
Quantum Field Theory II

Lecturer: Jürgen Berges

Tutor: Viraf Mehta

Institut für Theoretische Physik
Universität Heidelberg

Sommersemester 2014/15

Assignment 3

Due: Week beginning 04.05.2015.

Problem 3.1 (Wick’s theorem reloaded):
In the lecture we have defined

〈φ(x1) . . . φ(xn)〉0 = e
1

2

δ
δφ

DF
δ
δφφ(x1) . . . φ(xn)|φ=0. (1)

Use this expression to prove Wick’s theorem, i.e. show that

〈φ(x1) . . . φ(x2n)〉0 = DF (x1 − x2)DF (x3 − x4) . . . DF (x2n−1 − x2n) + all other contractions.

Hint: First show that

〈φ(x1) . . . φ(x2n)〉0 =
1

2nn!

∑

σ

DF (xσ1
− xσ2

)DF (xσ3
− xσ4

) · · ·DF (xσ2n−1
− xσ2n

), (2)

where the sum is over all permutations σ of 2n elements, and then bring this into the required
form.

Problem 3.2 (Two-point function and functional determinant for a free theory):
In this exercise we will evaluate the two-point function

〈Ω|Tφ(x1)φ(x2) |Ω〉 = lim
T→∞

∫

Dφφ(x1)φ(x2) e
i S[φ]

∫

Dφ ei S[φ]
(3)

for the free real scalar field theory,

S[φ] =

∫

d4xL =

∫

d4x 1
2

(

∂µφ∂
µφ− (m2 − iǫ)φ2

)

, (4)

by means of path integral techniques.

Note: We are taking real time in the path integral, but have shifted m2 → m2 − iǫ as this can
be shown to have the same effect as taking t → t(1− iǫ).

To evaluate the path integral we first introduce a UV- and an IR-cutoff, i.e. we discretise and
restrict to finite volume. Therefore, we get

Dφ =
∏

i

dφ(xi) ,

φ(xi) =
1

V

∑

n

e−ikn·xiφ(kn) ,

where kµ
n = 2πnµ

L
with nµ ∈ Z, |kµ| < π

a
and V = L4.1 L and a are the order parameter of the

volume and the lattice spacing, respectively.

1Note that due to the cutoff, although not explicitly indicated, the sums over the wavenumbers k
µ

n
have

finitely many summands.



a) Why is the measure, when we go to Fourier space, given by

Dφ(x) = J
∏

k0n>0

dℜφ(kn)dℑφ(kn) , (5)

with some constant J , and not by (5) with k0
n unconstrained?

b) By proceeding as in Problem 2.2 d) and e), show that

∫

Dφei S[φ] = J
∏

k0n

√

−i π V

m2 − iǫ− k2
n

√

−i π V

m2 − iǫ− k2
n

= J
∏

all kn

√

−i π V

m2 − iǫ− k2
n

. (6)

Hint: Use (or show) that for ℜ(b) > 0, the Gaussian integral
∫

∞

−∞
dx e−b x2

is well-defined

and gives
√

π
b
. Argue why this theorem is applicable here.

c) Before we continue with the two-point function, we want to relate (6) with the functional

determinant. To do so, convince yourself that
(

∏

k

∫

dξk

)

e−ξiB
ijξj =

∏

i

√

π

bi
= const× 1√

detB
(7)

for B some symmetric positive definite N × N matrix (more generally it suffices that the
eigenvalues have a positive real part) and ξ ∈ R

N .

Hint: Do an integral transformation to go to the diagonal space of B.

d) Now rewrite the action (4) into the form

S[φ] = φ ·D · φ+ surface terms

with D some differential operator and argue in analogy to c) that
∫

Dφ ei S[φ] = const
1√

detD
.

Further, give the differential operator D.

Hint: You can neglect the surface terms in your argument because we are assuming natural
boundary conditions.

e) After this short interlude, we want to calculate the numerator on the right hand side of (3).
Therefore, use the same regularisation as for the denominator and go again to Fourier space.
Then integrate out the Fourier coefficients. You should find the following expression for the
numerator:

∫

Dφφ(x1)φ(x2) e
i S[φ] =

J

V 2

∑

m

e−ikm·(x1−x2)
−i V

m2 − iǫ− k2
m





∏

k0n>0

−i π V

m2 − iǫ− k2
n



 . (8)

Now, take the ratio of (8) and (6) and explain why it actually should be
∫

d4k

(2π)4
i

k2 −m2 + i ε
e−ik·(x1−x2) .

Hint: To evaluate this path integral you will need also the higher momenta of the Gaussian
integral.

Remark: This exercise shows that the path integral and all correlators are really defined in the
IR + UV regularized theory, with the continuum limit taken in the end. Explain in particular
why it poses no problem here that the “functional determinant” itself becomes divergent in this
limit.
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