Quantum Field Theory II
Lecturer: Jürgen Berges
Tutor: Viraf Mehta

Institut für Theoretische Physik
Universität Heidelberg
Sommersemester 2014/15

Assignment 5

Due: Week beginning 18.05.2015.

Problem 5.1 (Diagrammetic route to the Coleman-Weinberg potential):

In Assignment Sheet 4, we looked at how to compute the Coleman-Weinberg potential, to one-loop, for a ϕ^{4} theory, using path integral techniques. This week we compare this result to that computed from only using the Feynman diagrams. Recalling that

$$
\begin{equation*}
S[\phi]=\int d^{4} x\left(-\frac{1}{2} \phi(x)\left(\partial^{2}+m^{2}\right) \phi(x)-\frac{\lambda}{4!} \phi^{4}(x)\right) \tag{1}
\end{equation*}
$$

a.) Draw all 1-loop diagrams in this ϕ^{4} theory (with an arbitrary number of external legs), up to λ^{3}.
b.) Show that

$$
\begin{equation*}
\Gamma[\phi] \simeq S[\phi]-i \ln \int \mathcal{D} \varphi \exp \left(-\frac{1}{2} \int d x d y \varphi(x) G_{0}^{-1}(x, y ; \phi) \varphi(y)\right)=S[\phi]+\frac{i}{2} \operatorname{Tr} \ln \left(G_{0}^{-1}(\phi)\right) \tag{2}
\end{equation*}
$$

with

$$
\begin{equation*}
G_{0}^{-1}(x, y ; \phi)=i\left(\partial^{2}+m^{2}+\frac{\lambda}{2} \phi^{2}(x)\right) \delta(x-y) \equiv G_{0}^{-1}(x, y ; \phi=0)+i \frac{\lambda}{2} \phi^{2}(x) \delta(x-y) . \tag{3}
\end{equation*}
$$

Hint: You may recall $\ln (\operatorname{det} A)=\operatorname{Tr}(\ln A)$.
c.) Writing

$$
\begin{equation*}
\ln \left(G_{0}^{-1}(\phi)\right)=\ln \left(G_{0}^{-1}(0)\right)+\ln \left(G_{0}(0) G_{0}^{-1}(\phi)\right) \tag{4}
\end{equation*}
$$

with

$$
\begin{equation*}
\left(G_{0}(0) G_{0}^{-1}(\phi)\right)(x, y)=\delta(x-y)+G_{0}(x, y ; 0) i \frac{\lambda}{2} \phi^{2}(y) \tag{5}
\end{equation*}
$$

expand the logarithm and identify your diagrams in part a.) with the terms in your expansion.
d.) Verify that, indeed, this reproduces the $V^{\text {eff }}=V^{\text {tree }}+V^{1-\mathrm{loop}}$ of last week's Assignment.

Problem 5.2 (For discussion in next week's tutorial):
a.) Work through section 6.3 of Peskin and Schröder focussing on how the Wick rotation is used.
b.) Also, look through pages 289-294 of the book for the comparison to Statistical Physics.

