String Theory - Exam Sheet

Janosh Riebesell
April 2016

1 Basics of string theory

- central axiom: fundamental objects in Nature not pointlike, but 1-dimensional (combined with standard kinematics of general covariance and usual procedure of quantization)
- gen. cov.: inv. of form of physical laws under arb. diff. coordinate trafos.; essential idea: coordinates don't exist in nature, are only artifices in our description, hence should play no phys. role - two sectors arise from elementary fact string can be open/closed: open $=$ Yang-Mills, closed $=$ gravity; since open strings can close up and vice versa, both are automatically dynamically related

2 The classical bosonic string

- $S_{\mathrm{NG}}=-T \int_{\Sigma} \mathrm{d} A$ defines Nambu-Goto action of classical bosonic string, where T string tension, $\mathrm{d} A=\sqrt{-\operatorname{det}(\boldsymbol{G})} \mathrm{d} \tau \mathrm{d} \sigma$ area element of worldsheet (WS) Σ with coordinates $\boldsymbol{\xi}=(\tau, \sigma)$ and induced metric (or pullback of ambient space metric $\eta_{\mu \nu}$ onto Σ) $G_{a b}=\frac{\partial X^{\mu}}{\partial \xi^{a}} \frac{\partial X_{\mu}}{\partial \xi^{b}}$
- to eliminate square root in S_{NG}, introduce WS metric $h^{a b}(\tau, \sigma)$ as auxiliary field in on-shell- S_{NG}-equivalent Polyakov action $S_{\mathrm{P}}=$ $-\frac{T}{2} \int_{\Sigma} \mathrm{d} \tau \mathrm{d} \sigma \sqrt{-h} h^{a b} G_{a b}$, with $h=\operatorname{det}(\boldsymbol{h}) ; X^{\mu}$ still spacetime (ST) vector but scalar on WS, hence S_{P} simply action of d scalars
- symmetries: 1. d-dim. ST Poincaré invariance $X^{\mu} \rightarrow \Lambda^{\mu}{ }_{\nu} X^{\nu}$ $+V^{\mu}$, with $\Lambda^{\mu}{ }_{\nu} \in S O(1, d-1)$ 2. local WS diffeomorphism inv. under $\xi^{a} \rightarrow \xi^{a}-\epsilon^{a}(\xi)$ under which the WS scalar $\delta X^{\mu}=\epsilon^{a} \partial_{a} X^{\mu}$, the metric $\delta h_{a b}=\nabla_{a} \epsilon_{b}+\nabla_{b} \epsilon_{a}$, scalar density of weight 1 $\delta \sqrt{-h}=\partial_{a}\left(\epsilon_{a} \sqrt{-h}\right)$ 3. local Weyl inv. $h_{a b} \rightarrow e^{2 \omega(\xi)} h_{a b}$, special symmetry only for 2 -dim. WS, important for cons. quantization - could add 2 terms to S_{P} : 1. cosmol. constant term $S_{\Lambda}=\Lambda$ $\int_{\Sigma} \mathrm{d}^{2} \xi \sqrt{-h}$, would spoil conf. inv. 2. Einstein-Hilbert term $S_{\mathrm{EH}}=\frac{\lambda_{\mathrm{EH}}}{4 \pi} \int_{\Sigma} \mathrm{d}^{2} \xi \sqrt{-h} \mathcal{R}$, is a total derivative \Rightarrow no dynamics; also $S_{\mathrm{EH}} \propto \chi$ Euler char.
- e.-m. tensor $T_{a b} \equiv \frac{4 \pi}{\sqrt{-h}} \frac{\delta S_{\mathrm{P}}}{\delta h^{a b}}=-\frac{1}{\alpha^{\prime}}\left(G_{a b}-\frac{1}{2} h_{a b} G^{c}{ }_{c}\right)$, traceless $T^{a}{ }_{a}=0$ as consequence of Weyl inv., conserved current $\nabla^{a} T_{a b}=0$ w.r.t. local WS diffeo. for on-shell X^{μ}
- gauge fixing: $h_{a b}$ symmetric has $\frac{d}{2}(d+1)$ d.o.f., diffeo. + Weyl has $(d+1)$, hence for $d=2$ where Weyl trafo. $\omega(\xi)$ s.t. $\sqrt{-h} \mathcal{R} \rightarrow$ $\sqrt{-h}(\mathcal{R}-2 \Delta \omega)=0$ implies $R^{a}{ }_{b c d}=0$, we can (locally) gauge away all metric d.o.f., then diffeo. trafo. to obtain flat WS $h_{a b}=\eta_{a b}$
