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1 Basics of string theory

• central axiom: fundamental objects in Nature not pointlike, but
1-dimensional (combined with standard kinematics of general co-
variance and usual procedure of quantization)
• gen. cov.: inv. of form of physical laws under arb. diff. coordi-

nate trafos.; essential idea: coordinates don’t exist in nature, are
only artifices in our description, hence should play no phys. role

• two sectors arise from elementary fact string can be open/closed:
open = Yang-Mills, closed = gravity; since open strings can close
up and vice versa, both are automatically dynamically related

2 The classical bosonic string

• SNG = −T
∫

Σ
dA defines Nambu-Goto action of classical bosonic

string, where T string tension, dA =
√
−det(G) dτdσ area element

of worldsheet (WS) Σ with coordinates ξ = (τ, σ) and induced met-

ric (or pullback of ambient space metric ηµν onto Σ) Gab = ∂Xµ

∂ξa
∂Xµ
∂ξb

• to eliminate square root in SNG, introduce WS metric hab(τ, σ) as
auxiliary field in on-shell-SNG-equivalent Polyakov action SP =
−T

2

∫
Σ

dτdσ
√
−hhabGab, with h = det(h); Xµ still spacetime (ST)

vector but scalar on WS, hence SP simply action of d scalars
• symmetries: 1. d-dim. ST Poincaré invarianceXµ → ΛµνX

ν

+V µ, with Λµν ∈ SO(1, d−1) 2. local WS diffeomorphism inv.
under ξa → ξa−εa(ξ) under which the WS scalar δXµ = εa∂aX

µ,
the metric δhab = ∇aεb + ∇bεa, scalar density of weight 1
δ
√
−h = ∂a(εa

√
−h) 3. local Weyl inv. hab → e2ω(ξ)hab, special

symmetry only for 2-dim. WS, important for cons. quantization
• could add 2 terms to SP: 1. cosmol. constant term SΛ = Λ∫

Σ
d2ξ
√
−h, would spoil conf. inv. 2. Einstein-Hilbert term

SEH = λEH
4π

∫
Σ

d2ξ
√
−hR, is a total derivative ⇒ no dynamics;

also SEH ∝ χ Euler char.
• e.-m. tensor Tab ≡ 4π√

−h
δSP

δhab
= − 1

α′ (Gab −
1
2
habG

c
c), traceless

T aa = 0 as consequence of Weyl inv., conserved current ∇aTab = 0
w.r.t. local WS diffeo. for on-shell Xµ

• gauge fixing: hab symmetric has d
2
(d + 1) d.o.f., diffeo. + Weyl

has (d+ 1), hence for d = 2 where Weyl trafo. ω(ξ) s.t.
√
−hR →√

−h(R−2∆ω) = 0 implies Rabcd = 0, we can (locally) gauge away
all metric d.o.f., then diffeo. trafo. to obtain flat WS hab = ηab
• note: leaves large residual gauge symmetry generated by con-

formal Killing vectors ε satisfying (∑ · ε)ab = ∇aεb + ∇bεa +
∇cεchab = 0 whose effect on metric can be undone by Weyl trafo.

• lightcone coordinates: ξ± = τ ± σ; metric h±± = 0, h±∓ = − 1
2
,

h±∓ = −2; line element ds2 = habξ
aξb = −dτ2 + dσ2 = −dξ+dξ−

• e.m.-tensor: T±± = − 1
α′ ∂±X · ∂±X, tracelessness T±∓ = 0,

conservation ∂∓T±± = 0 ⇒ T±± (ξ±); crucial: in flat gauge,
hab-e.o.m. Tab = 0 still has to be enforced as constraint T±± = 0

• mode expansion: varying flat gauge SP = T
2

∫
Σ

dτdσ[(∂τX)2 −
(∂σX)2] = T

∫
Σ

d2ξ ∂+X · ∂−X yields free wave equation (∂2
τ −

∂2
σ)Xµ = 0 = ∂+∂−X

µ as string e.o.m. provided b.t. vanish:
cl. string X, open string requires Neumann (∂σX

µ = 0) and/or
Dirichlet (δXµ = 0 = ∂τX

µ) b.c. at σ = 0, l; each has diff. exp., e.g.

open NN string: Xµ = xµ + pµτ
T l

+ i
√

2α′
∑
n 6=0

αµn
n
e−i

π
l
nτ cos(nπσ

l
)

