Statistical Physics - Exam Sheet

Janosh Riebesell
February 2017

1 Differential forms

- n-form α exact $\Leftrightarrow \alpha \in \operatorname{Im}(\mathrm{d}) \Leftrightarrow \exists n-1$-form β s.t. $\alpha=\mathrm{d} \beta$ $-\beta$ called potential for α; since $\mathrm{d}^{2}=0, \beta$ not unique
- n-form α closed $\Leftrightarrow \alpha \in \operatorname{ker}(\mathrm{d}) \Leftrightarrow \mathrm{d} \alpha=0$
- since $\mathrm{d}^{2}=0$, every exact form is closed; converse, i.e. if every closed form is exact, depends on topology: on contractible domain (such as \mathbb{R}^{n}), this holds by Poincaré's lemma
- some inexact differentials can be made exact by multiplying with integrating factor (and can then be integrated to give (path-independent) scalar field; useful in thermodynamics where T is i.f. that exactifies S)

2 Thermodynamics

- $\mathrm{d} S=\delta Q / T$ is path-independent total differential and state function (unlike path function δQ)
- ideal gas entropy: $S=S_{0}+C_{V} \ln \left(\frac{T}{T_{0}}\right)+n R \ln \left(\frac{V}{V_{0}}\right)$
- efficiency $\eta=-\frac{W}{Q}$ defined as work performed by system (thus minus sign) divided by heat added
- all reversible engines equally efficient
- ideal heat engine pumping between reservoirs T_{c}, T_{h} : $\eta=1-\frac{T_{c}}{T_{h}}=1-\left(\frac{V_{\min }}{V_{\max }}\right)^{\frac{n R}{C_{V}}}$, where $\frac{n R}{C_{V}}=\frac{C_{p}-C_{V}}{C_{V}}=\gamma-1$
- isochoric heat change in ideal gas: $Q_{i f}=C_{V}\left(T_{f}-T_{i}\right)$
- by second law, reversible process is isentropic, $\oint \mathrm{d} S=0$
- for paramagnets with first law $\mathrm{d} U=T \mathrm{~d} S+H \mathrm{~d} M$ obeying Curie's law $M=\frac{C}{T} H$, internal energy depends only on T
- potentials: internal energy $U=T S-p V$, Helmholtz free energy $F=U-T S=-p V, H=U+p V=T S$, Gibbs free energy $G=U+p V-T S$ (add $\sum_{i} \mu_{i} N_{i}$ everywhere in presence of chemical potentials)
- differentials i.t.o. natural variables: $\mathrm{d} U=T \mathrm{~d} S-p \mathrm{~d} V$, $\mathrm{d} F=-S \mathrm{~d} T-p \mathrm{~d} V, \mathrm{~d} H=T \mathrm{~d} S+V \mathrm{~d} p, \mathrm{~d} G=-S \mathrm{~d} T+V \mathrm{~d} p$
- all potentials related via Legendre transformation
- principle of minimum energy: entropy maximizes in equilibrium, all potentials extremize: U minimizes for fixed S, V, (follows from first and second law); F minimizes at fixed $T, V ; H$ at fixed $p ; G$ at fixed T and p
- Maxwell relations: $\left.U \rightarrow \frac{\partial T}{\partial V}\right|_{S}=-\left.\frac{\partial p}{\partial S}\right|_{V},\left.F \rightarrow \frac{\partial S}{\partial V}\right|_{T}=$ $\left.\frac{\partial p}{\partial T}\right|_{V},\left.H \rightarrow \frac{\partial T}{\partial p}\right|_{S}=\left.\frac{\partial V}{\partial S}\right|_{p},\left.G \rightarrow \frac{\partial S}{\partial p}\right|_{T}=-\left.\frac{\partial V}{\partial T}\right|_{p}$