- note: leaves large residual gauge symmetry generated by conformal Killing vectors $\boldsymbol{\epsilon}$ satisfying $\left(\Gamma^{\cdot} \cdot \boldsymbol{\epsilon}\right)_{a b}=\nabla_{a} \epsilon_{b}+\nabla_{b} \epsilon_{a}+$ $\nabla^{c} \epsilon_{c} h_{a b}=0$ whose effect on metric cambe undone by Weyl trafo.
- lightcone coordinates: $\xi^{ \pm}=\tau \pm \sigma$; metric $h_{ \pm \pm}=0, h_{ \pm \mp}=-\frac{1}{2}$, $h^{ \pm \mp}=-2$; line element $\mathrm{d} s^{2}=h_{a b} \xi^{a} \xi^{b}=-\mathrm{d} \tau^{2}+\mathrm{d} \sigma^{2}=-\mathrm{d} \xi^{+} \mathrm{d} \xi^{-}$
- e.m.-tensor: $T_{ \pm \pm}=-\frac{1}{\alpha^{\prime}} \partial_{ \pm} \boldsymbol{X} \cdot \partial_{ \pm} \boldsymbol{X}$, tracelessness $T_{ \pm \mp}=0$, conservation $\partial_{\mp} T_{ \pm \pm}=0 \Rightarrow T_{ \pm \pm}\left(\xi^{ \pm}\right)$; crucial: in flat gauge, $h_{a b}$-e.o.m. $T_{a b}=0$ still has to be enforced as constraint $T_{ \pm \pm}=0$
- mode expansion: varying flat gauge $S_{\mathrm{P}}=\frac{T}{2} \int_{\Sigma} \mathrm{d} \tau \mathrm{d} \sigma\left[\left(\partial_{\tau} \boldsymbol{X}\right)^{2}-\right.$ $\left.\left(\partial_{\sigma} \boldsymbol{X}\right)^{2}\right]=T \int_{\Sigma} \mathrm{d}^{2} \xi \partial_{+} \boldsymbol{X} \cdot \partial_{-} \boldsymbol{X}$ yields free wave equation $\left(\partial_{\tau}^{2}-\right.$ $\left.\partial_{\sigma}^{2}\right) X^{\mu}=0=\partial_{+} \partial_{-} X^{\mu}$ as string e.o.m. provided b.t. vanish: cl. string \checkmark, open string requires Neumann $\left(\partial_{\sigma} X^{\mu}=0\right)$ and/or Dirichlet ($\delta X^{\mu}=0=\partial_{\tau} X^{\mu}$) b.c. at $\sigma=0, l$; each has diff. exp., e.g. open NN string: $X^{\mu}=x^{\mu}+\frac{p^{\mu} \tau}{T l}+i \sqrt{2 \alpha^{\prime}} \sum_{n \neq 0} \frac{\alpha_{n}^{\mu}}{n} e^{-i \frac{\pi}{l} n \tau} \cos \left(\frac{n \pi \sigma}{l}\right)$ - modes fulfill comm. rel. $\left[\alpha_{m}^{\mu}, \alpha_{n}^{\nu}\right]=m \eta^{\mu \nu} \delta_{m,-n}^{n \neq 0} ;\left[x^{\mu}, p^{\nu}\right]=i \eta^{\mu \nu}$
- insert resulting $\partial_{ \pm} X^{\mu}$ into e.m.-tensor to get its mode expansion $T_{ \pm \pm}=4 \alpha^{\prime} \sum_{m \in \mathbb{Z}} L_{m}^{ \pm} e^{-i \frac{2 \pi}{l} m \xi^{ \pm}}$i.t.o. the Virasoro generators $L_{m} ; T_{a b}=0$ implies the Virasoro constraints $L_{m}^{ \pm}=0 \forall m \in \mathbb{Z}$
- $\mathbf{D} p$-brane is $(p+1)$-dim. hypersurface on which open strings can end, fixing them in dims. normal to it; mom. exchange with string implies brane is a dynamical (albeit non-perturbative) object itself
- Hamiltonian: $H_{\mathrm{op}}=\frac{\pi}{l}\left(\frac{1}{2} \boldsymbol{\alpha}_{0}^{2}+\frac{1}{2} \sum_{n \neq 0} \boldsymbol{\alpha}_{-n} \cdot \boldsymbol{\alpha}_{n}\right)=\frac{\pi}{l} L_{0}$, must vanish since $T_{a b}=0$ which implies mass shell cond., e.g. for open string $M^{2}=-{ }^{2}=\frac{1}{\alpha^{\prime}} \sum_{n=1}^{\infty} \boldsymbol{\alpha}_{-n} \cdot \boldsymbol{\alpha}_{n}$, for closed string $H_{\mathrm{cl}}=$ $\frac{2 \pi}{l}\left(L_{m}^{+}+L_{m}^{-}\right) \propto \partial_{+} \not \forall \partial_{-} \propto \partial_{\tau}=0$ implem. time reparametr. inv.

