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1. (10 points) “Fun” with indices
Consider the funky metric

g"" = diag(a,b, —b~ 1, tan(c))

(a) Calculate g,,.

(b) Let’s assume that we’re in Cartesian coordinates (¢, x,y, z). What is the
line element ds??

(c) Given
" = (1,0,1,0)",

what is z,,?

(d) You're given the line element
ds® = ?dt? — dr? — r?d¢°.

What sort of coordinate system are we using? What does the metric look
like?

2. (10 points) Metric tensor and equations of motion
The metric can be written as

02" 0x"”
o =0 G G
In 3D Euclidian space, this just boils down to a coordinate transform.

(a) Find g, for polar coordinates (r,,¢). Neglect the 0-components (¢ =
i ={1,2,3}).

(b) Now limit yourself to the surface of a sphere in R? i.e. a 2-sphere.

Calculate all remaining Christoffel symbols I'7,

2l = 9 (Gvpu + Gupw = Gup)-



(c) Write down the equations of motion by using the geodesic equation
i 4 Thyi®i’ = 0. (1)

3. (10 points) Weak field I: Equations of motion
Consider the weak-field limit of general relativity with a central potential

®(r) = —% 2. The line element reads

ds* = (14 2®) dt* — (1 — 29(r)) (dr® + r?dQ?),

with dQ? = df#? + sin? d¢?.

(a) Find the action S = —mec [ dry/@,i".

(b) You can now read off a Lagrangian L. Why could it also be given as
L=(1+28(r))i — (1 - 28(r)) (r? +r26% 4 12 sin? 0 d’ﬂ)?

¢) Compute the equations of motion from the Euler-Lagrange equations.
grang
(Tip: Only keep terms that are linear in ® or quadratic in ¢;.)

(d) By identifying your equations of motion with the geodesic equation (equa-
tion 1), find all non-trivial Christoffel symbols I'},,.

4. (10 points) Weak field II: Let’s lens like it’s 1999
We’ve seen that in a weak—field limit, the metric tensor can be written as

1+ 20/c? 0 0 0
B 0 —(1—20/c?) 0 0
I = 0 0 —(1—2®/c?) 0 @)
0 0 0 —(1—20/c?)

where ® is the Newtonian gravitational potential.

From this, and from Fermat’s principle, we’re going to derive the correct grav-
itational lensing deflection angle after having seen the Newtonian case in prac-
tice sheet 1.

a) What are the assumptions that go into finding this limit? Write down
g g
the line element ds? = gwdatda” in cartesian coordinates (t,z,y, 2).

(b) What special sort of geodesics do light rays follow, i.e. what value does
ds have for light?
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(¢) From part (b) you can infer the effective velocity of the light ray in the

gravitational field,
, 4T

=0
Approximate it, using that for a < 1,

1+a
~ (1 .
Hl—a (1+a)

C

The refractive index,

can now be written down.
Tip: Use (1+a)™' ~ (1 —a).

(d) Fermat’s principle states that light takes an optically extremal path, i.e.

5 / dln(Z(1)) = 0.

We can write

dz

dl =
dA

dx = |Z] d),

where we defined 7 = dZ/d\. Put this into Fermat’s principle, which
should look like the variation of an action to you now, as in

5/dtL(:E, Z,t) = 0.

What is the “Lagrangian” L(Z,, \) in our case?

(e) Show that applying the Euler-Lagrange-Equations,

doL_oL
d\ oz O’
yields something of the form
C(ne) = (Fn)li )
o (ne:) = (Vn)|a],

where Vn = a%n and €; is the unit vector pointing in Z-direction.
We can set |Z| = 1 for simplicity because the scale of \ is arbitrary, so
let’s not worry about that any more.
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(f) Simplify equation 3 to the form of

(Tip: &n = 9252 Also use that 7| = 1, thus & = &)
(g) Since the right-hand-side is subtracting the light-ray—direction of vn
from Vn, the only remaining part is the one perpendicular to the ray,

6ln, such that

. 1 = =
e}:—VLn:VLlnn.
n

Plug in n from part (¢) and use In(1 —a) ~ —a. What do you get for &;?

(h) The deflection angle & is given by

&= /d)\(—é}).

What do you get if you use your knowledge of €; from (g)?

(i) Your resulting integral can be cumbersome, since we would have to con-
tinuously integrate over the light path. However, since we assume the
deflection angles to small, we can use the Born approximation from scat-
tering theory, introducing the impact paramter £, and integrating over
the unperturbed path:

Ry
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For simplicity, let’s assume that £ lies in the z—y—plane. Then the distance
to the point-like mass at the origin is r* = €2+ \? (because \ is evaluated
at the unperturbed path).

Taking & = —GM/r, we get

and thus for the deflection angle,

2GM Foeo
a(e) = 29M, / d) Tig

c2

Evaluate the integral. Congratulations, your result for &(¢) is now the
full general relativistic gravitational lensing deflection angle.

5. (5 points) Extra: Sym-Metric
Why does the metric tensor g,, necessarily have to be symmetric? What
implications would asymmetry have on the equations of motion?

“Astrophysics, you’ll never be my closest friend // I find no comfort in what my

mind can’t comprehend”
— The Wombats, Tokyo (Vampires & Wolves)
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