String Theory - Exam Sheet
Janosh Riebesell
April 2016

1 Basics of string theory

central axiom: fundamental objects in Nature not pointlike, but

1-dimensional (combined with standard kinematics of general co-

variance and usual procedure of quantization)

e gen. cov.: inv. of form of physical laws under arb. diff. coordi-
nate trafos.; essential idea: coordinates don’t exist in nature, are
only artifices in our description, hence should play no phys. role

two sectors arise from elementary fact string can be open/closed:

open = Yang-Mills, closed = gravity; since open strings can close
up and vice versa, both are automatically dynamically related

2 The classical bosonic string

Sng = —T fz dA defines Nambu-Goto action of classical bosonic

string, where T string tension, dA = \/— det(G) drdo area element
of worldsheet (WS) X with coordinates & = (7, 0) and induced met-
ric (or pullback of ambient space metric ), onto 3) G, = %2{: 88)2{,‘
to eliminate square root in Sng, introduce WS metric h“b(r, o) as
auxiliary field in on-shell-Sxg-equivalent Polyakov action Sp =
-Z [ drdo V=hh®®G,,, with h = det(h); X* still spacetime (ST)
vector but scalar on WS, hence Sp simply action of d scalars
e symmetries: 1. d-dim. ST Poincaré invariance X* — A*, X"
+V*#, with A¥, € SO(1,d—1) 2. local WS diffeomorphism inv.
under £* — £*—€%(§) under which the WS scalar § X* = €9, X",
the metric dh,, = Vaepr + Vieq, scalar density of weight 1
8v—h = Oa(€arv/—h) 3. local Weyl inv. h,, — ¢**©h,,, special
symmetry only for 2-dim. WS, important for cons. quantization
e could add 2 terms to Sp: 1. cosmol. constant term Sy = A
fz d%¢ v/—h, would spoil conf. inv. 2. Einstein-Hilbert term

SEH = )‘EH fz d2§ FR is a total derivative = no dynamics;
also SEH o< x Euler char.
e.-m. tensor T,, = \;‘;h;}if’b = —%(Gab
T°, = 0 as consequence of Weyl inv., conserved current V¢
w.r.t. local WS diffeo. for on-shell X*
gauge fixing: h,;, symmetric has (d + 1) d.o.f.,, diffeo. + Weyl
has (d + 1), hence for d = 2 where Weyl trafo. w(¢) s.t. vV—hR —
V—=h(R—2Aw) = 0 implies R*,.; = 0, we can (locally) gauge away
all metric d.o.f., then diffeo. trafo. to obtain flat WS h,, = 1,
e note: leaves large residual gauge symmetry generated by con-
formal Killing vectors € satisfying ( ab = Vaer + Vieq +

V€chg, = 0 whose effect on metric cagbe undone by Weyl trafo.

— Lha, G€.), traceless
Tab =0

lightcone coordinates: £ = 7 + o; metric hoy = 0, hig = é,
hEF = —2; line element ds? = h,£%¢" = —dr? 4+ do? = —detde™
e e.m.-tensor: Ty = ——(‘9iX aiX tracelessness T+ = 0,

conservation d+Try = 0 = Tyy (€F); crucial: in flat gauge,

hgp-e.0.m. T,, = 0 still has to be enforced as constraint 7., = 0
mode expansion varying flat gauge Sp = T [, drdo[(d- X)% -
(0, X)) sz d?60,. X - 0_X yields free Wave equation (92 —
I2)XH = 0 = 0,0_X" as string e.om. provided b.t. vanish:
cl. string v/, open string requires Neumann (9,X* = 0) and/or
Dirichlet (6 X* =0 = 9, X") b.c. at o = 0,[; each has diff. exp., e.g.
open NN string: X* =z + ”;—7 —l—i\/ﬂzn#() On gmifnT cos(™7%)
e modes fulfill comm. rel. [af,, an] = mn*" om

s [ ] = i
e insert resulting 0+ X* into e.m.-tensor to get its mode expansion
Thy =43 o0 Lfe —i%Fme® 0. the Virasoro generators
Ly,; T, = 0 implies the Vlrasoro constraints L, =0 Ym e Z
Dp-brane is (p + 1)-dim. hypersurface on which open strings can
end, fixing them in dims. normal to it; mom. exchange with string
implies brane is a dynamical (albeit non-perturbative) object itself
Hamiltonian: Hop = %(%a% + %Zn#) Q) = T Lo, must
vanish since T,, = 0 which implies mass shell cond., e.g. for
open string M2 =L Zoo 1 O - Oy, for closed strlng H, =
2;’ (LY, + L) < 04 %/(9_ = 0 implem. time reparametr. inv.

