Quantum Field Theory II
Lecturer: Jürgen Berges
Tutor: Viraf Mehta

Institut für Theoretische Physik
Universität Heidelberg Sommersemester 2014/15

AsSIGNMENT 10

Due: Week beginning 29.06.2015.

Problem 10.1 (One loop β-function in QED):

a) Compute the one-loop β-function in QED.

Hint: You should find $\beta_{e}=\frac{e^{3}}{12 \pi^{2}}$. Start from the the general expression

$$
\begin{equation*}
\beta_{e}(\mu)=\mu \frac{\partial}{\partial \mu}\left(-e \delta_{1}+e \delta_{2}+\frac{1}{2} e \delta_{3}\right) \tag{1}
\end{equation*}
$$

together with the one-loop counterterms derived in QFT I:

$$
\begin{align*}
& \delta_{1}=-\frac{e^{2}}{(4 \pi)^{d / 2}} \int_{0}^{1} d z(1-z)\left(\frac{\Gamma\left(2-\frac{d}{2}\right)}{\left((1-z)^{2} m^{2}+z M^{2}\right)^{2-d / 2}} \frac{(2-\epsilon)^{2}}{2}+\right. \\
& \left.+\frac{\Gamma\left(3-\frac{d}{2}\right)}{\left((1-z)^{2} m^{2}+z M^{2}\right)^{3-d / 2}}\left(2\left(1-4 z+z^{2}\right)-\epsilon(1-z)^{2}\right) m^{2}\right), \\
& \delta_{2}=-\frac{e^{2}}{(4 \pi)^{d / 2}} \int_{0}^{1} d z \frac{\Gamma\left(2-\frac{d}{2}\right)}{\left((1-z)^{2} m^{2}+z M^{2}\right)^{2-d / 2}}((2-\epsilon) z+ \tag{2}\\
& \left.-\frac{\epsilon}{2} \frac{2 z(1-z) m^{2}}{(1-z)^{2} m^{2}+z M^{2}}(4-2 z-\epsilon(1-z))\right), \\
& \delta_{3}=-\frac{e^{2}}{(4 \pi)^{d / 2}} \int_{0}^{1} d z \frac{\Gamma\left(2-\frac{d}{2}\right)}{\left(m^{2}\right)^{2-d / 2}}(8 z(1-z)),
\end{align*}
$$

where M was just an IR cutoff and m the electron mass. Consider what plays the role of the renormalisation scale μ in the renormalisation scheme underlying these results from QFT I.
b) Integrate the solution to the renormalisation group equation $\frac{d}{d \log \mu} e(\mu)=\beta_{e}(\mu)$ to find at one-loop order

$$
\begin{equation*}
\alpha(\mu)=\frac{\alpha^{*}}{1-\frac{2}{3 \pi} \alpha^{*} \log \frac{\mu}{\mu^{*}}}, \quad \alpha:=\frac{e^{2}}{4 \pi} \tag{3}
\end{equation*}
$$

where $\alpha^{*}=\alpha\left(\mu^{*}\right)$ with μ^{*} some fixed scale. Plot the behaviour of $e(\mu)$. At which scale does e cease to be perturbative?

Problem 10.2 (Anomalous dimension):

a) Consider the two-point function $G_{2}(p ; \lambda, \mu)$ of a massless scalar theory and rewrite it as

$$
\begin{equation*}
G_{2}(p ; \lambda, \mu)=\frac{i}{p^{2}} f\left(-\frac{p^{2}}{\mu^{2}}\right) \tag{4}
\end{equation*}
$$

with f some function. Show that the Callan-Symanzik equation

$$
\begin{equation*}
\left(\mu \frac{\partial}{\partial \mu}+\beta(\lambda) \frac{\partial}{\partial \lambda}+2 \gamma(\lambda)\right) G_{2}(p ; \lambda, \mu)=0 \tag{5}
\end{equation*}
$$

can be cast into the form

$$
\begin{equation*}
\left(p \frac{\partial}{\partial p}-\beta(\lambda) \frac{\partial}{\partial \lambda}+2-2 \gamma(\lambda)\right) G_{2}(p ; \lambda, \mu)=0 \tag{6}
\end{equation*}
$$

where $p=\sqrt{-p^{2}}$.
b) Integrate this equation to find

$$
\begin{equation*}
G_{2}(p ; \lambda, \mu)=\frac{i}{p^{2}} \mathcal{F}(\bar{\lambda}(p ; \lambda)) \exp \left(2 \int_{p^{\prime}=\mu}^{p} d\left[\log \frac{p^{\prime}}{\mu}\right] \gamma\left(\bar{\lambda}\left(p^{\prime} ; \lambda\right)\right)\right), \tag{7}
\end{equation*}
$$

where $\bar{\lambda}(p ; \lambda)$ is the running coupling, which is defined such that $p \frac{\partial}{\partial p} \bar{\lambda}(p ; \lambda)=\beta(\bar{\lambda}(p ; \lambda))$ with the initial condition $\bar{\lambda}(\mu ; \lambda)=\lambda$, and $\mathcal{F}(x)$ is some a priori unknown function.
Hint: Compare (6) with

$$
\begin{equation*}
\left.\left(p \frac{d}{d p}+2-2 \gamma(\lambda)\right) G\left(p ; \bar{\lambda}\left(\frac{\mu^{2}}{p} ; \lambda^{*}\right), \mu\right)\right|_{\lambda^{*}=\bar{\lambda}(p ; \lambda)}=0 \tag{8}
\end{equation*}
$$

and use your knowledge about first order differential equations to integrate (8) and, therefore, to obtain (7). Note that $\bar{\lambda}\left(\frac{\mu^{2}}{p} ; x\right)$ is the inverse of $\bar{\lambda}(p ; x)$, i.e. $\bar{\lambda}\left(\frac{\mu^{2}}{p} ; \bar{\lambda}(p ; x)\right)=x$.
c) Argue that in the vicinity of a fixed point λ^{*} where $\beta\left(\lambda^{*}\right)=0$ the two-point function scales as

$$
\begin{equation*}
G_{2}\left(p ; \lambda^{*}, \mu\right) \propto\left(\frac{1}{p^{2}}\right)^{1-\gamma\left(\lambda^{*}\right)} \tag{9}
\end{equation*}
$$

and justify from this the term anomalous dimension for γ.