- related via $\left.\frac{\partial x}{\partial y}\right|_{z}=\left(\left.\frac{\partial y}{\partial x}\right|_{z}\right)^{-1}$ and $\left.\left.\left.\frac{\partial x}{\partial y}\right|_{z} \frac{\partial y}{\partial z}\right|_{x} \frac{\partial z}{\partial x}\right|_{y}=-1$
- intensive quantities: temperature T, pressure p, density ρ, chemical potential μ, concentration c, magnetic permeability μ_{m}, melting/boiling point, specific heat capacity c_{V}, specific volume v; extensive: particle number N, internal energy U, enthalpy H, entropy S, Gibbs energy G, heat capacity C_{V}, Helmholtz energy F, mass m, volume V
- real gases: van der Waals $p+\frac{a}{v^{2}}=\frac{R T}{v-b}$ or $p+\frac{n^{2} a}{V^{2}}=\frac{n R T}{V-n b}$, with $n=\frac{N}{N_{\mathrm{A}}}, R=N_{\mathrm{A}} k_{\mathrm{B}}$; Dieterici $p=\frac{R T}{v-b} \exp \left(-\frac{a}{v R T}\right)$; virial expansion $\frac{p v}{R T}=1+\sum_{i=1}^{\infty} \frac{B_{i}}{v^{i}}$ for large volume v
- useful identities: $p=-\left.\frac{\partial F}{\partial V}\right|_{T}, S=-\left.\frac{\partial F}{\partial T}\right|_{V}, \frac{1}{T}=\frac{\partial S}{\partial U}$, $\left.t \frac{\partial U}{\partial V}\right|_{T}=\left.T \frac{\partial p}{\partial T}\right|_{V}-p ;$ Helmholtz eq. $:\left.\frac{\partial U}{\partial V}\right|_{T}=\left.T^{2} \frac{\partial}{\partial T} \frac{p}{T}\right|_{V} ;$ thermal expansion coeff. $\alpha=\left.\frac{1}{V} \frac{\partial V}{\partial T}\right|_{a, N}$; (isothermal)
compressibility $\kappa_{T}=-\frac{1}{V} \frac{\partial p}{\partial V}=\frac{V^{2}}{N^{2}} \frac{\partial^{2} p}{\partial^{2} \mu}$; n-ball: volume $V_{n}(R)=\frac{\pi^{n / 2} R^{n}}{\Gamma\left(\frac{n}{2}+1\right)}$, area $A_{n-1}(R)=\partial_{R} V_{n}(R)=\frac{2 \pi^{n / 2} R^{n-1}}{\Gamma\left(\frac{n}{2}\right)}$
- equipartition thm.: in equilibrium, all microstates compatible with macroscopic conditions equiprobable; energy shared equally amongst all d.o.f.s (i.e. equilibrated systems maximize entropy), each quadratic d.o.f. carries energy $\frac{k_{\mathrm{B}} T}{2}$
- heat engine: device that transfers heat from hot to cold reservoir $T_{c}<T_{h}$ with aim of converting as much of transferred heat into mechanical work as possible; maximum efficiency attained by reversible engine operating idealized Carnot cycle $\eta_{\mathrm{C}}=1-\frac{T_{c}}{T_{h}}$; heat pump: moves heat in other direction from cold to hot, goal now to use as little mechanical work as possible to do so, i.e. heat engine operating in reverse \Rightarrow maximum efficiency of reversible heat pump given by reciprocal of $\eta_{\mathrm{C}}, \eta_{\mathrm{hp}}=\frac{T_{h}}{T_{h}-T_{c}}$
- black-body radiation: caloric e.o.s. $U=u(T) V$, thermal e.o.s. $p=\frac{u(T)}{3}$, Stefan-Boltzmann law $u(T)=\sigma T^{4}$, Gibbs fundamental relation (first law) $\mathrm{d} U=T \mathrm{~d} S-p \mathrm{~d} V$ yields entropy $S(T, V)=S_{0}+\frac{4}{3} \sigma V T^{3}$, adiabatic e.o.s. $\delta Q=T \mathrm{~d} S=0 \Rightarrow S \propto V T^{3}=$ const.

