Fundamentals of Simulation Methods - Exam Sheet

Janosh Riebesell
February 2016

1 Issues of floating point math

- common problems: overflow and round-off errors
- two's complement: most significant bit (MSB) (a.k.a. sign bit s) flags negative numbers
- floating point representations have a base β ($\beta=2$ in IEEE standard), precision p (a.k.a mantissa), and exponent e
- representation not unique, shifting exponent and mantissa can give same number multiple times; solution: normalization, i.e. leading digit before the point always 1
- number in exponent E stored with bias b (hence E always positive as opposed to two's complement), e.g. $e=E-127$ for floats
- in general, value f of IEEE float given by $f=(-1)^{s}\left(1+\frac{M}{2^{p}}\right) \cdot 2^{E-b}$
- machine precision: smallest increment in mantissa, $\epsilon_{m}{ }^{2 p}=\frac{1}{2^{p}}$ - pitfall: $a+b=a$ even for $b \neq 0$ if $|b|<\epsilon_{m}|a|$

2 Integration of ordinary differential equations

- we seek solution $\boldsymbol{y}(t)$ to eq. of the form $\frac{\mathrm{d} \boldsymbol{y}}{\mathrm{d} t}=\boldsymbol{f}(\boldsymbol{y}, t)$ subject to boundary condition, most commonly initial value problem (IVP)
- forward or explicit Euler method: $\boldsymbol{y}_{n+1}=\boldsymbol{y}_{n}+\boldsymbol{f}\left(\boldsymbol{y}_{n}\right) \Delta t+$ $\mathcal{O}_{s}\left(\Delta t^{2}\right)$
- simplest approach, but only first-order accurate $\mathcal{O}_{s}\left(\Delta t^{2}\right)$ and unstable for large stepsize Δt
- explicit because r.h.s. depends only on known quantities
- backward or implicit Euler method: $\boldsymbol{y}_{n+1}=\boldsymbol{y}_{n}+\boldsymbol{f}\left(\boldsymbol{y}_{n+1}\right) \Delta t$
- excellent stability, hence useful for stiff eqs., but still inaccurate for large Δt
- often involves root-finding of nonlinear eq., numerically expensive
- implicit midpoint rule: $\boldsymbol{y}_{n+1}=\boldsymbol{y}_{n}+\boldsymbol{f}\left(\frac{\boldsymbol{y}_{n}+\boldsymbol{y}_{n+1}}{2}\right) \Delta t+\mathcal{O}_{s}\left(\Delta t^{3}\right)$ - second-order accurate but implicit so difficult in practice
- Runge-Kutta methods: derive from exact solution $\boldsymbol{y}_{n+1}=\boldsymbol{y}_{n}+$ $\int_{t_{n}}^{t_{n+1}} \boldsymbol{f}(\boldsymbol{y}(t)) \mathrm{d} t$ by approximating integral with trapezoidal rule:

$$
\begin{align*}
& \boldsymbol{k}_{1}=\boldsymbol{f}\left(\boldsymbol{y}_{n}, t_{n}\right), \quad \boldsymbol{k}_{2}=\boldsymbol{f}\left(\boldsymbol{y}_{n}+\boldsymbol{k}_{1} \Delta t, t_{n+1}\right) \\
& \boldsymbol{y}_{n+1}=\boldsymbol{y}_{n}+\frac{1}{2}\left(\boldsymbol{k}_{1}+\boldsymbol{k}_{2}\right) \Delta t+\mathcal{O}_{s}\left(\Delta t^{3}\right) \tag{1}
\end{align*}
$$

- a.k.a. predictor-corrector scheme, $\boldsymbol{k}_{1}=$ predictor, $\boldsymbol{k}_{2}=$ corrector
- 2nd-order accurate, higher-order schemes exist, e.g. RK-4:

