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1 Differential forms

n-form a exact & « € Im(d) < In — 1-form £ s.t. a =df
— B called potential for o; since d? = 0, 5 not unique
n-form « closed < « € ker(d) & da =0

since d2 = 0, every exact form is closed; converse, i.e. if every
closed form is exact, depends on topology: on contractible
domain (such as R™), this holds by Poincaré’s lemma

some inexact differentials can be made exact by multiply-
ing with integrating factor (and can then be integrated
to give (path-independent) scalar field; useful in thermody-
namics where T is i.f. that exactifies S)

2 Thermodynamics

dS = 0Q/T is path-independent total differential and state
function (unlike path function 6Q)

ideal gas entropy: S = Sy + Cy ln( ) +nR ln( )

efficiency n = 75 defined as work performed by system
(thus minus sign) divided by heat added

all reversible engines equally efficient

ideal heat engine pumping between reservoirs T., Tj:

. C,—C
— (h) & , where gR ro !

n=1- 4=
— isochoric heat change in ideal gas: Q;y = Cv(Ty —T;)
— by second law, reversible process is isentropic, § dS = 0

for paramagnets with first law dU = T'dS+ H dM obeying
Curie’s law M = % H, internal energy depends only on T'

potentials: internal energy U = T'S — pV, Helmholtz free
energy F =U—-TS = —pV, H=U +pV = TS, Gibbs
free energy G = U 4+ pV — TS (add ), u; N; everywhere in
presence of chemical potentials)

— differentials i.t.o. natural variables: dU = TdS — pdV,
dFf = —-SdT—pdV,dH = TdS+Vdp, dG = —SdT+Vdp

— all potentials related via Legendre transformation

— principle of minimum energy: entropy maximizes in
equilibrium, all potentials extremize: U minimizes for
fixed S, V, (follows from first and second law); F min-
imizes at fixed T, V; H at fixed p; G at fixed T and p

Maxwell relations: U — 8T|S = |v7 F - BS’T =

9p oT oV BS

BTV’H—>8;D|S_QS G— |T aT

_ oz | _ (Oy - oz | Oy| 9z| _
related via oylz — (8ac z) and By‘z oz lz 3$’ =-1

intensive quantities: temperature T, pressure p, density
p, chemical potential u, concentration ¢, magnetic perme-
ability p,, melting/boiling point, specific heat capacity cy,
specific volume v; extensive: particle number NN, internal
energy U, enthalpy H, entropy S, Gibbs energy G, heat ca-
pacity Cy, Helmholtz energy F', mass m, volume V'

real gases van der Waals p+ 5 = fq;) or p+2 V2 = ‘}’fffb,

R,I;J exp ( U}%T ) )

00 Bz
virial expans10n =1+ -, 5 for large volume v
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thermal expansion coeff. o = | 55 aN

with n = &+, R = NAkB, Dieterici p =

20 p
=T c’TTT v
; (isothermal)

b= _W|T’ |V’

v — p; Helmholtz eq.:

compressibility xr = 7%% = %gT -ball: volume
n/2Rn 2 71/2Rn 1
Y _ s
Va(R) = I(z+1) area An_1(R) = 0r Vo (R) = e —

equipartition thm.: in equilibrium, all microstates com-
patible with macroscopic conditions equiprobable; energy
shared equally amongst all d.o.f.s (i.e. equilibrated systems
maximize entropy), each quadratic d.o.f. carries energy kBT

heat engine: device that transfers heat from hot to cold
reservoir T, < T}, with aim of converting as much of trans-
ferred heat into mechanical work as possible; maximum ef-
ficiency attained by reversible engine operating idealized
Carnot cycle n¢ = 1 — —h heat pump: moves heat in
other direction from cold to hot, goal now to use as little
mechanical work as possible to do so, i.e. heat engine op-
erating in reverse = maximum efficiency of reversible heat

pump given by reciprocal of ¢, Nhp = T:Z"T

U = u(T)V, ther-
mal e.0.s. p = @7 Stefan-Boltzmann law u(T) = oT*,
Gibbs fundamental relation (first law) dU = TdS — pdV
yields entropy S(T,V) = Sy + 30VT?3, adiabatic e.o.s.
0Q =TdS =0= S < VT3 = const.

black-body radiation: caloric e.o.s.

