 0 (3)

and imposing the boundary conditions ¢(0) = ¢, and ¢(7') = ¢,. An arbitrary trajectory q(t)
can then be decomposed as ¢(t) = ¢.(t)+y(t) with the boundary conditions y(0) = y(T") = 0.

b) Convince yourself that the following expression for the action is exact
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Then show that we can write
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Then our initial amplitude reads
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Show that
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Hint: T is not connected to w by a relation like 7' ~ 1/27w.

At this point it is convenient to introduce functions (C, is a constant to determine)

() = Cysin (27 )

such that they are orthonormal on the interval [0, T: fOT At Y ()Y (t) = S

These can be used as a basis to expand any function y(t), satisfying our boundary conditions,
as

y(t) = anyn(t) (10)

by means of a set of constants a,. Then show that
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and determine the constant quantities A,.

The integral measure can be expressed as (accept it as a postulate, but try to think about
it):
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for some constant J. Knowing this, show that
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We know the exact value of F,(T') for the case of free fields, w = 0: recall indeed that
in this case Fo(T) = \/5255. On the other hand, one can also calculate Fu(7T') by the

sz%n)ae procedure we developed until now: show that the )\, coefficients, when w = 0, read
Ano - n;jer .




g) Then we can write
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Deduce from this that
F(T) = e (15)
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and, finally, collect everything and write up the result for the transition amplitude!