$$
\begin{align*}
& \boldsymbol{k}_{1}=\boldsymbol{f}\left(\boldsymbol{y}_{n}, t_{n}\right), \quad \boldsymbol{k}_{2}=\boldsymbol{f}\left(\boldsymbol{y}_{n}+\boldsymbol{k}_{1} \frac{\Delta t}{2}, t_{n}+\frac{\Delta t}{2}\right), \\
& \boldsymbol{k}_{3}=\boldsymbol{f}\left(\boldsymbol{y}_{n}+\boldsymbol{k}_{2} \frac{\Delta t}{2}, t_{n}+\frac{\Delta t}{2}\right), \boldsymbol{k}_{4}=\boldsymbol{f}\left(\boldsymbol{y}_{n}+\boldsymbol{k}_{3} \Delta t, t_{n}+\Delta t\right), \tag{2}\\
& \boldsymbol{y}_{n+1}=\boldsymbol{y}_{n}+\frac{1}{6}\left(\boldsymbol{k}_{1}+2 \boldsymbol{k}_{2}+2 \boldsymbol{k}_{3}+\boldsymbol{k}_{4}\right) \Delta t+\mathcal{O}_{s}\left(\Delta t^{5}\right)
\end{align*}
$$

- adaptive step size: achieve optimum compromise between accuracy, efficiency and stability by e.g. estimating error based on difference between one full step and two half-steps, define local error bounds, increase stepsize if below, decrease if above
- reduction to 1st order: bring higher-order diff. eqs. into standard form, e.g. cast $\ddot{\boldsymbol{x}}=\boldsymbol{f}(x)$ into $\dot{\boldsymbol{y}}=\tilde{\boldsymbol{f}}(\boldsymbol{y})$ by defining $\boldsymbol{y}=(\boldsymbol{x}, \dot{\boldsymbol{x}})$ and $\tilde{\boldsymbol{f}}=(\dot{\boldsymbol{x}}, \boldsymbol{f}(\boldsymbol{x}))$, then apply e.g. Runge-Kutta
- leapfrog: very simple alternative in above case; define $\boldsymbol{v} \equiv \dot{\boldsymbol{x}}$, then

$$
\begin{equation*}
\boldsymbol{x}_{n+1}=\boldsymbol{x}_{n}+\boldsymbol{v}_{n+\frac{1}{2}} \Delta t, \quad \boldsymbol{v}_{n+\frac{3}{2}}=\boldsymbol{v}_{n+\frac{1}{2}}+\boldsymbol{f}\left(\boldsymbol{x}_{n+1}\right) \Delta t \tag{3}
\end{equation*}
$$

- 2nd-order accurate and requires only one evaluation per step
- name leapfrog due to interleaved advances of position and velocity
- better than higher-order schemes on some system due to being a
- symplectic integrator: structure-preserving method that observes special properties of Hamiltonian systems, e.g. energy and phase-space volume conservation (Liouville theorem)
- let $\omega: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}, \omega(\xi, \eta)=A_{P(\xi \times \eta)}$ give area of parallelogram $P(\xi \times \eta)$ spanned by $\xi, \eta \in \mathbb{R}^{d}$; then linear map $F: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ is symplectic if $\omega(F \xi, F \eta)=\omega(\xi, \eta)$
- a differentiable map $g: U \rightarrow \mathbb{R}^{d}$ is symplectic if its Jacobian is symplectic everywhere
- Poincaré's theorem: time evolution generated by a Hamiltonian in phase-space is a symplectic transformation

3 Collisionless particle systems

- central idea: describe large- N-body system as small- N system by grouping real particles into fiducial macro particles
- for gravity, the e.o.m.s with (numerical) softening length ϵ are $\ddot{\boldsymbol{x}}_{i}=-\nabla \Phi\left(\boldsymbol{x}_{i}\right), \Phi(\boldsymbol{x})=-G \sum_{j=1}^{N} \frac{m_{j}}{\sqrt{\left(\boldsymbol{x}-\boldsymbol{x}_{j}\right)^{2}+\epsilon^{2}}}$
- purpose of ϵ : prevent (highly correlated) bound states (requires $\left.\left\langle v^{2}\right\rangle \gg \frac{G m}{\epsilon}\right)$, avoid numerical expense of large angle scattering in singular potential; ϵ introduces smallest resolved length scale
- examples: electrons in plasma, globular star clusters, stars in a galaxy, dark matter (all are also uncorrelated to good approx.)