3 Statistics

ensemble  fized distribution interpretation

micro VNE ié(H — E)  isolated system
canonical V N T %e_ﬁH system + heat bath
grand VTup Z%e’ﬁ(Hf”N) 1 + particle reservoir

entropies: Boltzmann S,, = kglnZ,,, S. = kg(InZ,,, +

B(H)c), Sqg = kpllnZ; + B(H)g + Bu(N),] (apply only
to equilibrium), Gibbs S¢ = —kg )_, p; In(p;) respectively

Sc = —kp fr w In wdy on discrete/continuous measure space
(valid generally), Sg constant in time due to Liouville’s eq.
dw

=0
dt

— Liouville thm. phase space distribution constant along
any trajectory in I'; viewing motion through phase space
as incompressible 'fluid flow’ of conserved current of sys-
tem points implies via Noether’s thm. invariance under
time evolution generated by Noether charge Hamiltonian

equivalence of ensembles: thermodynamics same for

Sy N5, S, Voo

large class of systems (incl. ideal gas), @ & 5S¢, 5 <

warning: fails in important cases e.g. phase transitions
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Legendre in e = & Legendre in p = &

Hamilton’s egs. ¢; = ng, Di = *W where p; = %
Boltzmann eq. (% + 2.V, +F- Vp)f(m,p,t) =

[ B3k A3’k |(p',K'|T|p, k)|? [fp/ fr — fpfk.] describes
(non-equilibrium) evolution of phase space densities (for
large systems, e.g. gases); incorporates molecular chaos,
which assumes collision term results solely from two-body
collisions between particles uncorrelated prior to scattering
(breaks time-reversal invariance since they are obviously cor-
related after collision), m.c. allows writing collision term as
p-integral in which two-particle correlator F(x,p, k,t) fac-
torizes into one-particle distributions f(x,p,t) f(x, k, t)



— for stationary systems, Boltzmann eq. greatly simplifies
to 2.V, fo(x,p) = —F(x)-V, fo(x,p) since 1. distribu-
tions f(x,p) lose explicit time-dependence 2. H-function
becomes stationary, resulting in detailed balance, mean-
ing number of particles leaving any mode due to given
scattering process equals number entering that mode by
reverse process; stationary solution: Boltzmann distr.

fo(z,p) oc exp [—B(”—Z +V(z))]
Boltzmann H-fct. H(t) = [ A3z d3p f(z,p,t) In[f(z, p,t)]

Poincaré recurrence thm. in context of ergodicity (time
avr. = phase space avr.), isolated phase-space volume pre-
serving (e.g. Hamiltonian) systems will return arbitrarily
close to initial state after finite time

Gibbs paradox: for classical counting of states, entropy not
extensive: S increases when gas of identical particles mixed
with itself (fixable by adding ﬁ to the measure dy,);
entropy from Boltzmann’s H does not have this problem

Gibbs variational principle: microcanonical state has
maximal entropy among all states on energy shell £, holds
for other ensembles as well

— useful inequality: f(lnf —Ilng) > f—g Vf,g >0 (= for
f=g), follows from zlnz > 2 — 1 for z > 0
discrete classical Z. = Y, e PFi,

d3qu3Np i
RSNNT

canonical part. fct.
continuous classical Z, = fr e PH dp, with dp, =
discrete quantum Z = try (eﬁH )

—0gIn(Z

— internal energy U = ), free energy F =

—% In(Z,.)

grand part. fct. Z. =YY, [; gie BH=1N) q, =

YN0 2N Ze(N), with fugacity z = e’# and e.e.v. (H), =

7 > neo Jr He PH=1N) qy, expected particle number
g
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fluctuations: e.g. energy 0% = ((H — (H))?) =

9
()7 =~ e (1) = - [, i

uncoupled Ising model/ideal paramagnet (N uncou-
pled Ising spins in external field h): H(s) = —hm Zjvzl sj =
—hM (s), minus = energy lowered if spins align with ex-
ternal field; s = (s1,...,sn) € Sn {£1}V is any
of 2V possible spin configurations; energy shell £ =
{s € Sy|H(s) = E} (non-empty only if E/hm € Z N
[-N,N]), microcan. part. fct. Z, = (]g), entropy
S = NkB 111(2) - %[(1 + th)1n<1 + N7nh) + (1 -
Noo h) In(1 — Z+)]; canonical p.f. Z. = D osesy e BHE) =
szl Zsj ePhmsi = [2cosh(Bhm)]Y, free energy F