3 Statistics

- ensemble fixed
$\begin{array}{lll}\text { micro } & V N E & \frac{1}{Z_{m}} \delta(H-E) \\ \text { canonical } & V N T & \frac{1}{Z_{c}} e^{-\beta H} \\ \text { grand } & V T \mu & \frac{1}{Z_{g}} e^{-\beta(H-\mu N)}\end{array}$
interpretation
isolated system
system + heat bath
$\uparrow+$ particle reservoir
- entropies: Boltzmann $S_{m}=k_{B} \ln Z_{m}, S_{c}=k_{B}\left(\ln Z_{m}+\right.$ $\beta\langle H\rangle_{c}$), $S_{g}=k_{B}\left[\ln Z_{g}+\beta\langle H\rangle_{g}+\beta \mu\langle N\rangle_{g}\right]$ (apply only to equilibrium), Gibbs $S_{\mathrm{G}}=-k_{\mathrm{B}} \sum_{i} p_{i} \ln \left(p_{i}\right)$ respectively $S_{\mathrm{G}}=-k_{\mathrm{B}} \int_{\Gamma} \omega \ln \omega \mathrm{d} \mu$ on discrete/continuous measure space (valid generally), S_{G} constant in time due to Liouville's eq. $\frac{\mathrm{d} \omega}{\mathrm{d} t}=0$
- Liouville thm. phase space distribution constant along any trajectory in Γ; viewing motion through phase space as incompressible 'fluid flow' of conserved current of system points implies via Noether's thm. invariance under time evolution generated by Noether charge Hamiltonian
- equivalence of ensembles: thermodynamics same for large class of systems (incl. ideal gas), $\frac{S_{m}}{N} \stackrel{N \rightarrow \infty}{\longleftrightarrow} \frac{S_{c}}{N}, \frac{S_{m}}{V} \xrightarrow{V \rightarrow \infty}$ $\frac{S_{g}}{V}$; warning: fails in important cases e.g. phase transitions

- Hamilton's eqs. $\dot{q}_{i}=\frac{\partial H}{\partial p_{i}}, \dot{p}_{i}=-\frac{\partial H}{\partial q_{i}}$ where $p_{i}=\frac{\partial L}{\partial \dot{q}_{i}}$
- Boltzmann eq. $\left(\frac{\partial}{\partial t}+\frac{p}{m} \cdot \boldsymbol{\nabla}_{x}+\boldsymbol{F} \cdot \boldsymbol{\nabla}_{p}\right) f(\boldsymbol{x}, \boldsymbol{p}, t)=$ $\left.\int \mathrm{d}^{3} k \mathrm{~d}^{3} p^{\prime} \mathrm{d}^{3} k^{\prime} \quad\left|\left\langle\boldsymbol{p}^{\prime}, \boldsymbol{k}^{\prime}\right| T\right| \boldsymbol{p}, \boldsymbol{k}\right\rangle\left.\right|^{2}\left[f_{p^{\prime}} f_{k^{\prime}}-f_{p} f_{k}\right]$ describes (non-equilibrium) evolution of phase space densities (for large systems, e.g. gases); incorporates molecular chaos, which assumes collision term results solely from two-body collisions between particles uncorrelated prior to scattering (breaks time-reversal invariance since they are obviously correlated after collision), m.c. allows writing collision term as \boldsymbol{p}-integral in which two-particle correlator $F(\boldsymbol{x}, \boldsymbol{p}, \boldsymbol{k}, t)$ factorizes into one-particle distributions $f(\boldsymbol{x}, \boldsymbol{p}, t) f(\boldsymbol{x}, \boldsymbol{k}, t)$