4 Tree algorithms

- more spec. hierarchical multipole algorithms enable fast, approximate force calculations for N-body systems (see sec. 3)
- group hierarchy organized in tree-like data structure
- scale with $\mathcal{O}(N \ln N)$, whereas direct summation is $\mathcal{O}\left(N^{2}\right)$
- central idea: use multipole expansion for (grav.) potential created by group of distant particles rather than sum up forces individually
- monopole: $M=\sum_{i=1}^{N} m_{i}$, quadrupole: $Q_{i j}=\sum_{k=1}^{N} m_{k}[3(s-$ $\left.\boldsymbol{x}_{k}\right)_{i}\left(\boldsymbol{s}-\boldsymbol{x}_{k}\right)_{j}-\delta_{i j}\left(\boldsymbol{s}-\boldsymbol{x}_{k}\right)^{2}$], where \boldsymbol{s} points to c.o.m.
- dipole vanishes when expansion is done relative to c.o.m.
- expansion accurate if opening angle $\theta \leq \frac{r}{d} ; r, d$ radius and distance of particle group

5 The particle-mesh technique

- alternative to tree algorithms, used in MD and astrophysics
- 1. construct density field ρ on suitable auxiliary mesh 2 . compute potential Φ on mesh by solving Poisson's eq. 3. calculate force field \boldsymbol{F} from potential 4. calculate forces \boldsymbol{F}_{i} at original particle positions 1. mass assignment onto auxiliary mesh via nearest grid point (NGP), clouds in cell (CIC), or triangular shaped clouds (TSC) - NGP: density jumps discont. when particle crosses cell boundary, resulting force piece-wise constant; CIC: force piece-wise linear and continuous, but derivative jumps; TSC: both force and its derivative smooth

2. solve Poisson's eq. $\Delta \Phi=4 \pi G \rho$ either with Fourier transform (sec. 6) or iteratively (sec. 7)
3. calculate acceleration $\boldsymbol{a}=-\nabla \Phi$ with finite differencing, e.g. $a_{x}(i, j, k)=-\frac{1}{2 h}[\Phi(i+1, j, k)-\Phi(i-1, j, k)]+\mathcal{O}\left(h^{2}\right)$ or with larger stencil to reduce truncation error below $\mathcal{O}\left(h^{2}\right)$
4. interpolate from mesh to particles: $\boldsymbol{F}_{i}\left(\boldsymbol{x}_{i}\right)=m \sum_{\boldsymbol{p}} \boldsymbol{a}_{\boldsymbol{p}} W\left(\boldsymbol{x}_{i}-\right.$ $\left.\boldsymbol{x}_{\boldsymbol{p}}\right)$, where sum runs over auxiliary mesh cells $\boldsymbol{p}=(i, j, k)$

- W same assignment kernel as used in density construction, ensures vanishing self-force and pairwise antisymmetric forces

6 Force calculation with Fourier transform techniques

- tool for solving certain PDEs, e.g. Poisson's eq. $\Delta \Phi=4 \pi G \rho$; sol. $\Phi(\boldsymbol{x})=-G \int \frac{\rho\left(\boldsymbol{x}^{\prime}\right) \mathrm{d} \boldsymbol{x}^{\prime}}{\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right|}=\rho \star g$ is convolution of ρ with $g(\boldsymbol{x})=-\frac{G}{|\boldsymbol{x}|}$
- convolution thm.: $\mathcal{F}(f \star g)=\mathcal{F}(f) \cdot \mathcal{F}(g) \Rightarrow \Phi=\mathcal{F}^{-1}[\mathcal{F}(\rho) \cdot \mathcal{F}(g)]$
- in practice, to solve this requires assuming periodic b.c. in box of size L, gives finite discrete \boldsymbol{k}-space so we can apply (discrete) fast Fourier transform (FFT), scales with $\mathcal{O}(N \ln N)$
- for nonperiodic problems: zero-padding constructs mesh s.t. sources lives only in one quarter (in 2D), rest of mesh is zeroedout