3 Bosonic string quantization

3 different ways to quantize: 1. old covariant (OCQ): Viras. con-
str. implemented at quantum level; manifestly Lorentz covariant,
but unitary only in critical number dcyit of ST dims. 2. lightcone

e phys. state cond. (L,

(LCQ): Viras. constr. implemented classically, manifestly unitary,
but Lorentz covariant only in d = derit 3. path-integral (PIQ):
uses Faddeev-Popov (FP) gauge fixing procedure, criticality equiv-
alent to closure of BRST algebra, only closed in d = dcvit

normal ordering N(af, af) = ok, ay, for m < n A af, ok, else
introduces ambiguity in Lo — Lo — a only, captured in norm. ord.
const. a interpreted as Casimir energy, fixed by consistency cond.
Virasoro algebra Ly, Ly] = (m — n)Lmin + 5m(m* — 1)6m, —n
is central extension by C of classical Witt algebra, central charge
¢ =n", = d given by number of scalar fields X*; ¢ # 0 indicates
quantum anomaly of WS conformal symmetry

aém 0]y =0VYm>0 A |¢) € Hpnys

e tower of states: M, p|¢) L (N —a)+T?Az?|¢) with number op.
N counting excitations by creators oan, n < 0; M3lg) = 2 (Nt +
N~ —a)|¢) governed by level matching condition (N — )|¢> =0

criticality: string spectrum analysis reveals unitarity (OCQ)/non-
anomalous Lorentz algebra (LCQ) requires a = 1, d = 26
bosonic vacuum |0, ) is tachyonic M? = —ﬁ; known from QFT
as not inconsistent, \véerely signal instability of (naive) vacuum
for general b.c.s, Casimir energy increases by i per NN/DD dim.
and decr. by —% per ND/DN dim., i.e. agor = % — w
open spectrum with D-branes: first-level excitations parallel to
brane form massless vector = gauge field = single brane hosts
U(1) gauge theory; normal exc. = npp massless scalars (Goldstone
bosons assoc. with spontan. breaking of 26-dim. Poincaré inv.)
N coincident branes carry U(N) gauge theory; in orientifolded the-
ories also SO(N) and symplectic Sp(2N) gauge groups possible
first-level closed string polarization tensor decomposes into 3 irred.
repr. of little group SO(24): &; = g;; + By + ¢0;;, with g;;
massless, transversely polarized spin 2 particle (graviton), B;; an-
tisymmetric (Kalb-Ramond) tensor field, ¢ scalar field (dilaton)
PIQ: partition function Z = [ DX det(!;)eisl’[x’h] with FP deter-
minant det(_), arbitrary reference met h
e can be wéitten Z = [DXDbDce'PT99) by introducing FP
ghost ¢*(§), antighost b,,(€) (anti-commuting, fermionic fields
with integer spin, negative norm states), governed by ghost action
Sy = 52 [ APV —Rh ™IV by L [ d2€(cT b,y +c 04b_ )
andeomstb—O—B;Fbii& cc=0=0xc = " in
1-to-1 corresp. with conf. Killing vec;
ghost Virasoro alg. [L§,, L§] = (m—n)L%, ,, +2(1-13m*)6m,—n
where LY, = > _,(m — n)N(bninc_n) i.t.o. anti-comm. ghost
modes by, ¢p With {¢m,bn} = dm,—n, {Cm,cn} = {bm,bn} =0
° yields combined Virasoro alg. [Lie* L¥'] = (m — n)L%', +
5 (m — 1)+2(a7 1)]8um, —n with central charge c°* = ¢* +¢9
where ¢ = —26, ¢ = d in R»*~!, hence Weyl anomaly in PI
absent iff d = 26, a = 1 (this really fixes ¢, only indirectly d)
BRST symmetry generated by necessarily nilpotent cons. charge
Q5, Q% = 0 holds if full Viras. alg. non-anomalous (d = 26, a = 1),
i.e. BRST consistency requires absence of total Weyl anomaly

m[<

e Qplp) = 0 V|@) € Hpnys is necessary phys. state cond.; pos.
norm Hilbert space Hphys = % = 11(2((35)) = @Qp cohomology

4 Conformal field theory

examples: 1. string WS is 2-dim. CFT 2. at fixed points of RG egs.

