1	2	3	4	Σ

General Relativity (MKTP3) Summer Term 2015

Exercise sheet 8

2 June 2015
Tim Tugendhat (tugendhat@uni-heidelberg.de)
Due: 9:15h, 8 June 2015

1. (15 points) Spherical symmetry and time derivatives
(a) Argue why the free Einstein field equations can also simply be written as

$$
\begin{equation*}
R_{\mu \nu}=0 \tag{1}
\end{equation*}
$$

where R is the Ricci-tensor.
(Tip: Look at the equation you were supposed to show on sheet 7 , exercise 2 !)
(b) Given the metric

$$
g_{\mu \nu}=\operatorname{diag}\left(B(r, t),-A(r, t),-r^{2},-r^{2} \sin ^{2} \theta\right)
$$

we all immediately see that the Christoffel symbols are as follows ${ }^{1}$:

$$
\begin{array}{llr}
\Gamma_{00}^{0}=\frac{\dot{B}}{2 B}, & \Gamma_{01}^{0}=\Gamma_{10}^{0}=\frac{B^{\prime}}{2 B}, & \Gamma_{00}^{1}=\frac{B^{\prime}}{2 A} \\
\Gamma_{11}^{0}=\frac{\dot{A}}{2 B}, & \Gamma_{01}^{1}=\Gamma_{10}^{1}=\frac{\dot{A}}{2 A}, & \Gamma_{11}^{1}=\frac{A^{\prime}}{2 A} \tag{2}\\
\Gamma_{22}^{1}=-\frac{r}{A}, & \Gamma_{12}^{2}=\Gamma_{21}^{2}=\frac{1}{r}, & \Gamma_{13}^{3}=\Gamma_{31}^{3}=\frac{1}{r} \\
\Gamma_{33}^{1}=-\frac{r \sin ^{2} \theta}{A}, & \Gamma_{33}^{2}=-\sin \theta \cos \theta, & \Gamma_{32}^{3}=\Gamma_{23}^{3}=\cot \theta
\end{array}
$$

In this completely unfamiliar notation, a dot ${ }^{*}$ denotes a t-derivative and a prime ' an r-derivative.
Of the Ricci tensor,

$$
R_{\mu \nu}=\Gamma_{\mu \rho, \nu}^{\rho}-\Gamma_{\mu \nu, \rho}^{\rho}+\Gamma_{\mu \rho}^{\sigma} \Gamma_{\sigma \nu}^{\rho}-\Gamma_{\mu \nu}^{\sigma} \Gamma_{\sigma \rho}^{\rho},
$$

compute R_{10}, R_{00}, and R_{11}.
(c) What sort of spatial symmetry is the above metric assuming?
(d) For each individual entry of the Ricci tensor equation 1 holds.

What does that say about \dot{A} if you consider R_{10} in this vacuum (or free) case?

[^0](e) Calculate
$$
\frac{R_{00}}{B}+\frac{R_{11}}{A} .
$$
(f) Using
$$
\frac{R_{00}}{B}+\frac{R_{11}}{A}=0
$$
and your previous result, show that
$$
\frac{\mathrm{d}}{\mathrm{~d} r} \log (A B)=0
$$
therefore $A B=$ const.
What does that say about \dot{B} given your knowledge of \dot{A} ?
If you found that $\dot{A}=\dot{B}=0$, you just showed Birkhoff's theorem holds, stating that a sperically symmetric gravitational field in the absence of sources (i.e. right-hand side of Einstein field equations is 0) is static.