7 Iterative solvers and the multigrid technique

- ansatz: discretize Φ on regular N-point mesh with spacing h so Poisson's eq. at cell $i \in\{0, \ldots, N-1\}$ is $\frac{\Phi_{i+1}-2 \Phi_{i}+\Phi_{i-1}}{h^{2}}=4 \pi G \rho_{i}$
- above can be cast into set of N linear eqs. $\mathbf{A} \boldsymbol{\Phi}=\boldsymbol{b}$ with \mathbf{A} stencil matrix, $\boldsymbol{b}=4 \pi G\left(\rho_{0}, \ldots, \rho_{N-1}\right)$; analytic. solvable with Gauss elimination, but not feasible for large $N\left(\right.$ scales $\left.\mathcal{O}\left(N^{3}\right)\right)$
- use Jacobi or Gauss-Seidel iteration instead by decomposing $\mathbf{A}=\mathbf{D}-\mathbf{U}-\mathbf{L}$, yields Jac. update formula $\Phi_{i}^{(n+1)}=\frac{1}{2}\left(\Phi_{i+1}^{(n)}+\right.$ $\left.\Phi_{i-1}^{(n)}-4 \pi G h^{2} \rho_{i}\right)$ or GS $\boldsymbol{\Phi}^{(n+1)}=\mathbf{D}^{-1}\left[\mathbf{U} \boldsymbol{\Phi}^{(n)}+\mathbf{L} \boldsymbol{\Phi}^{(n+1)}+\boldsymbol{b}\right]$
- GS looks like, but is not implicit formula; no values of $\boldsymbol{\Phi}^{(n+1)}$ are needed, because \mathbf{L} has only elements below diagonal
- GS makes use of updated values immediately, \approx twice as fast as Jacobi, but has to be solved sequentially \Rightarrow not parallelizable
- red-black ordering: some update rules allow decomposition of cells into disjoint sets whose update depends only on cells from other set(s), e.g. for Poisson's eq.: chessboard pattern
- convergence of Jac. and GS often 'stalls'; high- ν errors die quickly, but low- ν, high $-\lambda$ errors slowly; reason: per step, information travels only one stencil length, convergence needs several sweeps
- solution: multigrid; central idea: go to coarser mesh, compute improved initial guess, helps speed up convergence on fine grid
- because multigrid operates on coarser grid for most of time, it is much faster, cheaper than Jac. and GS
- fine \rightarrow coarse and back requires restriction and prolongation operators; in 1D: prol. with $\left.\mathbf{I}_{h}^{2 h}=\right] \frac{1}{2}, 1, \frac{1}{2}\left[\right.$, restr. with $\mathbf{I}_{2 h}^{h}=\left[\frac{1}{4}, \frac{1}{2}, \frac{1}{4}\right]$

8 Molecular dynamics simulations

- aim: simulate atoms, molecules, proteins, etc. in microscopic detail over relevant timespan to determine mech., electr., etc. properties
- important point: uses Newton's classical e.o.m.s, based on approximation of inter- and/or intra-molecular forces, force laws may be empirical or quantum mechanically derived
- intimately connected to stat. mech.: precise microstate unimportant, interested in ensemble averages of macro. var. T, P, ρ, etc.
- ergodic hypothesis: postulates ensemble avr. = time avr., thus evolve MD sim. to reach equilibrium, then measure time avr. $\bar{A}=$ $\lim _{\tau \rightarrow \infty} \frac{1}{\tau} \int_{t_{0}}^{t_{0}+\tau} A(\Gamma(t)) \mathrm{d} t$ of macros. quantity $A(\Gamma)$, fct. of microstate $\stackrel{\tau \rightarrow}{\Gamma}$
- finite range interactions: molecules interact only over short range, e.g. Lennard-Jones potential $V(r)=4 \epsilon\left[\frac{\sigma^{12}}{r^{12}}-\frac{\sigma^{6}}{r^{6}}\right] \Rightarrow$ introduce cutoff $V_{c}(r)=0$ for $r>r_{c}$ and search grid, ignore particles in cells farther than r_{c}; reduces scaling from $\mathcal{O}\left(N^{2}\right)$ to $\mathcal{O}(N)$

9 Basic gas dynamics

- Euler eqs.: describe continuity of mass, momentum, energy during dynamics of ideal, i.e. frictionless, gas
$\frac{\partial \rho}{\partial t}+\boldsymbol{\nabla} \cdot(\rho \boldsymbol{v})=0, \frac{\partial \rho \boldsymbol{v}}{\partial t}+\boldsymbol{\nabla}\left(\rho \boldsymbol{v}^{2}+P\right)=0, \frac{\partial \rho e}{\partial t}+\boldsymbol{\nabla} \cdot[(\rho e+P) \boldsymbol{v}]=0$
with total energy (per unit mass) $e=u+\frac{v^{2}}{2}, u$ thermal energy; closed by eq. of state $P=(\gamma-1) \rho u$ with adiabatic index $\gamma=$ C_{P} / C_{V}
- Navier-Stokes eqs.: describe dynamics of real fluids with internal stress due to viscosity (dissipates relative motion into heat)