- for stationary systems, Boltzmann eq. greatly simplifies to $\frac{\boldsymbol{p}}{m} \cdot \boldsymbol{\nabla}_{x} f_{0}(\boldsymbol{x}, \boldsymbol{p})=-\boldsymbol{F}(\boldsymbol{x}) \cdot \boldsymbol{\nabla}_{p} f_{0}(\boldsymbol{x}, \boldsymbol{p})$ since 1. distributions $f(\boldsymbol{x}, \boldsymbol{p})$ lose explicit time-dependence 2. H-function becomes stationary, resulting in detailed balance, meaning number of particles leaving any mode due to given scattering process equals number entering that mode by reverse process; stationary solution: Boltzmann distr. $f_{0}(\boldsymbol{x}, \boldsymbol{p}) \propto \exp \left[-\beta\left(\frac{\boldsymbol{p}^{2}}{2 m}+V(\boldsymbol{x})\right)\right]$
- Boltzmann H-fct. $H(t)=\int \mathrm{d}^{3} x \mathrm{~d}^{3} p f(\boldsymbol{x}, \boldsymbol{p}, t) \ln [f(\boldsymbol{x}, \boldsymbol{p}, t)]$
- Poincaré recurrence thm. in context of ergodicity (time avr. = phase space avr.), isolated phase-space volume preserving (e.g. Hamiltonian) systems will return arbitrarily close to initial state after finite time
- Gibbs paradox: for classical counting of states, entropy not extensive: S increases when gas of identical particles mixed with itself (fixable by adding $\frac{1}{h^{3 N} N!}$ to the measure $\mathrm{d} \mu_{m}$); entropy from Boltzmann's H does not have this problem
- Gibbs variational principle: microcanonical state has maximal entropy among all states on energy shell \mathcal{E}, holds for other ensembles as well
- useful inequality: $f(\ln f-\ln g) \geq f-g \forall f, g \geq 0$ ($=$ for $f=g$), follows from $x \ln x \geq x-1$ for $x \geq 0$
- canonical part. fct. discrete classical $Z_{c}=\sum_{i} e^{-\beta E_{i}}$, continuous classical $Z_{c}=\int_{\Gamma} e^{-\beta H} \mathrm{~d} \mu_{c}$ with $\mathrm{d} \mu_{c}=\frac{\mathrm{d}^{3 N} q \mathrm{~d}^{3 N} p}{h^{3 N} N!}$; discrete quantum $Z=\operatorname{tr}_{\mathcal{H}}\left(e^{\beta \hat{H}}\right)$
- internal energy $U=-\partial_{\beta} \ln \left(Z_{c}\right)$, free energy $F=$ $-\frac{1}{\beta} \ln \left(Z_{c}\right)$
- grand part. fct. $Z_{c}=\sum_{N=0}^{\infty} \int_{\Gamma} g_{i} e^{-\beta(H-\mu N)} \mathrm{d} \mu_{c}=$ $\sum_{N=0}^{\infty} z^{N} Z_{c}(N)$, with fugacity $z=e^{\beta \mu}$ and e.e.v. $\langle H\rangle_{g}=$ $\frac{1}{Z_{g}} \sum_{N=0}^{\infty} \int_{\Gamma} H e^{-\beta(H-\mu N)} \mathrm{d} \mu_{c}$, expected particle number $\langle N\rangle=\frac{1}{\beta} \frac{\partial}{\partial \mu} \ln Z_{g}=-\frac{\partial \Omega}{\partial \mu}$