3 Bosonic string quantization

- 3 different ways to quantize: 1. old covariant (OCQ): Viras. constr. implemented at quantum level; manifestly Lorentz covariant, but unitary only in critical number $d_{\text {crit }}$ of ST dims. 2. lightcone
(LCQ): Viras. constr. implemented classically, manifestly unitary, but Lorentz covariant only in $d=d_{\text {crit }}$ 3. path-integral (PIQ): uses Faddeev-Popov (FP) gauge fixing procedure, criticality equivalent to closure of BRST algebra, only closed in $d=d_{\text {crit }}$
- normal ordering $\mathcal{N}\left(\alpha_{m}^{\mu} \alpha_{n}^{\nu}\right)=\alpha_{m}^{\mu} \alpha_{n}^{\nu}$ for $m \leq n \wedge \alpha_{n}^{\nu} \alpha_{m}^{\mu}$ else introduces ambiguity in $L_{0} \rightarrow L_{0}-a$ only, captured in norm. ord. const. a interpreted as Casimir energy, fixed by consistency cond.
- Virasoro algebra $\left[L_{m}, L_{n}\right]=(m-n) L_{m+n}+\frac{c}{12} m\left(m^{2}-1\right) \delta_{m,-n}$ is central extension by \mathbb{C} of classical Witt algebra, central charge $c=\eta^{\mu}{ }_{\mu}=d$ given by number of scalar fields $X^{\mu} ; c \neq 0$ indicates quantum anomaly of WS conformal symmetry
- phys. state cond. $\left(L_{m}-a \delta_{m, 0}\right)|\phi\rangle=0 \forall m \geq 0 \wedge|\phi\rangle \in \mathcal{H}_{\text {phys }}$
- tower of states: $M_{\mathrm{op}}^{2}|\phi\rangle=\frac{1}{\alpha^{\prime}}(N-a)+T^{2} \Delta \boldsymbol{x}^{2}|\phi\rangle$ with number op. N counting excitations by creators $\boldsymbol{\alpha}_{n}, n \leq 0 ; M_{\mathrm{cl}}^{2}|\phi\rangle=\frac{2}{\alpha^{\prime}}\left(N^{+}+\right.$ $\left.N^{-}-a\right)|\phi\rangle$ governed by level matching condition $\left(N^{+}-N^{-}\right)|\phi\rangle=0$
- criticality: string spectrum analysis reveals unitarity (OCQ)/nonanomalous Lorentz algebra (LCQ) requires $a=1, d=26$
- bosonic vacuum $|0$,$\rangle , is tachyonic M^{2}=-\frac{1}{\alpha^{\prime}}$; known from QFT as not inconsistent, merely signal instability of (naive) vacuum
- for general b.c.s, Casimir energy increases by $\frac{1}{24}$ per NN/DD dim. and decr. by $-\frac{1}{48}$ per ND/DN dim., i.e. $a_{\mathrm{tot}}=\frac{d-2}{24}-\frac{n_{\mathrm{ND}}+n_{\mathrm{DN}}}{16}$
- open spectrum with D-branes: first-level excitations parallel to brane form massless vector $=$ gauge field \Rightarrow single brane hosts $U(1)$ gauge theory; normal exc. $=n_{\mathrm{DD}}$ massless scalars (Goldstone bosons assoc. with spontan. breaking of 26 -dim. Poincaré inv.)
- N coincident branes carry $U(N)$ gauge theory; in orientifolded theories also $S O(N)$ and symplectic $S p(2 N)$ gauge groups possible
- first-level closed string polarization tensor decomposes into 3 irred. repr. of little group $S O(24): \xi_{i j}=g_{i j}+B_{i j}+\phi \delta_{i j}$, with $g_{i j}$ massless, transversely polarized spin 2 particle (graviton), $B_{i j}$ antisymmetric (Kalb-Ramond) tensor field, ϕ scalar field (dilaton)
- PIQ: partition function $Z=\int \mathcal{D} X \operatorname{det}(\Sigma) e^{i S_{\mathrm{P}}[X, \hat{h}]}$ with FP determinant $\operatorname{det}(\Gamma)$, arbitrary reference metrle h
- can be wiften $Z=\int \mathcal{D} X \mathcal{D} b \mathcal{D} c e^{i\left(S_{\mathrm{P}}+S_{g}\right)}$, by introducing FP ghost $c^{a}(\xi)$, antighost $b_{a b}(\xi)$ (anti-commuting, fermionic fields with integer spin, negative norm states), governed by ghost action $S_{g}=\frac{-i}{2 \pi} \int_{\Sigma} \mathrm{d}^{2} \xi \sqrt{-\hat{h}} \hat{h}^{a b} c^{d} \nabla_{a} b_{b d} \stackrel{\operatorname{lcg}}{=} \frac{i}{\pi} \int_{\Sigma} \mathrm{d}^{2} \xi\left(c^{+} \partial_{-} b_{++}+c^{-} \partial_{+} b_{--}\right)$ and e.o.m.s $\nabla^{a} b_{a b}=0=\partial_{\mp} b_{ \pm \pm} \&{ }^{\pi} \cdot \boldsymbol{c}=0=\partial_{\mp} c^{ \pm} \Rightarrow c^{a}$ in 1-to-1 corresp. with conf. Killing vec4s.
- ghost Virasoro alg. $\left[L_{m}^{g}, L_{n}^{g}\right]=(m-n) L_{m+n}^{g}+\frac{m}{6}\left(1-13 m^{2}\right) \delta_{m,-n}$ where $L_{m}^{g}=\sum_{n \in \mathbb{Z}}(m-n) \mathcal{N}\left(b_{m+n} c_{-n}\right)$ i.t.o. anti-comm. ghost modes b_{n}, c_{n} with $\left\{c_{m}, b_{n}\right\}=\delta_{m,-n},\left\{c_{m}, c_{n}\right\}=\left\{b_{m}, b_{n}\right\}=0$
- yields combined Virasoro alg. $\left[L_{m}^{\text {tot }}, L_{n}^{\text {tot }}\right]=(m-n) L_{m+n}^{\text {tot }}+$ $m\left[\frac{{ }^{\text {tot }}}{12}\left(m^{2}-1\right)+2(a-1)\right] \delta_{m,-n}$ with central charge $c^{\text {tot }}=c^{X}+c^{g}$ where $c^{g}=-26, c^{X}=d$ in $\mathbb{R}^{1, d-1}$, hence Weyl anomaly in PI absent iff $d=26, a=1$ (this really fixes c^{X}, only indirectly d)
- BRST symmetry generated by necessarily nilpotent cons. charge $Q_{B}, Q_{B}^{2}=0$ holds if full Viras. alg. non-anomalous ($d=26, a=1$), i.e. BRST consistency requires absence of total Weyl anomaly
- $Q_{B}|\phi\rangle=0 \forall|\phi\rangle \in \mathcal{H}_{\text {phys }}$ is necessary phys. state cond.; pos. norm Hilbert space $\mathcal{H}_{\text {phys }}=\frac{\mathcal{H}_{\text {clos }}}{\mathcal{H}_{\text {exac }}}=\frac{\operatorname{ker}\left(Q_{B}\right)}{\operatorname{Im}\left(Q_{B}\right)} \equiv Q_{B}$ cohomology

