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1. (0 points) Noether’s theorem
Given the Lagrangian

L(r, ϕ, ṙ, ϕ̇, t) =
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ṙ ϕ̇
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(a) Find d

dt
L. What does this mean?

(b) Find d

dϕ
L. What does this mean?

2. (0 points) Virial theorem
A function f(x) is said to be homogeneous of degree k iff f(αx) = αkf(x).
Euler’s homogeneous function theorem states that for a homogeneous function
f(~x):

~x · ~∇f(x) = kf(x).

It is easy to see that the function

T (~v) =
m

2
v2

is homogeneous of degree 2. Therefore, by the aforementioned theorem,

∂T

∂vi
vi := pivi = 2T (~v).

Here, we’re using the Einstein summation convention and are implying sum-
mation over i and renamed the partial derivative pi (momentum in i-direction).
Let’s rewrite the left-hand term as

pivi =
d

dt
(pixi)− ṗixi

If we average over time,

〈f〉 = lim
t→+∞

1

t

∫ t

0

dt′f(t′),



we get

2〈T 〉 =

〈

d

dt
(pixi)− ṗixi

〉

= 〈−ṗixi〉.

(a) Why does the first term vanish?

(b) Rewrite the remaining term as derivative of the potential V (x).

(c) Apply Euler’s theorem to the potential, as it is a homogeneous function
of degree k as well.

(d) What does this imply for 〈T 〉 and 〈V 〉 in gravitational/electrostatic po-
tentials (V ∝ r−1) and harmonic potentials (V ∝ r2)?

3. (0 points) Gravitational “Opticks” – Let’s lens like it’s 1699
“Do not Bodies act upon Light at a distance, and by their action bend its rays;

and is not this action strongest at the least distance?”

– Isaac Newton, Opticks

Gravitational lensing is a powerful tool in modern cosmology. With it, the
matter contribution of the total matter-energy-content of the Universe can be
measured to be about 30%, the rest being the elusive Dark Energy. Lensing
is sensitive to both “normal” matter and Dark Matter, unlike most other tech-
niques.
In general relativity, light rays follow null geodesics, meaning that their path,
too, can be ‘bent’ the presence of mass. The deflection angle α̂ in general
relativity is given by

α̂ =
4GM

c2ξ
, (1)

where ξ is the impact parameter (expressing how far away from the centre of
mass they are passing).

Let us try and recreate this effect with Newtonian gravity:

(a) • Calculate the escape velocity of a particle from a given potential
V = GmM

r
from the simple argument that the initial kinetic energy

Ti has to be the same as the initial potential energy Vi to escape.

• Set v = c and solve the equation for r.

Congratulations, you’ve just calculated the Schwarzschild radius RS, the
event horizon for a static black hole. We will be needing it later.

(b) Let’s consider the movement of a massive body (which will later be called
light ray) in a Newtonian gravitational potential again,

✟✟m
d2r

dt2
= −G

✟✟mM

r2
. (2)
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As we’re interested in the body reaching us (i.e. not be bound) by the
potential, we are interested in the solutions that are hyperbolæ. These
shall be parametrised by

r =
ξ(1 + e)

1 + e cosϕ
, (3)

dϕ

dt
=

√

GMξ(1 + e)

r2
(4)

where ξ is again the impact parameter (the nearest the trajectory comes
to the centre of mass), and e is called eccentricity.

M

ξ

x

y

r+∞

r−∞

ϕ∞ = π/2 + δ

δ

Figure 1: Here you can see the trajectory of our particle ~r in black, with the

deflection angle α̂ = 2δ.

Writing the vector ~r in the following way,

~r = r

(

cosϕ
sinϕ

)

,

calculate the velocity ~v = d~r
dt

and its square, |~v|2.

(c) Let’s consider r → ∞, i.e. when the object/light ray/signal reaches us.
What condition can you then infer from equation 3 for the final angle
ϕ∞? If we define

ϕ∞ =
π

2
+ δ,

what nifty relation do you get for sin δ and e?
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(d) Take your result from part (b) and set v2 = c2.
Now you can calculate the deflection angle α̂ = 2δ for the Newtonian
case. For this, we can assume small angles δ. Also, for example consider
for the case of the sun the orders of magnitude in your fraction are,

• c = 3× 108 ms−1,

• G = 6.67× 10−11 m3 kg−1 s−3,

• M⊙ = 2× 1030 kg, and

• R⊙ = ξ = 7× 108 m.

How does the fraction compare to unity? Can you simplify further? Are
there any parallels to the general relativistic deflection angle? Calculate
the Newtonian deflection angle of the sun at its surface!

4. (0 points) Constant constants
In the lecture, we’ve heard about the four “most” fundamental constants of
modern physics, c, G, h̄, and kB.

(a) Which change would be most noticeable if one of those were suddenly to
be multiplied by a factor of 2?

(b) Which of these would you consider “least” fundamental?
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