- fluctuations: e.g. energy $\sigma_{H}^{2}=\left\langle(H-\langle H\rangle)^{2}\right\rangle=\left\langle H^{2}\right\rangle-$ $\langle H\rangle^{2}=-\frac{\partial\langle H\rangle}{\partial \beta}$, where $\langle H\rangle=\frac{1}{Z_{c}} \int_{\Gamma} H e^{-\beta H} \mathrm{~d} \mu_{c}=-\frac{1}{Z_{c}} \frac{\partial Z_{c}}{\partial \beta}$
- uncoupled Ising model/ideal paramagnet (N uncoupled Ising spins in external field h): $H(s)=-h m \sum_{j=1}^{N} s_{j}=$ $-h M(s)$, minus \Rightarrow energy lowered if spins align with external field; $s=\left(s_{1}, \ldots, s_{N}\right) \in \mathcal{S}_{N}=\{ \pm 1\}^{N}$ is any of 2^{N} possible spin configurations; energy shell $\mathcal{E}=$ $\left\{s \in \mathcal{S}_{N} \mid H(s)=E\right\}$ (non-empty only if $E / h m \in \mathbb{Z} \cap$ $[-N, N])$, microcan. part. fct. $Z_{m}=\binom{N}{N_{t}}$, entropy $S=N k_{\mathrm{B}} \ln (2)-\frac{N k_{\mathrm{B}}}{2}\left[\left(1+\frac{E}{N m h}\right) \ln \left(1+\frac{E^{\mathrm{L}}}{N m h}\right)+(1-\right.$ $\left.\left.\frac{E}{N m h}\right) \ln \left(1-\frac{E}{N m h}\right)\right]$; canonical p.f. $Z_{c}=\sum_{s \in \mathcal{S}_{N}} e^{-\beta H(s)}=$ $\prod_{j=1}^{N} \sum_{s_{j}} e^{\beta h m s_{j}}=[2 \cosh (\beta h m)]^{N}$, free energy $F=$ $-\frac{1}{\beta} \ln Z_{c}=-\frac{N}{\beta} \ln [2 \cosh (\beta h m)]$, magnetization $M=$ $-\frac{\partial F}{\partial h}=N m \tanh (\beta m h)$, caloric e.o.s. $E=-\frac{\partial \ln Z_{c}}{\partial \beta}=$ $-N m h \tanh (\beta m h)$, specific heat $c_{h}=\frac{C_{h}}{N}=\left.\frac{1}{N} \frac{\partial U}{\partial T}\right|_{h}=$ $k_{\mathrm{B}} \frac{\beta^{2} h^{2} m^{2}}{\cosh ^{2}(\beta h m)}$, magnetic susceptibility $\chi=\frac{\partial M}{\partial h}=\frac{\beta N m^{2}}{\cosh ^{2}(\beta h m)}$, Gibbs fundamental rel. $\mathrm{d} S=\frac{1}{T} \mathrm{~d} E+\frac{M}{T} \mathrm{~d} h-\frac{\mu}{T} \mathrm{~d} N$
- coupled Ising model $H(s)=J \sum_{\left\langle s_{i}, s_{j}\right\rangle}^{N}\left(1-s_{i} s_{j}\right)-$ $h \sum_{i=1}^{N} s_{i}$, can. part. fct. $Z_{c}=\sum_{s \in \mathcal{S}_{N}} e^{-\beta H(s)}$, meanfield magnetization per spin of Ising ferromagnet $m=$ $\tanh (2 d \beta J m+\beta h)$ with crit. temp. $T_{c}=2 d J / k_{\mathrm{B}}$
- density operator: $\rho^{\dagger}=\rho, \operatorname{tr}(\rho)=1, \rho \geq 0$, observable A expectation value $\langle A\rangle=\operatorname{tr}(\rho A)$
$-\operatorname{spin}-\frac{1}{2}: \rho=\frac{1}{2}\left(\mathbb{1}_{2}+\boldsymbol{a} \cdot \boldsymbol{\sigma}\right)$ with Bloch vector $\boldsymbol{a}=\langle\boldsymbol{\sigma}\rangle=$ $\operatorname{tr}(\boldsymbol{\sigma} \rho)$, eigenvalues $\lambda_{ \pm}=\frac{1}{2}(1 \pm|\boldsymbol{a}|)$ where $|\boldsymbol{a}| \leq 1$; pure state, i.e. $\rho^{2}=\rho$ if $|\boldsymbol{a}|=1$, mixed else, spin polarization $\pi=\frac{p_{+}-p_{-}}{p_{+}+p_{-}}$