4 Conformal field theory

- examples: 1. string WS is 2 -dim. CFT 2. at fixed points of RG eqs. in QFT, theory becomes scale inv. 3. at crit. points in CMP and SP where correlation length diverges 4. AdS/CFT corresp. relates gravity on AdS space to CFT on its boundary
- conformal trafo. $=$ diffeom. that changes metric $g_{\mu \nu}(x) \rightarrow \partial_{\mu^{\prime}} x^{\alpha}$ $\partial_{\nu^{\prime}} x^{\beta} g_{\alpha \beta} \stackrel{!}{=} e^{\omega(x)} g_{\mu \nu}(x)$ only by a factor, i.e. infinitesimally $\partial_{\mu} \epsilon_{\nu}+$ $\partial_{\nu} \epsilon_{\mu}=\omega(x) g_{\mu \nu}$ if we set $x^{\prime \mu}=x^{\mu}-\epsilon^{\mu}(x)$ and $e^{\omega(x)}=1+\omega(x)$
- conf. trafos. include translations, Lorentz trafos., dilations, special conf. trafos. (= inversion, translation, another inversion)
- $\omega(x)$ satisfies constraints some of which are vacuous in $d=2 \Rightarrow$ makes group of infinites. conf. trafos. less restrictive, its volume infinite; this allows to solve some theories exactly/completely
- group of finite conf. diffeos. $z \rightarrow \frac{a z+b}{c z+d}$ on \mathbb{S}^{2} is Möbius group $\operatorname{PSL}(2, \mathbb{C})=S L(2, \mathbb{C}) / \mathbb{Z}_{2}\left(\right.$ since $(a, b, c, d) \xrightarrow{\mathbb{Z}_{2}}(-a,-b,-c,-d)$ same trafo.); generated by l_{-1}, l_{0}, l_{1}, with $l_{n}=-z^{n+1} \partial_{z}$ (which fulfill

Witt alg. $=$ Viras. alg. but classical, i.e. no c-term)

- import. prop. of $\operatorname{PSL}(2, \mathbb{C})$: maps any 3 distinct points to any other 3, crucial since used to remove gauge redundancy by fixing positions of asymptotic in- and out-states in scattering ampl.
- primary fields transform as tensors $\phi(z, \bar{z}) \rightarrow \phi^{\prime}\left(z^{\prime}, \bar{z}^{\prime}\right)=\left(\partial_{z} f\right)^{-h}$ $\left(\partial_{\bar{z}} \bar{f}\right)^{-\bar{h}} \phi(z, \bar{z})$ under conf. trafo. $z \rightarrow z^{\prime}=f(z)$, where $(h, \bar{h})=$ conf. weights $(h+\bar{h}=$ mass dim., $h-\bar{h}=\operatorname{spin})$
- infinites.: $f(z)=z+\epsilon(z) \Rightarrow \delta_{\epsilon, \bar{\epsilon}} \phi=-\left(h \partial_{z}+\epsilon \partial_{z}+\bar{h} \partial_{\bar{z}}+\bar{\epsilon} \partial_{\bar{z}}\right) \phi$
- together with (successive) operator product exps. (OPE), primaries can be used to express all higher n-point fcts. i.t.o. lower correlators; this is idea behind defining CFT i.t.o. finite amount of data, namely conf. anomaly c, spectrum of primaries ϕ_{j}, their weights h_{j} and OPE coeffs. $C_{i j}{ }^{k}$
- quasi-primary field: like primary, but only for $f \in P S L(2, \mathbb{C})$
- applied to strings: X^{μ} not (quasi)primary, but $\partial X^{\mu}, \mathcal{N}\left(e^{i k X}\right)$ are
