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1 Differential forms

• n-form α exact ⇔ α ∈ Im(d)⇔ ∃n− 1-form β s.t. α = dβ

– β called potential for α; since d2 = 0, β not unique

• n-form α closed ⇔ α ∈ ker(d)⇔ dα = 0

• since d2 = 0, every exact form is closed; converse, i.e. if every
closed form is exact, depends on topology: on contractible
domain (such as Rn), this holds by Poincaré’s lemma

• some inexact differentials can be made exact by multiply-
ing with integrating factor (and can then be integrated
to give (path-independent) scalar field; useful in thermody-
namics where T is i.f. that exactifies S)

2 Thermodynamics

• dS = δQ/T is path-independent total differential and state
function (unlike path function δQ)

• ideal gas entropy: S = S0 + CV ln
(

T
T0

)

+ nR ln
(

V
V0

)

• efficiency η = −W
Q defined as work performed by system

(thus minus sign) divided by heat added

– all reversible engines equally efficient

– ideal heat engine pumping between reservoirs Tc, Th:

η = 1− Tc

Th
= 1−

(

Vmin

Vmax

)
nR
CV , where nR

CV
=

Cp−CV

CV
= γ − 1

– isochoric heat change in ideal gas: Qif = CV (Tf − Ti)

– by second law, reversible process is isentropic,
∮

dS = 0

• for paramagnets with first law dU = T dS+H dM obeying
Curie’s law M = C

T H, internal energy depends only on T

• potentials: internal energy U = TS − pV , Helmholtz free
energy F = U − TS = −pV , H = U + pV = TS, Gibbs
free energy G = U + pV − TS (add

∑

i µiNi everywhere in
presence of chemical potentials)

– differentials i.t.o. natural variables: dU = TdS − pdV ,
dF = −SdT−pdV , dH = TdS+V dp, dG = −SdT+V dp

– all potentials related via Legendre transformation

– principle of minimum energy: entropy maximizes in
equilibrium, all potentials extremize: U minimizes for
fixed S, V , (follows from first and second law); F min-
imizes at fixed T , V ; H at fixed p; G at fixed T and p

• Maxwell relations: U → ∂T
∂V
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∂y
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• intensive quantities: temperature T , pressure p, density
ρ, chemical potential µ, concentration c, magnetic perme-
ability µm, melting/boiling point, specific heat capacity cV ,
specific volume v; extensive: particle number N , internal
energy U , enthalpy H, entropy S, Gibbs energy G, heat ca-
pacity CV , Helmholtz energy F , mass m, volume V

• real gases: van der Waals p+ a
v2 = RT

v−b or p+
n2a
V 2 = nRT

V−nb ,

with n = N
NA

, R = NAkB; Dieterici p = RT
v−b exp

(

− a
vRT

)

;

virial expansion pv
RT = 1 +

∑∞
i=1

Bi

vi for large volume v

• useful identities: p = − ∂F
∂V
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T
, S = −∂F

∂T
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V
, 1

T = ∂S
∂U ,

t ∂U∂V
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− p; Helmholtz eq.: ∂U

∂V
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∂T
p
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V
;

thermal expansion coeff. α = 1
V

∂V
∂T

∣
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a,N
; (isothermal)

compressibility κT = − 1
V

∂p
∂V = V 2

N2
∂2p
∂2µ ; n-ball: volume

Vn(R) = πn/2Rn

Γ(n
2 +1) , area An−1(R) = ∂R Vn(R) = 2πn/2Rn−1

Γ(n
2 )

• equipartition thm.: in equilibrium, all microstates com-
patible with macroscopic conditions equiprobable; energy
shared equally amongst all d.o.f.s (i.e. equilibrated systems
maximize entropy), each quadratic d.o.f. carries energy kBT
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• heat engine: device that transfers heat from hot to cold
reservoir Tc < Th with aim of converting as much of trans-
ferred heat into mechanical work as possible; maximum ef-
ficiency attained by reversible engine operating idealized
Carnot cycle ηC = 1 − Tc

Th
; heat pump: moves heat in

other direction from cold to hot, goal now to use as little
mechanical work as possible to do so, i.e. heat engine op-
erating in reverse ⇒ maximum efficiency of reversible heat
pump given by reciprocal of ηC, ηhp = Th

Th−Tc

• black-body radiation: caloric e.o.s. U = u(T )V , ther-

mal e.o.s. p = u(T )
3 , Stefan-Boltzmann law u(T ) = σT 4,

Gibbs fundamental relation (first law) dU = TdS − pdV
yields entropy S(T, V ) = S0 + 4

3σV T 3, adiabatic e.o.s.
δQ = TdS = 0⇒ S ∝ V T 3 = const.