$$
\frac{\partial \rho \boldsymbol{v}}{\partial t}+\boldsymbol{\nabla}\left(\rho \boldsymbol{v}^{2}+P\right)=\boldsymbol{\nabla} \boldsymbol{\Pi}, \quad \frac{\partial \rho e}{\partial t}+\boldsymbol{\nabla} \cdot[(\rho e+P) \boldsymbol{v}]=\boldsymbol{\nabla}(\boldsymbol{\Pi} \boldsymbol{v})
$$

(first one identical to Euler) with viscous stress tensor (material property) $\boldsymbol{\Pi}=\eta\left[\boldsymbol{\nabla} \cdot \boldsymbol{v}+(\boldsymbol{\nabla} \cdot \boldsymbol{v})^{\top}+\frac{2}{3}(\boldsymbol{\nabla} \cdot \boldsymbol{v}) \mathbb{1}\right]+\xi(\boldsymbol{\nabla} \cdot \boldsymbol{v}) \mathbb{1}$, where $\eta(\xi)$ scales traceless (diagonal) part, i.e. shear (bulk) viscosity

- shocks: hydro-flows can develop shock waves where density, velocity, temperature, specific entropy jump; typical for hyperbolic PDEs; shocks decelerate, compress and heat up fluid
- differential form of Euler eqs. breaks down at discontinuity, (weak) integral formulation remains valid; assuming rest frame of shock ($v_{s}=0$) and piece-wise constant states left/right leads to Rankine-Hugoniot jump cdts.

$$
\begin{equation*}
\rho v=\rho^{\prime} v^{\prime}, \quad \rho v^{2}+P=\rho^{\prime} v^{\prime 2}+P^{\prime}, \quad(\rho e+P) v=\left(\rho^{\prime} e^{\prime}+P^{\prime}\right) v^{\prime} \tag{5}
\end{equation*}
$$

- presence of shock requires Mach number $\mathcal{M}=\frac{v}{c_{s}}>1$, i.e. preshock gas streams supersonically into discontinuity, $c_{s}^{2}=\frac{\gamma P}{\rho}$
- fluid instabilities: start with two phases $\left(\rho_{1}, v_{1}\right),\left(\rho_{2}, v_{2}\right)$, gravity \boldsymbol{g} in $-z$-direction, consider single pert. Fourier mode $\xi=\tilde{\xi} e^{i(k x-\omega t)}$
- Rayleigh-Taylor: $v_{1}=v_{2}=0 \Rightarrow$ disp. rel. $\omega^{2}=\frac{\left(\rho_{1}-\rho_{2}\right) k g}{\rho_{1}+\rho_{2}}$; unstable solutions with $\operatorname{Im}(\omega)>0$ exist for $\rho_{1}>\rho_{2}$
- Kelvin-Helmholtz: $\boldsymbol{g}=0$, i.e. pure shear flow $\Rightarrow \omega_{1,2}=$ $k \frac{\left(\rho_{1} v_{1}+\rho_{2} v_{2}\right)}{\rho_{1}+\rho_{2}} \pm i k \frac{\rho_{1} \rho_{2}}{\rho_{1}+\rho_{2}}\left|v_{1}-v_{2}\right| ; \operatorname{Im}(\omega)>0$ always if $v_{1} \neq v_{2}$, i.e. small perturbation at phase interface will grow rapidly into characteristic KH vortices (fluid turbulences)

10 Eulerian hydrodynamics

- important linear and homogeneous PDEs: Laplace $\Delta u=0$, heat conduction $\partial_{t} u=\lambda^{2} \Delta u$, wave propagation $\partial_{t}^{2} u=c^{2} \Delta u$
- classify 2nd-order linear PDEs $a \partial_{x}^{2} u+b \partial_{x} \partial_{y} u+c \partial_{y}^{2} u+d \partial_{x} u+e \partial_{y} u+$ $f u=g$ according to $D=b^{2}-4 a c: D<0$ elliptic (static problems without time dependence), $D=0$ parabolic (slowly changing processes, e.g. diffusion), $D>0$ hyperbolic (dynamical processes that can develop discontinuities)
- Riemann problem: IVP for hyperbolic system of two (piecewise constant) phases characterized at $t=0$ by state vectors $\boldsymbol{U}_{i}=\left(\rho_{i}, P_{i}, \boldsymbol{v}_{i}\right), i \in\{R, L\}$, task: evolve system for $t>0$
- (always present) contact wave: boundary between phases
- may be sandwiched between shock and/or rarefaction waves
- waves propagate with constant speed, fluid properties ($\rho^{\star}, P^{\star}, \boldsymbol{v}^{\star}$) at $x=0$ constant in time for $t>0$
- for $\boldsymbol{v}_{L}=\boldsymbol{v}_{R}=0$, Riemann problem simplifies to Sod shock tube