in QFT, theory becomes scale inv. 3. at crit. points in CMP and

SP where correlation length diverges 4. AdS/CFT corresp. relates

gravity on AdS space to CFT on its boundary

conformal trafo. = diffeom. that changes metric g,,, () = 0,z

P g, s=e“""g,, (z) only by a factor, i.e. infinitesimally O.€, +

ey = w(x)g,, if we set 2’# = 2 — e (z) and ™) =1 + w(x)

e conf. trafos. include translations, Lorentz trafos., dilations, spe-
cial conf. trafos. (= inversion, translation, another inversion)

e w(z) satisfies constraints some of which are vacuous in d = 2 =
makes group of infinites. conf. trafos. less restrictive, its volume
infinite; this allows to solve some theories exactly /completely

group of finite conf. diffeos. z — Zz—is on S? is Mobius group

PSL(2,C) = SL(2,C)/Zs (since (a,b,c, d)#( —b, —c, —d) same

trafo.); generated by l_1,lo,l1, with I, ”“az (which fulfill

w(x)
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Witt alg. = Viras. alg. but classical, i.e. no c-term)

e import. prop. of PSL(2,C): maps any 3 distinct points to any
other 3, crucial since used to remove gauge redundancy by fixing
positions of asymptotic in- and out-states in scattering ampl.

primary fields transform as tensors ¢(z, 2) = ¢'(2,7)=(8./))~"

()" ¢(z, %) under conf. trafo. z — 2z’ = f(z), where (h,h) =

conf. weights (h 4+ h = mass dim., h — h = spin)

e infinites.: f(z) =z +€(z) = 6576 ¢ = —(hds + €d> + hos + &d:)¢

e together with (successive) operator product exps. (OPE), pri-
maries can be used to express all higher n-point fcts. i.t.o. lower
correlators; this is idea behind defining CFT i.t.o. finite amount
of data, namely conf. anomaly c, spectrum of primaries ¢;, their
weights h; and OPE coeffs. C’”

e quasi-primary field: like primary, but only for f € PSL(2,C)

e applied to strings: X* not (quasi)primary, but dX*, N'(e**¥) are

radially ord. OPE: by Wick’s thm., R([], ¢:) = N{[[, ¢: +

354 (0508) Ty o 65 + Z§§’£<¢j¢k><¢z¢m> 2% i+ -}

conf. Ward-Takahashi id.: .:O(z,z) = fcz [27” w)T(w) +

49 &(w)T (w)] O(2, ) = info about conf. trafos. encoded in residua

27

of OPE with e.m.-tensor (integrand radially ordered)

e yields OPE of T(z) with primary ¢(w) of weight h:
RIT(z)p(w)] = 7{;?&;"))2 + 731:?(;“) + reg. terms

e e.m.-tensor OPE follows from [Ly,, L] as T'(2)T(w) = (zi/j)4
(QZT(w)z + Bu T(w) = T'(z) primary of h=2if ¢ =0

operator-state correspondence: isomorphism in 2-dim. CFT
that relates primary fields to highest weight states, e.g. |¢) =
¢(0)]0) = h|0) for h-weight primary With expansion ¢(z) =
Y onez Pnz " by residue thm. ¢, = fCo 5= B(z)znTht
requiring BRST-inv. for X-CFT gives phys. state cond. L |¢) =
0Vm > 0 and (Lo — 1)|]¢) = 0 = phys. states are in 1-1 cor-

resp. with primaries of weight h = 1; leads to concept of ver-
tex operator = primary field of h = 1, eg. N(e™¥) with
h= 9E21 = M2 = -4 or NOXH(2)e* X)) with hy, =

1+ %'k:Qél = k? = 0 inserted at z = 0, creates first exc. level
phys. state from PSL(2,C)-inv. vacuum

Verma module V;; is span of all states of form |¢§1‘“km> =
[17" L—&;|¢;) with ascending k; and conf. weight hy = h; +> 7" k
CFT unitarity: holds if conformal anomaly ¢ > 0 and spectrum
of primaries ¢; fulfills h; > 0 Vj and hy = 0 & ¢ = 1, ie. only
PSL(2,C)-inv. vacuum may have h =0

5 String interactions

no localized vertices, interac. captured by global WS topology
= no need to add arbitrary terms to WS action, Sp remains free
e thus correlators of diff. fields (bosons, fermions, ghosts) decouple
(unlike e.g. Yang-Mills with ghost-gauge interact.), very useful
goal in string perturbation: S-matrix of scattering process, at each
order latter may (by conformal symmetry) be described by compact
WS with vertex op. insertions instead of asymptotic in-/out-states
e S-matrix sums up all WS topols.; imp. thm. ’every compact,
connected, oriented 2-dim. manifold topologically equiv. to
sphere with (g,b) handles, boundaries’ = WSs classified by Eu-
ler char. x = 2 — 2g — b, a topol. inv. under continuous
deformations of WS metric, given by Riemann-Roch thm.

X = fg & 5F72+ faz Sék Ricci sc. R, geodesic curvat. k
o Sj, (ki) = > comp [DXJDh_—Sp— AXTIr, Vj, (ki) heur. expr.

topos m

(before gauge fixing) for n string scattering, added x-term to

action (without affecting dynamics) to keep track of topol. in PI

e.g. tree-level and one-loop topologies: disk D? [(0,1), x = 1], cyl.