3 Statistics

• ensemble fixed distribution interpretation

micro V N E 1
Zm

δ(H − E) isolated system

canonical V N T 1
Zc

e−βH system + heat bath

grand V T µ 1
Zg

e−β(H−µN) ↑ + particle reservoir

• entropies: Boltzmann Sm = kB lnZm, Sc = kB(lnZm +
β〈H〉c), Sg = kB [lnZg + β〈H〉g + βµ〈N〉g] (apply only
to equilibrium), Gibbs SG = −kB

∑

i pi ln(pi) respectively
SG = −kB

∫

Γ
ω lnωdµ on discrete/continuous measure space

(valid generally), SG constant in time due to Liouville’s eq.
dω
dt = 0

– Liouville thm. phase space distribution constant along
any trajectory in Γ; viewing motion through phase space
as incompressible ’fluid flow’ of conserved current of sys-
tem points implies via Noether’s thm. invariance under
time evolution generated by Noether charge Hamiltonian

• equivalence of ensembles: thermodynamics same for

large class of systems (incl. ideal gas), Sm

N

N→∞←→ Sc

N , Sm

V

V→∞←→
Sg

V ; warning: fails in important cases e.g. phase transitions

Zm(E) Zc(β) Zg(µ)

σ = Sm

N
f = F

N
Ω
V

Laplace in E Laplace in N

Legendre in ǫ = E
N

Legendre in ρ = N
V

• Hamilton’s eqs. q̇i =
∂H
∂pi

, ṗi = −∂H
∂qi

where pi =
∂L
∂q̇i

• Boltzmann eq.
(

∂
∂t + p

m · ∇x + F · ∇p

)

f(x,p, t) =
∫

d3k d3p′d3k′ |〈p′,k′|T |p,k〉|2
[

fp′ fk′ − fpfk
]

describes
(non-equilibrium) evolution of phase space densities (for
large systems, e.g. gases); incorporates molecular chaos,
which assumes collision term results solely from two-body
collisions between particles uncorrelated prior to scattering
(breaks time-reversal invariance since they are obviously cor-
related after collision), m.c. allows writing collision term as
p-integral in which two-particle correlator F (x,p,k, t) fac-
torizes into one-particle distributions f(x,p, t) f(x,k, t)



– for stationary systems, Boltzmann eq. greatly simplifies
to p

m ·∇x f0(x,p) = −F (x) ·∇p f0(x,p) since 1. distribu-
tions f(x,p) lose explicit time-dependence 2. H-function
becomes stationary, resulting in detailed balance, mean-
ing number of particles leaving any mode due to given
scattering process equals number entering that mode by
reverse process; stationary solution: Boltzmann distr.

f0(x,p) ∝ exp
[

−β
(

p
2

2m + V (x)
)]

• Boltzmann H-fct. H(t) =
∫

d3x d3p f(x,p, t) ln[f(x,p, t)]

• Poincaré recurrence thm. in context of ergodicity (time
avr. = phase space avr.), isolated phase-space volume pre-
serving (e.g. Hamiltonian) systems will return arbitrarily
close to initial state after finite time

• Gibbs paradox: for classical counting of states, entropy not
extensive: S increases when gas of identical particles mixed
with itself (fixable by adding 1

h3NN !
to the measure dµm);

entropy from Boltzmann’s H does not have this problem

• Gibbs variational principle: microcanonical state has
maximal entropy among all states on energy shell E , holds
for other ensembles as well

– useful inequality: f(ln f − ln g) ≥ f − g ∀ f, g ≥ 0 (= for
f = g), follows from x lnx ≥ x− 1 for x ≥ 0

• canonical part. fct. discrete classical Zc =
∑

i e
−βEi ,

continuous classical Zc =
∫

Γ
e−βH dµc with dµc =

d3Nq d3Np
h3NN !