11 Smoothed particle hydrodynamics

- (versatile mesh-free) technique to approximate fluid continuum dynamics through particles (interpolation points)
- advantages: 1. provides automatically adaptive spatial resolution and density 2 . ensures conservation of energy, (angular) momentum, mass, entropy 3. Galilean invariant and advection-error-free 4. can deal with complicated geometries and large empty regions due to mesh-free nature 5. robust: does not produce negative ρ 's and T 's
- disadvantage: limited accuracy in multi-dim. flows, gives rise to velocity noise, degrades accuracy and leads to slow convergence

12 Finite element methods

- for solving PDEs, good at flexible geometries, odd b.c., allows spatially variable resolution
- central idea: 1. divide solution into smaller regions (elements) containing points (nodes), possible boundaries: segments (1D), triangles (2D), tetrahedra (3D) 2. chose (linearly indep.) basis fcts. (called shape fcts.). to describe solution on each element, e.g. polynomial basis 3. n coefficients in element expansion require n nodes to uniquely specify reconstruction inside element

13 Monte Carlo Techniques

- lie at the heart of stochastic simulations
- error of Monte Carlo integration I_{N} given by width σ_{N} of its probability distribution $P_{N}\left(I_{N}\right)$; always a Gaussian according to central limit theorem so $\sigma_{N}=V \sqrt{\frac{\left\langle f^{2}\right\rangle-\langle f\rangle^{2}}{N}}$
$-\propto 1 / \sqrt{N}$, irrespective of dimensionality d of integration domain
- importance sampling: choose random points preferentially around peaks of function to be integrated
- virtues of pseudo-random number generators: repeatability, randomness, speed, portability, long period, insensitivity to seed
- exact inversion: method for creating nonuniform $\operatorname{PDF} p(y)$ from uniform distr. $q(x)=\frac{1}{b-a}$ over the interval $[a, b]$; uses conservation of probability to equate respective CDFs

$$
\begin{equation*}
Q(x)=\int_{-\infty}^{x} q\left(x^{\prime}\right) \mathrm{d} x^{\prime} \stackrel{!}{=} \int_{-\infty}^{y} p\left(y^{\prime}\right) \mathrm{d} y^{\prime}=P(y) \tag{6}
\end{equation*}
$$

- rejection method: used to create uninvertible random number distr. $p(y)$ from distr. $f(y) \geq p(y)$ we can produce
- 1. generate y from $f(y) 2$. generate z from uniform distr. with bounds $0 \leq z<f(y) 3$. if $z \leq p(y)$, return y as sample value 4. else reject trial value for y and start again
- Markov chain: discrete sequence of states x_{i} generated by Markov process f which must 1. preserve eq. distr. $p_{\text {eq }}(x)$ of stochastic process 2 . starting from x, be able to reach any other state x^{\prime} (ergodicity)
- Metropolis-Hastings algorithm: 1 . from current state x, propose new state x^{\prime} with proposal probability $q\left(x \rightarrow x^{\prime}\right) 2$. accept proposed move with probability given by Hasting's ratio $r=\min \left(1, \frac{p\left(x^{\prime}\right) q\left(x^{\prime} \rightarrow x\right)}{p(x) q\left(x \rightarrow x^{\prime}\right)}\right) 3$. otherwise reject x^{\prime} and add x to Markov chain (again)
- fulfills detailed balance: $p_{\mathrm{eq}}(x) W_{f}\left(x \rightarrow x^{\prime}\right) \stackrel{\curvearrowleft}{=} p_{\mathrm{eq}}\left(x^{\prime}\right) W_{f}\left(x^{\prime} \rightarrow x\right)$