2. (15 points) Piep piep kleiner Satellit

A satellite with mass $m>0$ is orbiting a black hole. The metric is

$$
g_{\mu \nu}=\operatorname{diag}\left(B(r),-A(r),-r^{2},-r^{2} \sin ^{2} \theta\right) .
$$

(a) Calculate

$$
\frac{\mathrm{d}^{2} x^{0}}{\mathrm{~d} \lambda^{2}}=\frac{\mathrm{d}^{2} t}{\mathrm{~d} \lambda^{2}}
$$

via the geodesic equation.
(b) Re-write the result as

$$
\frac{\mathrm{d}}{\mathrm{~d} \lambda}(\log f+\log g)=0
$$

thus showing that

$$
\begin{equation*}
f g \equiv F=\text { const. } \tag{3}
\end{equation*}
$$

What are f and g ?
(c) Let's consider the equatorial plane $\theta=\pi / 2$. Show that the geodesic equation for ϕ delivers something along the lines of

$$
r^{2} \frac{\mathrm{~d} \phi}{\mathrm{~d} \lambda} \equiv l=\text { const } .
$$

(d) Show that the last interesting geodesic equation, i.e. the one for r, delivers us

$$
\frac{\mathrm{d}^{2} r}{\mathrm{~d} \lambda^{2}}+\frac{F^{2} B^{\prime}}{2 A B^{2}}+\frac{A^{\prime}}{2 A}\left(\frac{\mathrm{~d} r}{\mathrm{~d} \lambda}\right)^{2}-\frac{l^{2}}{A r^{3}}=0
$$

(e) Multiplying the above result by $2 A \frac{\mathrm{~d} r}{\mathrm{~d} \lambda}$, show that

$$
A\left(\frac{\mathrm{~d} r}{\mathrm{~d} \lambda}\right)^{2}+\frac{l^{2}}{r^{2}}-\frac{F^{2}}{B} \equiv-\epsilon=\text { const. }
$$

(f) Using

$$
B(r)=A^{-1}(r)=1-\frac{2 a}{r},
$$

simplify the last result to

$$
\begin{equation*}
\frac{\dot{r}^{2}}{2}-\frac{a \epsilon}{r}+\frac{l^{2}}{2 r^{2}}-\frac{a l^{2}}{r^{3}}=\frac{F^{2}-\epsilon}{2} \tag{4}
\end{equation*}
$$

(g) Since our satellite is not massless, we are assuming $\lambda=\tau$. Furthermore, ϵ becomes $\epsilon=c^{2}$ (for photons, we would have $\epsilon=0$). Also, let's require a spherical orbit for simplicity. We know from the lecture that $a=G M / c^{2}$, so we can define the effective potential

$$
\begin{equation*}
V_{\mathrm{eff}}(r)=-\frac{G M}{r}+\frac{l^{2}}{2 r^{2}}-\frac{G M l^{2}}{c^{2} r^{3}} \tag{5}
\end{equation*}
$$

Which terms are old friends? Which one is new?
(h) What does equation 3 look like for our satellite? We are after the term $\mathrm{d} t / \mathrm{d} \tau$ in there, which gives us the ratio of time measured by the satellite's clock $\mathrm{d} \tau$, and an outside observer "infintely" away from the black hole $\mathrm{d} t$. Let's find this ratio! For that, plug in F from equation 4 into equation 3 for our satellite.
(i) Now we want to get rid of the l-dependency. In order to do this, let's require

$$
\frac{\mathrm{d}}{\mathrm{~d} r} V_{\mathrm{eff}}(r)=0
$$

Solve this for $l^{2} /\left(c^{2} r^{2}\right)$ to arrive at an expression for $\mathrm{d} t / \mathrm{d} \tau$ that only has G, M, r, and c in it!
(j) Extra: Plot $V_{\text {eff }}$ and $V_{\text {eff }}^{\prime}$. Is there something surprising about this?
3. (10 points) Ricci scalar don't care

In the lecture, you computed the four entries of the Ricci tensor $R^{\mu \nu}$, which takes on diagonal form.
Calculate

$$
R=R^{\mu \nu} g_{\mu \nu}
$$

and plot the result against r in units of R_{S}. What happens at the Schwarzschild radius? Does the Ricci scalar go crazy when it "enters" the scary black hole?
4. (5 points) Extra: Black hole detection

Name two ways of detecting a black hole! Since we can't see it (by definition), how would you go about looking for them in the cosmos/galaxy?
"The black holes of nature are the most perfect macroscopic objects there are in the universe: the only elements in their construction are our concepts of space and time."

-Subrahmanyan Chandrasekhar

[^0]: ${ }^{1}$ No need to proof/show this, don't waste your ink