• modes fulfill comm. rel. [αµm, α
ν
n] = mηµνδm,−n; [xµ, pν ] = iηµν

• insert resulting ∂±X
µ into e.m.-tensor to get its mode expansion

T±± = 4α′
∑
m∈Z L

±
me
−i 2π

l
mξ± i.t.o. the Virasoro generators

Lm; Tab = 0 implies the Virasoro constraints L±m = 0 ∀m ∈ Z
• Dp-brane is (p + 1)-dim. hypersurface on which open strings can

end, fixing them in dims. normal to it; mom. exchange with string
implies brane is a dynamical (albeit non-perturbative) object itself

• Hamiltonian: Hop = π
l
( 1

2
α2

0 + 1
2

∑
n 6=0α−n · αn) = π

l
L0, must

vanish since Tab = 0 which implies mass shell cond., e.g. for
open string M2 = −√2 = 1

α′
∑∞
n=1α−n ·αn, for closed string Hcl =

2π
l

(L+
m + L−m) ∝ ∂+ + ∂− ∝ ∂τ = 0 implem. time reparametr. inv.

3 Bosonic string quantization

• 3 different ways to quantize: 1. old covariant (OCQ): Viras. con-
str. implemented at quantum level; manifestly Lorentz covariant,
but unitary only in critical number dcrit of ST dims. 2. lightcone

(LCQ): Viras. constr. implemented classically, manifestly unitary,
but Lorentz covariant only in d = dcrit 3. path-integral (PIQ):
uses Faddeev-Popov (FP) gauge fixing procedure, criticality equiv-
alent to closure of BRST algebra, only closed in d = dcrit

• normal ordering N (αµm α
ν
n) = αµm α

ν
n for m ≤ n ∧ ανn αµm else

introduces ambiguity in L0 → L0 − a only, captured in norm. ord.
const. a interpreted as Casimir energy, fixed by consistency cond.

• Virasoro algebra [Lm, Ln] = (m− n)Lm+n + c
12
m(m2 − 1)δm,−n

is central extension by C of classical Witt algebra, central charge
c = ηµµ = d given by number of scalar fields Xµ; c 6= 0 indicates
quantum anomaly of WS conformal symmetry
• phys. state cond. (Lm − aδm,0)|φ〉 = 0 ∀m ≥ 0 ∧ |φ〉 ∈ Hphys

• tower of states: M2
op|φ〉 = 1

α′ (N−a)+T 2∆x2|φ〉 with number op.
N counting excitations by creators αn, n ≤ 0; M2

cl|φ〉 = 2
α′ (N

+ +
N−−a)|φ〉 governed by level matching condition (N+−N−)|φ〉 = 0
• criticality: string spectrum analysis reveals unitarity (OCQ)/non-

anomalous Lorentz algebra (LCQ) requires a = 1, d = 26
• bosonic vacuum |0,√〉 is tachyonic M2 = − 1

α′ ; known from QFT
as not inconsistent, merely signal instability of (naive) vacuum
• for general b.c.s, Casimir energy increases by 1

24
per NN/DD dim.

and decr. by − 1
48

per ND/DN dim., i.e. atot = d−2
24
− nND+nDN

16

• open spectrum with D-branes: first-level excitations parallel to
brane form massless vector = gauge field ⇒ single brane hosts
U(1) gauge theory; normal exc. = nDD massless scalars (Goldstone
bosons assoc. with spontan. breaking of 26-dim. Poincaré inv.)

• N coincident branes carry U(N) gauge theory; in orientifolded the-
ories also SO(N) and symplectic Sp(2N) gauge groups possible

• first-level closed string polarization tensor decomposes into 3 irred.
repr. of little group SO(24): ξij = gij + Bij + φ δij , with gij
massless, transversely polarized spin 2 particle (graviton), Bij an-
tisymmetric (Kalb-Ramond) tensor field, φ scalar field (dilaton)

• PIQ: partition function Z =
∫
DX det(∑ )eiSP[X,ĥ] with FP deter-

minant det(∑ ), arbitrary reference metric ĥ
• can be written Z =

∫
DXDbDc ei(SP+Sg), by introducing FP

ghost ca(ξ), antighost bab(ξ) (anti-commuting, fermionic fields
with integer spin, negative norm states), governed by ghost action

Sg = −i
2π

∫
Σ

d2ξ
√
−ĥĥabcd∇abbd

lcg
= i
π

∫
Σ

d2ξ(c+∂−b++ +c−∂+b−−)
and e.o.m.s ∇abab = 0 = ∂∓b±± & ∑ · c = 0 = ∂∓c

± ⇒ ca in
1-to-1 corresp. with conf. Killing vects.