- radially ord. OPE: by Wick's thm., $\mathcal{R}\left(\prod_{i} \phi_{i}\right)=\mathcal{N}\left\{\prod_{i} \phi_{i}+\right.$ $\left.\sum_{j \neq k}\left\langle\phi_{j} \phi_{k}\right\rangle \prod_{i \neq j, k} \phi_{i}+\sum_{j \neq k}^{l \neq m}\left\langle\phi_{j} \phi_{k}\right\rangle\left\langle\phi_{l} \phi_{m}\right\rangle \prod_{i \neq j, k}^{i \neq l, m} \phi_{i}+\ldots\right\}$
- conf. Ward-Takahashi id.: $\delta_{\epsilon, \bar{\epsilon}} \mathcal{O}(z, \bar{z})=-\int_{C_{z}}\left[\frac{\mathrm{~d} w}{2 \pi i} \epsilon(w) T(w)+\right.$ $\left.\frac{\mathrm{d} \bar{w}}{2 \pi i} \bar{\epsilon}(\bar{w}) \bar{T}(\bar{w})\right] \mathcal{O}(z, \bar{z}) \Rightarrow$ info about conf. trafos. encoded in residua of OPE with e.m.-tensor (integrand radially ordered)
- yields OPE of $T(z)$ with primary $\phi(w)$ of weight h : $\mathcal{R}[T(z) \phi(w)]=\frac{h \phi(w)}{(z-w)^{2}}+\frac{\partial_{w} \phi(w)}{z-w}+$ reg. terms
- e.m.-tensor OPE follows from $\left[L_{m}, L_{n}\right]$ as $T(z) T(w)=\frac{c / 2}{(z-w)^{4}}+$ $\frac{2 T(w)}{(z-w)^{2}}+\frac{\partial_{w} T(w)}{z-w} \Rightarrow T(z)$ primary of $h=2$ if $c=0$
- operator-state correspondence: isomorphism in 2-dim. CFT that relates primary fields to highest weight states, e.g. $|\phi\rangle=$ $\phi(0)|0\rangle=\phi_{-h}|0\rangle$ for h-weight primary with expansion $\phi(z)=$ $\sum_{n \in \mathbb{Z}} \phi_{n} z^{-n-h}$, by residue thm. $\phi_{n}=\int_{C_{0}} \frac{\mathrm{~d} z}{2 \pi i} \phi(z) z^{n+h-1}$
- requiring BRST-inv. for X-CFT gives phys. state cond. $L_{m}|\phi\rangle=$ $0 \forall m>0$ and $\left(L_{0}-1\right)|\phi\rangle=0 \Rightarrow$ phys. states are in 1-1 corresp. with primaries of weight $h=1$; leads to concept of vertex operator \equiv primary field of $h=1$, e.g. $\mathcal{N}\left(e^{i \boldsymbol{k} \cdot \boldsymbol{X}}\right)$ with $h=\frac{\alpha^{\prime}}{4} \boldsymbol{k}^{2} \stackrel{!}{=} 1 \Rightarrow M^{2}=-\frac{4}{\alpha^{\prime}}$ or $\mathcal{N}\left[\partial X^{\mu}(z) e^{i \boldsymbol{k} \cdot \boldsymbol{X}(z)}\right]$ with $h_{V_{1}}=$ $1+\frac{\alpha^{\prime}}{4} \boldsymbol{k}^{2} \stackrel{!}{=} 1 \Rightarrow \boldsymbol{k}^{2}=0$ inserted at $z=0$, creates first exc. level phys. state from $\operatorname{PSL}(2, \mathbb{C})$-inv. vacuum
- Verma module $V_{h_{j}}$ is span of all states of form $\left|\phi_{j}^{k_{1} \ldots k_{m}}\right\rangle=$ $\prod_{i}^{m} L_{-k_{i}}\left|\phi_{j}\right\rangle$ with ascending k_{i} and conf. weight $h_{V}=h_{j}+\sum_{i}^{m} k_{i}$
- CFT unitarity: holds if conformal anomaly $c>0$ and spectrum of primaries ϕ_{j} fulfills $h_{j} \geq 0 \forall j$ and $h_{\phi}=0 \Leftrightarrow \phi=\mathbb{1}$, i.e. only $\operatorname{PSL}(2, \mathbb{C})$-inv. vacuum may have $h=0$