;

discrete quantum Z = trH(eβĤ)

– internal energy U = −∂β ln(Zc), free energy F =
− 1

β ln(Zc)

• grand part. fct. Zc =
∑∞

N=0

∫

Γ
gie

−β(H−µN) dµc =
∑∞

N=0 z
NZc(N), with fugacity z = eβµ and e.e.v. 〈H〉g =

1
Zg

∑∞
N=0

∫

Γ
H e−β(H−µN) dµc, expected particle number

〈N〉 = 1
β

∂
∂µ lnZg = −∂Ω

∂µ

• fluctuations: e.g. energy σ2
H = 〈(H − 〈H〉)2〉 = 〈H2〉 −

〈H〉2 = −∂〈H〉
∂β , where 〈H〉 = 1

Zc

∫

Γ
H e−βH dµc = − 1

Zc

∂Zc

∂β

• uncoupled Ising model/ideal paramagnet (N uncou-

pled Ising spins in external field h): H(s) = −hm
∑N

j=1 sj =
−hM(s), minus ⇒ energy lowered if spins align with ex-
ternal field; s = (s1, . . . , sN ) ∈ SN = {±1}N is any
of 2N possible spin configurations; energy shell E =
{s ∈ SN |H(s) = E} (non-empty only if E/hm ∈ Z ∩
[−N,N ]), microcan. part. fct. Zm =

(

N
N↓

)

, entropy
S = NkB ln(2) − NkB

2

[(

1 + E
Nmh

)

ln
(

1 + E
Nmh

)

+
(

1 −
E

Nmh

)

ln
(

1 − E
Nmh

)]

; canonical p.f. Zc =
∑

s∈SN
e−βH(s) =

∏N
j=1

∑

sj
eβhmsj = [2 cosh(βhm)]N , free energy F =

− 1
β lnZc = −N

β ln[2 cosh(βhm)], magnetization M =

−∂F
∂h = Nm tanh(βmh), caloric e.o.s. E = −∂ lnZc

∂β =

−Nmh tanh(βmh), specific heat ch = Ch

N = 1
N

∂U
∂T

∣

∣

h
=

kB
β2h2m2

cosh2(βhm)
, magnetic susceptibility χ = ∂M

∂h = βNm2

cosh2(βhm)
,

Gibbs fundamental rel. dS = 1
T dE + M

T dh− µ
T dN

• coupled Ising model H(s) = J
∑N

〈si,sj〉(1 − sisj) −
h
∑N

i=1 si, can. part. fct. Zc =
∑

s∈SN
e−β H(s), mean-

field magnetization per spin of Ising ferromagnet m =
tanh(2d β J m+ β h) with crit. temp. Tc = 2d J/kB

• density operator: ρ† = ρ, tr(ρ) = 1, ρ ≥ 0, observable A
expectation value 〈A〉 = tr(ρA)

– spin- 12 : ρ = 1
2

(

12 + a · σ
)

with Bloch vector a = 〈σ〉 =
tr(σρ), eigenvalues λ± = 1

2

(

1 ± |a|
)

where |a| ≤ 1; pure
state, i.e. ρ2 = ρ if |a| = 1, mixed else, spin polarization
π = p+−p−

p++p−

– von Neumann entropy SN = −kB trH[ρ ln(ρ)] with
ρ =

∑

n pn|n〉〈n| sum over complete set of states of Hilbert
H, reduces to Boltzmann entropy for microcan. ensemble

– canonical density op. ρc = eβ(F−H) = 1
Zc

e−βH , with nor-

malization Zc = tr e−βH

• (anti-)symmetrized many-particle states P±|α1〉 ⊗ · · · ⊗
|αn〉 = 1

n!