• ghost Virasoro alg. [Lgm, L
g
n] = (m−n)Lgm+n+m

6
(1−13m2)δm,−n

where Lgm =
∑
n∈Z(m − n)N (bm+nc−n) i.t.o. anti-comm. ghost

modes bn, cn with {cm, bn} = δm,−n, {cm, cn} = {bm, bn} = 0
• yields combined Virasoro alg. [Ltot

m , Ltot
n ] = (m − n)Ltot

m+n +

m[ c
tot

12
(m2−1)+2(a−1)]δm,−n with central charge ctot = cX +cg

where cg = −26, cX = d in R1,d−1, hence Weyl anomaly in PI
absent iff d = 26, a = 1 (this really fixes cX , only indirectly d)

• BRST symmetry generated by necessarily nilpotent cons. charge
QB , Q2

B = 0 holds if full Viras. alg. non-anomalous (d = 26, a = 1),
i.e. BRST consistency requires absence of total Weyl anomaly
• QB |φ〉 = 0 ∀ |φ〉 ∈ Hphys is necessary phys. state cond.; pos.

norm Hilbert space Hphys = Hclos
Hexac

= ker(QB)
Im(QB)

≡ QB cohomology

4 Conformal field theory

• examples: 1. string WS is 2-dim. CFT 2. at fixed points of RG eqs.
in QFT, theory becomes scale inv. 3. at crit. points in CMP and
SP where correlation length diverges 4. AdS/CFT corresp. relates
gravity on AdS space to CFT on its boundary
• conformal trafo. = diffeom. that changes metric gµν (x)→ ∂µ′x

α

∂ν′x
β gαβ

!
=eω(x)gµν (x) only by a factor, i.e. infinitesimally ∂µεν +

∂νεµ = ω(x)gµν if we set x′µ = xµ − εµ(x) and eω(x) = 1 + ω(x)
• conf. trafos. include translations, Lorentz trafos., dilations, spe-

cial conf. trafos. (= inversion, translation, another inversion)
• ω(x) satisfies constraints some of which are vacuous in d = 2 ⇒

makes group of infinites. conf. trafos. less restrictive, its volume
infinite; this allows to solve some theories exactly/completely

• group of finite conf. diffeos. z → az+b
cz+d

on S2 is Möbius group
PSL(2,C) = SL(2,C)/Z2 (since (a, b, c, d)

Z2→(−a,−b,−c,−d) same
trafo.); generated by l−1, l0, l1, with ln = −zn+1∂z (which fulfill
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Witt alg. = Viras. alg. but classical, i.e. no c-term)
• import. prop. of PSL(2,C): maps any 3 distinct points to any

other 3, crucial since used to remove gauge redundancy by fixing
positions of asymptotic in- and out-states in scattering ampl.

• primary fields transform as tensors φ(z, z̄)→ φ′(z′, z̄′) = (∂zf)−h

(∂z̄ f̄)−h̄φ(z, z̄) under conf. trafo. z → z′ = f(z), where (h, h̄) =
conf. weights (h+ h̄ = mass dim., h− h̄ = spin)
• infinites.: f(z) = z + ε(z)⇒ δε,ε̄ φ = −(h∂z + ε∂z + h̄∂z̄ + ε̄∂z̄)φ
• together with (successive) operator product exps. (OPE), pri-

maries can be used to express all higher n-point fcts. i.t.o. lower
correlators; this is idea behind defining CFT i.t.o. finite amount
of data, namely conf. anomaly c, spectrum of primaries φj , their
weights hj and OPE coeffs. C k

ij

• quasi-primary field: like primary, but only for f ∈ PSL(2,C)
• applied to strings: Xµ not (quasi)primary, but ∂Xµ, N (eikX) are

• radially ord. OPE: by Wick’s thm., R(
∏
i φi) = N{

∏
i φi +∑

j 6=k〈φjφk〉
∏
i6=j,k φi +

∑l 6=m
j 6=k 〈φjφk〉〈φlφm〉

∏i 6=l,m
i 6=j,k φi + . . . }

• conf. Ward-Takahashi id.: δε,ε̄O(z, z̄) = −
∫
Cz

[
dw
2πi

ε(w)T (w) +
dw̄
2πi

ε̄(w̄)T̄ (w̄)
]
O(z, z̄)⇒ info about conf. trafos. encoded in residua

of OPE with e.m.-tensor (integrand radially ordered)
• yields OPE of T (z) with primary φ(w) of weight h:

R[T (z)φ(w)] = hφ(w)