5 String interactions

- no localized vertices, interac. captured by global WS topology \Rightarrow no need to add arbitrary terms to WS action, S_{P} remains free - thus correlators of diff. fields (bosons, fermions, ghosts) decouple (unlike e.g. Yang-Mills with ghost-gauge interact.), very useful
- goal in string perturbation: S-matrix of scattering process, at each order latter may (by conformal symmetry) be described by compact WS with vertex op. insertions instead of asymptotic in-/out-states - S-matrix sums up all WS topols.; imp. thm. 'every compact, connected, oriented 2 -dim. manifold topologically equiv. to sphere with (g, b) handles, boundaries' \Rightarrow WSs classified by Euler char. $\chi=2-2 g-b$, a topol. inv. under continuous deformations of WS metric, given by Riemann-Roch thm. $\chi=\int_{\Sigma} \frac{\mathrm{d}^{2} \xi}{4 \pi} \sqrt{-h} \mathcal{R}+\int_{\partial \Sigma} \frac{\mathrm{d} s}{2 \pi} k$, Ricci sc. \mathcal{R}, geodesic curvat. k
- $S_{j_{i}}\left(k_{i}\right)=\sum_{\text {comp }}^{\text {comps. }} \frac{\int \mathcal{D} X \int \mathcal{D} h}{\text { VolDiff } \times \text { Weyl }} e^{-S_{\mathrm{P}}-\lambda \chi} \prod_{i=1}^{n} V_{j_{i}}\left(k_{i}\right)$ heur. expr. (before gauge fixing) for n string scattering, added χ-term to action (without affecting dynamics) to keep track of topol. in PI - e.g. tree-level and one-loop topologies: disk $\mathbb{D}^{2}[(0,1), \chi=1]$, cyl. $\mathbb{C}^{2}[(0,2), \chi=0]$, sphere $\mathbb{S}^{2}[(0,0), \chi=2]$, torus $\mathbb{T}^{2}[(1,0), \chi=0]$ Open string