∑

π∈Sn
(±1)π|απ(1)〉 ⊗ · · · ⊗ |απ(n)〉 furnish Fock

space F±(H) =
⊕∞

n=0Hn
± with Hn

± = P±H⊗n

• occupation numbers 〈n±
k 〉g = − 1

β
∂

∂ǫk
ln(Z±

g ) = 1
eβ (ǫk−µ)∓1

given by Bose-Einstein/Fermi-Dirac distributions with Z±
g =

trF±

(

e−β(Ĥ−µ N̂)
)

=
∏∞

j=0

∑∞ or 1
n±
j =0 e−β nj(ǫj−µ) =

∏∞
j=0

(

1∓
e−β (ǫj−µ)

)∓1

– Maxwell-Boltzmann distribution f(p) = e−βǫ(p−µ),
or normalized and spherically sym. f(v) =
(

m
2πkT

)3/2
4πv2e

− mv2

2kBT
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〈n〉 Bose-Einstein
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Fermi-Dirac

• total particle fluctuations ∆N = 〈N2〉 − 〈N〉2 =
∑

k〈n2
k〉 −

∑

k〈nk〉2 for non-interacting gases

• grand potential Ω = − 1
β lnZg, Ω = −pV ,

ideal Bose/Fermi gas Ω±(T, V, µ) = − 1
β ln(Z±

g ) =

± 1
β

∑

j ln
(

1∓ e−β(ǫj−µ)
)

with p = − ∂Ω
∂V , Sg = −∂Ω

∂T

• ideal Fermi gas: pressure βp = 4πgs
h3

∫∞
0

dp p2 ln
(

1 +

eβ(p
2/2m−µ)

)

= gs
λ3 f

−
5/2(z), density ρ = N

V =
4πgs
h3

∫∞
0

p2 dp

1+eβ(p2/2m−µ)
= gs

λ3 f
−
3/2(z), where f±

ν (z) =

1
Γ(ν)

∫∞
0

xν−1 dx
z−1ex∓1 , z = eβµ and λ = h/

√
2πmkBT , low tem-

perature/high density means ρλ3 ≫ 1 ⇒ z ≫ 1, e.o.s.
pV
kBT = lnZ±

g = ∓gs
∑

k ln
(

1∓ e−β(ǫk−µ)
)

, energy U = 3
2pV

• ideal Bose gas: non-interacting (spinless) bosons with
disp. rel. ǫk = ~

2k2/2m contained in V = Ld; grand
part. fct. Zg =

∑∞
N=0

∑

{nk} e
−β

∑
k nk(ǫk−µ)δ∑

k nk,N =
∏

k

∑

{nk} e
−β

∑
k nk(ǫk−µ) =

∏

k
1

1−e−β(ǫk−µ) , grand po-

tential Ω = − 1
β ln(Zg) = 1

β

∑

k ln(1 − e−β(ǫk−µ))
V→∞−−−−→

V
β

Ad−1(1)
(2π)d

∫∞
0

ln(1 − ze−βǫk)kd−1dk, now subst.

x = β~2k2

2m followed by partial integration to get

Ω = V
β

Ad−1(1)
(2π)d

1
2

(

2m
~2β

)
d
2
∫∞
0

x
d
2−1 ln(1 − ze−x)dx =

−V
β

Ad−1(1)
d

(

2m
h2β

)
d
2

∫∞
0

x
d
2

z−1ex−1dx = − V
βλd f

+
d
2+1

(z), avr.

number of particles N = ∂ ln Ω
∂(βµ) = V

λd f
+
d
2

(z) ⇒ density

n(z) = 1
λd f

+
d
2

(z); pressure pV = −Ω and E = −∂ lnZg

∂β =

d
2
lnZg

β = −d
2Ω, i.e. E = d

2pV ; critical temperature ob-

tained by solving n(1) = 1
λd ζ(

d
2 ) for Tc, for d > 2, this

yields Tc =
h2

2mkB

(

n
ζ( d

2 )

)
d
2 ; heat capacity at T < Tc, z = 1 is

C(T ) = ∂E
∂T

∣

∣

z=1
= kB

d
2 (

d
2 + 1) V

λd ζ(
d
2 + 1) e.o.s. at high T

(z → 0) is pV
NkBT = 1 − Nλ3

4
√
2V

+ . . . has correction to ideal

gas that lowers the pressure and is solely due to quantum
statistics (not interactions)
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