(z−w)2
+ ∂wφ(w)

z−w + reg. terms

• e.m.-tensor OPE follows from [Lm, Ln] as T (z)T (w) = c/2

(z−w)4
+

2T (w)

(z−w)2
+ ∂wT (w)

z−w ⇒ T (z) primary of h = 2 if c = 0
• operator-state correspondence: isomorphism in 2-dim. CFT

that relates primary fields to highest weight states, e.g. |φ〉 =
φ(0)|0〉 = φ−h|0〉 for h-weight primary with expansion φ(z) =∑
n∈Z φnz

−n−h, by residue thm. φn =
∫
C0

dz
2πi

φ(z)zn+h−1

• requiring BRST-inv. for X-CFT gives phys. state cond. Lm|φ〉 =
0 ∀m > 0 and (L0 − 1)|φ〉 = 0 ⇒ phys. states are in 1-1 cor-
resp. with primaries of weight h = 1; leads to concept of ver-
tex operator ≡ primary field of h = 1, e.g. N (eik·X) with

h = α′

4
k2 !

=1 ⇒ M2 = − 4
α′ or N [∂Xµ(z)eik·X(z)] with hV1 =

1 + α′

4
k2 !

=1 ⇒ k2 = 0 inserted at z = 0, creates first exc. level
phys. state from PSL(2,C)-inv. vacuum

• Verma module Vhj is span of all states of form |φk1...kmj 〉 =∏m
i L−ki |φj〉 with ascending ki and conf. weight hV = hj +

∑m
i ki

• CFT unitarity: holds if conformal anomaly c > 0 and spectrum
of primaries φj fulfills hj ≥ 0 ∀ j and hφ = 0 ⇔ φ = 1, i.e. only
PSL(2,C)-inv. vacuum may have h = 0

5 String interactions

• no localized vertices, interac. captured by global WS topology
⇒ no need to add arbitrary terms to WS action, SP remains free
• thus correlators of diff. fields (bosons, fermions, ghosts) decouple

(unlike e.g. Yang-Mills with ghost-gauge interact.), very useful
• goal in string perturbation: S-matrix of scattering process, at each

order latter may (by conformal symmetry) be described by compact
WS with vertex op. insertions instead of asymptotic in-/out-states
• S-matrix sums up all WS topols.; imp. thm. ’every compact,

connected, oriented 2-dim. manifold topologically equiv. to
sphere with (g, b) handles, boundaries’ ⇒ WSs classified by Eu-
ler char. χ = 2 − 2g − b, a topol. inv. under continuous
deformations of WS metric, given by Riemann-Roch thm.

χ =
∫

Σ
d2ξ
4π

√
−hR+

∫
∂Σ

ds
2π
k, Ricci sc. R, geodesic curvat. k

• Sji(ki) =
∑

comp
topos

∫
DX

∫
Dh

VolDiff×Weyl
e−SP−λχ

∏n
i=1 Vji(ki) heur. expr.

(before gauge fixing) for n string scattering, added χ-term to
action (without affecting dynamics) to keep track of topol. in PI

• e.g. tree-level and one-loop topologies: disk D2 [(0, 1), χ = 1], cyl.
C2 [(0, 2), χ = 0], sphere S2 [(0, 0), χ = 2], torus T2 [(1, 0), χ = 0]
Open string

τ1

τ2

σ
+

τ

σ

τ1 τ2

τ

τ

σ

τ1 τ2

τ2

τ1
στ

Closed string

τ1

τ2

σ
+

τ

σ

τ1 τ2

τ

τ1 τ2

τ

σ

τ2

τ1

στ

• in string theory, single diagram sums over entire mass spectrum, i.e.
what in QFT would be described by many diff. Feynman diags.
• as result amplitudes fall off quicker (exponentially) than in QFT,

partially respons. for UV finiteness of string loop diags.

• another reason: modular inv. [under action of modular group,
e.g. PSL(2,Z) on the torus] acts as intrinsic UV cutoff by exclud-
ing divergent region of moduli space from fundamental domain
• some UV divergences arise but no issue for UV finit. due to WS

duality between open/closed channel, all can be reinterpreted as
IR diver. of dual diagr. e.g. cylinder: tree-level cl., one-loop open

• def. metric moduli: deformation of metric that cannot by undone
by diffeo. or Weyl resc.; by R.-R.-thm. number µ = dim(kerP †) of
moduli and κ = dim(kerP ) of conf. Killing vects. fulfill µ−κ = −3χ
(if χ > 0⇒ µ = 0, if χ < 0⇒ κ = 0)