Closed string

- in string theory, single diagram sums over entire mass spectrum, i.e. what in QFT would be described by many diff. Feynman diags.
- as result amplitudes fall off quicker (exponentially) than in QFT, partially respons. for UV finiteness of string loop diags.
- another reason: modular inv. [under action of modular group, e.g. $\operatorname{PSL}(2, \mathbb{Z})$ on the torus] acts as intrinsic UV cutoff by excluding divergent region of moduli space from fundamental domain
- some UV divergences arise but no issue for UV finit. due to WS duality between open/closed channel, all can be reinterpreted as IR diver. of dual diagr. e.g. cylinder: tree-level cl., one-loop open
- def. metric moduli: deformation of metric that cannot by undone by diffeo. or Weyl resc.; by R.-R.-thm. number $\mu=\operatorname{dim}\left(\operatorname{ker} P^{\dagger}\right)$ of moduli and $\kappa=\operatorname{dim}(\operatorname{ker} P)$ of conf. Killing vects. fulfill $\mu-\kappa=-3 \chi$ (if $\chi>0 \Rightarrow \mu=0$, if $\chi<0 \Rightarrow \kappa=0$)
- non-linear σ-model describes strings propagating on curved background (generated by coherent state of its own massless fluctuations); consistency to first order in $\frac{\alpha^{\prime}}{R_{c}}$ yields Einstein eqs. for background metric (R_{c} typical radius of target space)

6 Superstring theory

- remedies tachyon-vacuum, lack of fermionic excitats. of bosonic th.
- obtained by adding $S_{\mathrm{F}}=-\frac{i}{4 \pi} \int_{\Sigma} \mathrm{d}^{2} \xi \bar{\psi}_{A}^{\mu} \gamma_{A B}^{\alpha} \partial_{\alpha} \psi_{B, \mu} \stackrel{\operatorname{cog}}{=} \frac{i}{2 \pi} \int_{\Sigma} \mathrm{d}^{2} \xi\left(\psi_{+}\right.$. $\left.\partial_{-} \boldsymbol{\psi}_{+}+\boldsymbol{\psi}_{-} \cdot \partial_{+} \boldsymbol{\psi}_{-}\right)$to $S_{\mathrm{P}} ; \psi_{ \pm}$are Grassmann-valued MajoranaWeyl spinors (real, definite chirality) with Dirac eq. as e.o.m. $\gamma^{\alpha} \partial_{\alpha} \psi=0=\partial_{\mp} \psi_{ \pm}$; mass dim. $[\psi]=\frac{1}{2}([X]=-1)$
- features supersymmetry $\delta X^{\mu}=i \frac{\sqrt{\alpha^{\prime}}}{\sqrt{2}} \epsilon_{A}^{-} \psi_{A}^{\mu}=i \frac{\sqrt{\alpha^{\prime}}}{\sqrt{2}}\left(\epsilon_{+} \psi_{-}^{\mu}-\right.$ $\left.\epsilon_{-} \psi_{+}^{\mu}\right), \delta \psi_{A}^{\mu}=\frac{\epsilon_{B}}{\sqrt{2 \alpha^{\prime}}} \gamma_{A B}^{\alpha} \partial_{\alpha} X^{\mu}= \pm \frac{\sqrt{2}}{\sqrt{\alpha^{\prime}}} \epsilon_{\mp} \partial_{ \pm} X^{\mu}$; related to Poincaré by $\left\{Q_{A}, \bar{Q}_{B}\right\} \cong 2 \gamma_{A B}^{a} P_{a}$ (laxly SUSY ${ }^{2}=$ translation)
- generators of super conformal symmetry: e.-m. tensor $T_{ \pm \pm}=$ $-\frac{1}{\alpha^{\prime}} \partial_{ \pm} \boldsymbol{X} \cdot \partial_{ \pm} \boldsymbol{X}-\frac{i}{2} \boldsymbol{\psi}_{ \pm} \cdot \partial_{ \pm} \boldsymbol{\psi}_{ \pm}$and supercurrent $J_{ \pm}=\frac{-1}{2 \alpha^{\prime}} \boldsymbol{\psi}_{ \pm} \cdot \partial_{ \pm} \boldsymbol{X}$ - super-Viras. constr.: ${ }_{ \pm \pm \pm} \stackrel{!}{=} 0, J_{ \pm} \stackrel{!}{=} 0$ imposed on e.o.m. sols.
- local diffeo. inv. + supersymmetry $=$ local supersym. \Rightarrow supergravity in which also metric $h_{a b}$ has superpartner, the gravitino
- local e.o.m. needs boundary terms to vanish; closed string b.c.s that not mix $\psi_{ \pm}$and respect Poincaré sym. are $\psi_{ \pm}(\sigma+l)=e^{2 \pi i \phi_{ \pm}} \psi_{ \pm}(\sigma)$ - $\phi_{ \pm}=0\left(\frac{1}{2}\right):$ (anti-)per. Ramond (Neveu-Schwarz) sec. with (half-)integer mode exp. $\boldsymbol{\psi}_{ \pm}\left(\xi^{ \pm}\right)=\sqrt{\frac{2 \pi}{l}} \sum_{n \in \mathbb{Z}\left(+\frac{1}{2}\right)} \boldsymbol{b}_{n}^{ \pm} e^{-i \frac{2 \pi}{l} n \xi^{ \pm}}$ - R-R and NS-NS bosonic; R-NS and NS-R fermionic excitations
- GSO projection: CFT consistency + stability of vacuum (= no tachyon) \Rightarrow Type II A/B as closed oriented superstring theories - equal number of bosons + fermions, $128+128$ at massless level
- 2 spin $3 / 2$ fields (gravitino) \Rightarrow low- E-limit of Type II is SuGra
- WS consistency + vacuum stability imply local SUSY in $d=10$
- Type \mathbf{I}_{cl} th. unstable like bosonic theory due to tachyonic vacuum, inconsistent at 1-loop level due to appearance of tadpole
- only 3 consist. superstr. ths. in $d=10$: Type II A/B and Type I of closed + unoriented open strings with gauge group $S O(32)$