,lanC = f%ln[Qcosh(ﬂhm)],

(1
€ —oH dﬂc—_%a

magnetization M =

gl;: = Nm tanh(fmh), caloric e.o.s. FE = dlgﬂz =
—Nmzh 2ta£1h(ﬁmh), specific heat ¢, = S+ = & gg
kB%, magnetic susceptibility y = %—A,f = %,
Gibbs fundamental rel. dS = +dE + Mdh LdN

coupled Ising model H(s) = JZ@S (1 — s;85) —

hzilil si, can. part. fet. Z. = Y .o e PH()  mean-

field magnetization per spin of Ising ferromagnet m =

tanh(2d 8 J m +  h) with crit. temp. T, = 2d J/kp

density operator: pi = p, tr(p) = 1, p > 0, observable A

expectation value (A) = tr(pA)

— spin-3: p = £(12 + a - o) with Bloch vector a = (o) =
tr(op), eigenvalues A+ = (1 +al) where |a| < 1; pure
state, i.e. p? = p if |a| = 1, mixed else, spin polarization

— von Neumann entropy Sx = —kptry[pln(p)] with
p = >, Pn|n)(n| sum over complete set of states of Hilbert
‘H, reduces to Boltzmann entropy for microcan. ensemble

BH

— canonical density op. p. = e?F—H) = %e_ , with nor-

malization Z, = tre #H

(anti-)symmetrized many-particle states Pyila) ® -+ ®
lo,) = % Yores, (D) ar@)) @ -+ @ [ar(y)) furnish Fock
space Fu(H) =D, , H: with ’H’il =Py HO"

+

occupation numbers (n; ), = ,BW ln(Zi) = L

eB (e — M);l
given by Bose-Einstein/Fermi-Dirac distributions with Z, + —

trr, (e PH—1N)) = T2, et 2O e Anle—m) = Hj:0(1qc
e*ﬁ(fj*/i)):Fl

— Maxwell-Boltzmann distribution f(p) = e f<P—1),
or normalized and spherically sym. floy =
[ 711)2
(27:71;T)3/247”’ e ol
Bose-Einstein
1.8 < ) Boltzmann

Fermi-Dirac

total particle fluctuations AN = (N?) — (N)?2
>4 (nk)? for non-interacting gases

—%ang, Q =

= Zk<"%> -

grand potential Q = —pV,

ideal Bose/Fermi gas QF(T,V,u) = —lln(Zgi) =
i%Zjln (lq:e_ﬂ(sf_”)) with p = — 28, Sy ——%

ideal Fermi gas:
66(p2/2m—u))

pressure p = 4“9* Jo dpp*In(1 +
= S50 v
47% fo 1+6pr2(/1§m ) %f?T/Q(ZL where fr(2) =
ﬁ o %7 z = ePand A = h/\2rmksT, low tem-
perature/high density means pA3 > 1 = 2z > 1, e.o.s.
kBT ani = Fgs D ln(l T e Plen— “)), energy U = %pV
ideal Bose gas: non-interacting (spinless) bosons with
disp. rel. e = h%k?/2m contained in V = L% grand
part. fct. Z, = Y N_o 2 (el e_BZk"k(E’“_“)5ank,N =
sz{nk}efﬁzknk(ekw) — Hk%7 grand po-

den51ty p =

tential @ = —31In(Z,) = 33, In(1 — e~fleemm) T2,
‘/gAdzﬂl(l Jo (1 ze Ber)d—1dk, now  subst.
x = @;—mk followed by partial integration to get

_ vV A (1) 1 1_1 _ _
Q = ﬁ (d27r1)d §(h2ﬂ) fo In(l — ze™®)dz =

_VA £ )%

B ddl (h?g) fo e—gdr = _Wf§+l(z)) avr.
number of particles N = % = %fg(z) = density
n(z) = %f‘;(z), pressure pV = — and E = —algﬁz-" =

2
gln/fg = —4Q ie. E = %pV; critical temperature ob-

tained by Solving n(1 ) = ;dg(d) for T,, for d > 2, this

yields T, = s (C( )) heat capacity at T < T,, z = 1 is
o) = 2& = = kp2(4 +31)VC(§ + 1) e.o.s. at high T
(z = 0) is #‘;T =1- 41\\7/%‘/ + ... has correction to ideal

gas that lowers the pressure and is solely due to quantum
statistics (not interactions)
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