C? [(0,2), x = 0], sphere S [(0,0), x = 2], torus T? [(1,0), x = 0]
Open string Closed string
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in string theory, single diagram sums over entire mass spectrum, i.e.

what in QFT would be described by many diff. Feynman diags.

e as result amplitudes fall off quicker (exponentially) than in QFT,
partially respons. for UV finiteness of string loop diags.

e another reason: modular inv. [under action of modular group,
e.g. PSL(2,Z) on the torus] acts as intrinsic UV cutoff by exclud-
ing divergent region of moduli space from fundamental domain

e some UV divergences arise but no issue for UV finit. due to WS
duality between open/closed channel, all can be reinterpreted as
IR diver. of dual diagr. e.g. cylinder: tree-level cl., one-loop open

def. metric moduli: deformation of metric that cannot by undone

by diffeo. or Weyl resc.; by R.-R.-thm. number p = dim(ker PT) of
moduli and x = dim(ker P) of conf. Killing vects. fulfill uy—x = —3x

(ifx>0=pu=0,if x<0=k=0)

non-linear o-model describes strings propagating on curved back-

ground (generated by coherent state of its own massless fluctu-

ations); consistency to first order in yields Einstein eqgs. for

background metric (R. typical radius of target space)

6 Superstring theory

e remedies tachyon-vacuum, lack of fermionic exmtatb of bosonic th.
e obtained by adding Sr = — & [, d*¢ 43 p0atip = = L [ (-

O_Yy+1_-041p_) to Sp, wi are Grassmann- Valued MaJorana—
Weyl spinors (real, definite chirality) with Dirac eq. as e.o.m.

Y*0at) = 0 = O5¢+; mass dim. [¢] = 1 ([X] = —1)
features supersymmetry X" = z@ e}u/)ff‘ = z@ (eg/)“ -
€U, U = A pda X

by {Qa,Q5} = 2745 P, (laxly SUSY2 = translatlon)

generators of super conformal symmetry: e.-m. tensor Ty =
fﬁaix.aix 5% 0y and' supercurrent Jr = 1/)i 0+ X
e super-Viras. constr T14 =0, J+=0 imposed on e o m. sols.
local diffeo. inv. + supersymmetry = local supersym. =- super-
gravity in which also metric h,;, has superpartner, the gravitino
local e.o.m. needs boundary terms to vanish; closed string b.c.s that
not mix ¢+ and respect Poincaré sym. are ¥+ (c+1) = > %+4)1 (o)
e ¢+ =0(%): (anti-)per. Ramond (Neveu-Schwarz) sec. with

(half-)integer mode exp. ¥ ( (%) = \/727162(_‘_ 1) by o —ifEng®
e R-R and NS-NS bosonic; R-NS and NS-R fermionic excitations
GSO projection: CFT consistency + stability of vacuum (= no
tachyon) = Type II A /B as closed oriented superstring theories
e cqual number of bosons + fermions, 128 + 128 at massless level
e 2 spin 3/2 fields (gravitino) = low-E-limit of Type II is SuGra
e WS consistency + vacuum stability imply local SUSY in d = 10
Type L. th. unstable like bosonic theory due to tachyonic vacuum,
inconsistent at 1-loop level due to appearance of tadpole
only 3 consist. superstr. ths. in d = 10: Type II A/B and Type
I of closed + unoriented open strings with gauge group SO(32)

7 Compactification, T-duality, D-branes

compactification in superstring theory is the op. R — R x
M with M called internal space; flat scalar fields whose VEV
determine geometric properties of M® called moduli fields

truly stringy winding states around compact. dimensions with

and indep. left-/right-moving modes a possible

’

T-duality: n <> w, R+ R = % etiory
is exact symmetry of closed CFT "y
that affects x oy, —
- x ao \};e ]s/grlty on ?véht—
movers

fig.: parameter space of string th.,
edges are weakly coupled, interior
d = 11 M-theory with coupling of
order 1, at low energies described
by supergravity

D-branes: dynamical objects that gravitate by couphng to closed
strings in NS-NS sector, i.e. have mass; are charged under R-R
p-form potentials

worldvolume of D-branes not static, exhibit quantum fluctuations in
normal directions described by scalar light open-string excitations
intersecting brane worlds: important in string phenomenology to
make contact between d = 10 and R*3; stack of two branes D, Dy
intersecting along R™* gives rise U(Na) x U(Ng) Yang-Mills th. +
1 chiral fermion transf. in bifundamental (]\7 4, Ng), i.e. structure
of SM SU(3) x SU(2) x U(1l)y for Ny =3, Ng =2, Nc =1

every 4-dim. eff. th. obtained by compactif. corresp. to diff. choice
of vacuum; tog. all solutions called landscape of string vacua

2 p2
w R
mass M2 = "

sterotic g
$0(32)
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