- von Neumann entropy $S_{\mathrm{N}}=-k_{\mathrm{B}} \operatorname{tr}_{\mathcal{H}}[\rho \ln (\rho)]$ with $\rho=\sum_{n} p_{n}|n\rangle\langle n|$ sum over complete set of states of Hilbert \mathcal{H}, reduces to Boltzmann entropy for microcan. ensemble
- canonical density op. $\rho_{c}=e^{\beta(F-H)}=\frac{1}{Z_{c}} e^{-\beta H}$, with normalization $Z_{c}=\operatorname{tr} e^{-\beta H}$
- (anti-)symmetrized many-particle states $\mathcal{P}_{ \pm}\left|\alpha_{1}\right\rangle \otimes \cdots \otimes$ $\left|\alpha_{n}\right\rangle=\frac{1}{n!} \sum_{\pi \in S_{n}}(\pm 1)^{\pi}\left|\alpha_{\pi(1)}\right\rangle \otimes \cdots \otimes\left|\alpha_{\pi(n)}\right\rangle$ furnish Fock space $\mathcal{F}_{ \pm}(\mathcal{H})=\bigoplus_{n=0}^{\infty} \mathcal{H}_{ \pm}^{n}$ with $\mathcal{H}_{ \pm}^{n}=\mathcal{P}_{ \pm} \mathcal{H}^{\otimes n}$
- occupation numbers $\left\langle n_{k}^{ \pm}\right\rangle_{g}=-\frac{1}{\beta} \frac{\partial}{\partial \epsilon_{k}} \ln \left(Z_{g}^{ \pm}\right)=\frac{1}{e^{\beta\left(\epsilon_{k}-\mu\right) \mp 1}}$ given by Bose-Einstein/Fermi-Dirac distributions with $Z_{g}^{ \pm}=$ $\operatorname{tr}_{\mathcal{F}_{ \pm}}\left(e^{-\beta(\hat{H}-\mu \hat{N})}\right)=\prod_{j=0}^{\infty} \sum_{n_{j}^{ \pm}=0}^{\infty \text { or } 1} e^{-\beta n_{j}\left(\epsilon_{j}-\mu\right)}=\prod_{j=0}^{\infty}(1 \mp$ $\left.e^{-\beta\left(\epsilon_{j}-\mu\right)}\right)^{\mp 1}$
- Maxwell-Boltzmann distribution $f(\boldsymbol{p})=e^{-\beta \epsilon(\boldsymbol{p}-\mu)}$, or normalized and spherically sym. $f(v)=$ $\left(\frac{m}{2 \pi k T}\right)^{3 / 2} 4 \pi v^{2} e^{-\frac{m v^{2}}{2 k_{\mathrm{B}} T}}$

- total particle fluctuations $\Delta N=\left\langle N^{2}\right\rangle-\langle N\rangle^{2}=\sum_{k}\left\langle n_{k}^{2}\right\rangle-$ $\sum_{k}\left\langle n_{k}\right\rangle^{2}$ for non-interacting gases
- grand potential $\Omega=-\frac{1}{\beta} \ln Z_{g}, \quad \Omega=-p V$, ideal Bose/Fermi gas $\Omega^{ \pm}(T, V, \mu)=-\frac{1}{\beta} \ln \left(Z_{g}^{ \pm}\right)=$ $\pm \frac{1}{\beta} \sum_{j} \ln \left(1 \mp e^{-\beta\left(\epsilon_{j}-\mu\right)}\right)$ with $p=-\frac{\partial \Omega}{\partial V}, S_{g}=-\frac{\partial \Omega}{\partial T}$
- ideal Fermi gas: pressure $\beta p=\frac{4 \pi g_{s}}{h^{3}} \int_{0}^{\infty} \mathrm{d} p p^{2} \ln (1+$ $\left.e^{\beta\left(p^{2} / 2 m-\mu\right)}\right)=\frac{g_{s}}{\lambda^{3}} f_{5 / 2}^{-}(z)$, density $\rho=\frac{N}{V}=$ $\frac{4 \pi g_{s}}{h^{3}} \int_{0}^{\infty} \frac{p^{2} \mathrm{~d} p}{1+e^{\beta\left(p^{2} / 2 m-\mu\right)}}=\frac{g_{s}}{\lambda^{3}} f_{3 / 2}^{-}(z), \quad$ where $f_{\nu}^{ \pm}(z)=$ $\frac{1}{\Gamma(\nu)} \int_{0}^{\infty} \frac{x^{\nu-1} \mathrm{~d} x}{z^{-1} e^{x} \mp 1}, z=e^{\beta \mu}$ and $\lambda=h / \sqrt{2 \pi m k_{\mathrm{B}} T}$, low temperature/high density means $\rho \lambda^{3} \gg 1 \Rightarrow z \gg 1$, e.o.s. $\frac{p V}{k_{\mathrm{B}} T}=\ln Z_{g}^{ \pm}=\mp g_{s} \sum_{k} \ln \left(1 \mp e^{-\beta\left(\epsilon_{k}-\mu\right)}\right)$, energy $U=\frac{3}{2} p V$