7 Compactification, T-duality, D-branes

- compactification in superstring theory is the op. $\mathbb{R}^{1,9} \rightarrow \mathbb{R}^{1,3} \times$ \mathcal{M}^{6} with \mathcal{M}^{6} called internal space; flat scalar fields whose VEV determine geometric properties of \mathcal{M}^{6} called moduli fields
- truly stringy winding states around compact. dimensions with mass $M^{2}=\frac{\omega^{2} R_{c}^{2}}{\alpha^{\prime 2}}$ and indep. left-/right-moving modes $\boldsymbol{\alpha}_{n}^{ \pm}$possible
- T-duality: $n \leftrightarrow \omega, R \leftrightarrow R^{\prime}=\frac{\alpha^{\prime}}{R}$ is exact symmetry of closed CFT that affects $\boldsymbol{\alpha}_{0}^{+}, V_{\text {i.e. }} \rightarrow$ mavers
- fig.: parameter space of string th., edges are weakly coupled, interior $d=11$ M-theory with coupling of order 1, at low energies described by supergravity

- D-branes: dynamical objects that gravitate by coupling to closed strings in NS-NS sector, i.e. have mass; are charged under R-R p-form potentials
- worldvolume of D-branes not static, exhibit quantum fluctuations in normal directions described by scalar light open-string excitations
- intersecting brane worlds: important in string phenomenology to make contact between $d=10$ and $\mathbb{R}^{1,3}$; stack of two branes D_{A}, D_{B} intersecting along $\mathbb{R}^{1,3}$ gives rise $U\left(N_{A}\right) \times U\left(N_{B}\right)$ Yang-Mills th. + 1 chiral fermion transf. in bifundamental $\left(\bar{N}_{A}, N_{B}\right)$, i.e. structure of $S M S U(3) \times S U(2) \times U(1)_{Y}$ for $N_{A}=3, N_{B}=2, N_{C}=1$
- every 4 -dim. eff. th. obtained by compactif. corresp. to diff. choice of vacuum; tog. all solutions called landscape of string vacua