• non-linear σ-model describes strings propagating on curved back-
ground (generated by coherent state of its own massless fluctu-

ations); consistency to first order in α′

Rc
yields Einstein eqs. for

background metric (Rc typical radius of target space)

6 Superstring theory

• remedies tachyon-vacuum, lack of fermionic excitats. of bosonic th.
• obtained by adding SF = − i

4π

∫
Σ

d2ξ ψ̄µAγ
α
AB∂αψB,µ

lcg
= i

2π

∫
Σ

d2ξ(ψ+·
∂−ψ+ +ψ− · ∂+ψ−) to SP; ψ± are Grassmann-valued Majorana-
Weyl spinors (real, definite chirality) with Dirac eq. as e.o.m.
γα∂αψ = 0 = ∂∓ψ±; mass dim. [ψ] = 1

2
([X] = −1)

• features supersymmetry δXµ = i
√
α′√
2
ε̄Aψ

µ
A = i

√
α′√
2

(ε+ψ
µ
− −

ε−ψ
µ
+), δψµA = εB√

2α′
γαAB∂αX

µ = ±
√

2√
α′
ε∓∂±X

µ; related to Poincaré

by {QA, Q̄B} ∼= 2γaABPa (laxly SUSY2 = translation)
• generators of super conformal symmetry: e.-m. tensor T±± =
− 1
α′ ∂±X·∂±X−

i
2
ψ±·∂±ψ± and supercurrent J± = −1

2α′ψ±·∂±X
• super-Viras. constr.: T±±

!
=0, J±

!
=0 imposed on e.o.m. sols.

• local diffeo. inv. + supersymmetry = local supersym. ⇒ super-
gravity in which also metric hab has superpartner, the gravitino

• local e.o.m. needs boundary terms to vanish; closed string b.c.s that
not mix ψ± and respect Poincaré sym. are ψ±(σ+l) = e2πiφ±ψ±(σ)
• φ± = 0 ( 1

2
): (anti-)per. Ramond (Neveu-Schwarz) sec. with

(half-)integer mode exp. ψ±(ξ±) =
√

2π
l

∑
n∈Z(+ 1

2
) b
±
n e
−i 2π

l
nξ±

• R-R and NS-NS bosonic; R-NS and NS-R fermionic excitations
• GSO projection: CFT consistency + stability of vacuum (= no

tachyon) ⇒ Type II A/B as closed oriented superstring theories
• equal number of bosons + fermions, 128 + 128 at massless level
• 2 spin 3/2 fields (gravitino) ⇒ low-E-limit of Type II is SuGra
• WS consistency + vacuum stability imply local SUSY in d = 10

• Type Icl th. unstable like bosonic theory due to tachyonic vacuum,
inconsistent at 1-loop level due to appearance of tadpole

• only 3 consist. superstr. ths. in d = 10: Type II A/B and Type
I of closed + unoriented open strings with gauge group SO(32)

7 Compactification, T-duality, D-branes

• compactification in superstring theory is the op. R1,9 → R1,3 ×
M6 with M6 called internal space; flat scalar fields whose VEV
determine geometric properties of M6 called moduli fields

• truly stringy winding states around compact. dimensions with

mass M2 =
ω2R2

c
α′2 and indep. left-/right-moving modes α±n possible

• T-duality: n ↔ ω, R ↔ R′ = α′

R

is exact symmetry of closed CFT
that affects √L → √L ∝ α

−
0 , √R →

−√R ∝ α+
0 , i.e. parity on right-

movers
• fig.: parameter space of string th.,

edges are weakly coupled, interior
d = 11 M-theory with coupling of
order 1, at low energies described
by supergravity

heterotic
SO(32)

heterotic
E(8)× E(8)

Type II A

Type II B

Type I

compac-
tification

M-theory

T-duality

orientifold
action Ω

S-duality

parameter space of

M-Theory

• D-branes: dynamical objects that gravitate by coupling to closed
strings in NS-NS sector, i.e. have mass; are charged under R-R
p-form potentials
• worldvolume of D-branes not static, exhibit quantum fluctuations in

normal directions described by scalar light open-string excitations
• intersecting brane worlds: important in string phenomenology to

make contact between d = 10 and R1,3; stack of two branes DA, DB
intersecting along R1,3 gives rise U(NA)×U(NB) Yang-Mills th. +
1 chiral fermion transf. in bifundamental (N̄A, NB), i.e. structure
of SM SU(3)× SU(2)× U(1)Y for NA = 3, NB = 2, NC = 1
• every 4-dim. eff. th. obtained by compactif. corresp. to diff. choice

of vacuum; tog. all solutions called landscape of string vacua
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