- ideal Bose gas: non-interacting (spinless) bosons with disp. rel. $\epsilon_{k}=\hbar^{2} k^{2} / 2 m$ contained in $V=L^{d}$; grand part. fct. $Z_{g}=\sum_{N=0}^{\infty} \sum_{\left\{n_{k}\right\}} e^{-\beta \sum_{k} n_{k}\left(\epsilon_{k}-\mu\right)} \delta_{\sum_{k} n_{k}, N}=$ $\prod_{k} \sum_{\left\{n_{k}\right\}} e^{-\beta \sum_{k} n_{k}\left(\epsilon_{k}-\mu\right)}=\prod_{k} \frac{1}{1-e^{-\beta\left(\epsilon_{k}-\mu\right)}}, \quad$ grand potential $\Omega=-\frac{1}{\beta} \ln \left(Z_{g}\right)=\frac{1}{\beta} \sum_{k} \ln \left(1-e^{-\beta\left(\epsilon_{k}-\mu\right)}\right) \xrightarrow{V \rightarrow \infty}$ $\frac{V}{\beta} \frac{A_{d-1}(1)}{(2 \pi)^{d}} \int_{0}^{\infty} \ln \left(1 \quad-z e^{-\beta \epsilon_{k}}\right) k^{d-1} \mathrm{~d} k, \quad$ now \quad subst. $x=\frac{\beta \hbar^{2} k^{2}}{2 m}$ followed by partial integration to get $\Omega=\frac{V}{\beta} \frac{A_{d-1}(1)}{(2 \pi)^{d}} \frac{1}{2}\left(\frac{2 m}{\hbar^{2} \beta}\right)^{\frac{d}{2}} \int_{0}^{\infty} x^{\frac{d}{2}-1} \ln \left(1-z e^{-x}\right) \mathrm{d} x=$ $-\frac{V}{\beta} \frac{A_{d-1}(1)}{d}\left(\frac{2 m}{h^{2} \beta}\right)^{\frac{d}{2}} \int_{0}^{\infty} \frac{x^{\frac{d}{2}}}{z^{-1} e^{x}-1} \mathrm{~d} x=-\frac{V}{\beta \lambda^{d}} f_{\frac{d}{2}+1}^{+}(z), \quad$ avr. number of particles $N=\frac{\partial \ln \Omega}{\partial(\beta \mu)}=\frac{V}{\lambda^{d}} f_{\frac{d}{2}}^{+}(z) \Rightarrow$ density $n(z)=\frac{1}{\lambda^{d}} f_{\frac{d}{2}}^{+}(z)$; pressure $p V=-\Omega$ and $E=-\frac{\partial \ln Z_{g}}{\partial \beta}=$ $\frac{d}{2} \frac{\ln Z_{g}}{\beta}=-\frac{d}{2} \Omega$, i.e. $E=\frac{d}{2} p V$; critical temperature obtained by solving $n(1)=\frac{1}{\lambda^{d}} \zeta\left(\frac{d}{2}\right)$ for T_{c}, for $d>2$, this yields $T_{c}=\frac{h^{2}}{2 m k_{\mathrm{B}}}\left(\frac{n}{\zeta\left(\frac{d}{2}\right)}\right)^{\frac{d}{2}}$; heat capacity at $T<T_{c}, z=1$ is $C(T)=\left.\frac{\partial E}{\partial T}\right|_{z=1}=k_{\mathrm{B}} \frac{d}{2}\left(\frac{d}{2}+1\right) \frac{V}{\lambda^{d}} \zeta\left(\frac{d}{2}+1\right)$ e.o.s. at high T $(z \rightarrow 0)$ is $\frac{p V}{N k_{\mathrm{B}} T}=1-\frac{N \lambda^{3}}{4 \sqrt{2} V}+\ldots$ has correction to ideal gas that lowers the pressure and is solely due to quantum statistics (not interactions)

