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1 Issues of floating point math

e common problems: overflow and round-off errors
e two’s complement: most significant bit (MSB) (a.k.a. sign bit s)
flags negative numbers
e floating point representations have a base § (8 = 2 in IEEE stan-
dard), precision p (a.k.a mantissa), and exponent e
— representation not unique, shifting exponent and mantissa can
give same number multiple times; solution: normalization, i.e.
leading digit before the point always 1
— number in exponent E stored with bias b (hence E always positive
as opposed to two’s complement), e.g. e = E — 127 for floats
e in general, value f of IEEE float given by f = (—1)°(1+ %) - 2B =0
e machine precision: smallest increment in mantissa, €,, = L
— pitfall: a +b = a even for b # 0 if |b] < em]al
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2 Integration of ordinary differential equations

e we seek solution y(t) to eq. of the form dd—i’ = f(y,t) subject to
boundary condition, most commonly initial value problem (IVP)
e forward or explicit Euler method: y,., = vy, + f(y,)At +
Os(AL?)
— simplest approach,but only first-order accurate O; (AtQ) and un-
stable for large stepsize At
— explicit because r.h.s. depends only on known quantities
e backward or implicit Euler method: vy, , =y, + f(y,.1)At
— excellent stability, hence useful for stiff egs., but still inaccurate
for large At
— often involves root-finding of nonlinear eq., numerically expensive
e implicit midpoint rule: y, , =y, + f(%)At + O (A?)
— second-order accurate but implicit so difficult in practice
¢ Runge-Kutta methods: derive from exact solution y,, ., = y,, +

f::“ f(y(t)) dt by approximating integral with trapezoidal rule:

ki=Ff(Yn tn), k2= f(y,+kilt tri1),

1)
Yoir = Y + 5 (k1 + k2) At + O (ALY)
— a.k.a. predictor-corrector scheme, ki = predictor, k2 = corrector
— 2nd-order accurate, higher-order schemes exist, e.g. RK-4:

ki=f(yn,tn), ko= fly,+kist tn+5),
ks = f(y, + ka5t tn + 5), ka = F(y,, + ksAt,t, + At), (2)
Yoi1 = Y + 5 (k1 + 2k2 + 2ks + ka) At + O, (A)

e adaptive step size: achieve optimum compromise between accu-
racy, efficiency and stability by e.g. estimating error based on dif-
ference between one full step and two half-steps, define local error
bounds, increase stepsize if below, decrease if above

e reduction to 1st order: bring higher-order diff. egs. into stan-
dard form, e.g. cast & = f(z) into y = }(y) by defining y = (x, )
and f = (&, f(x)), then apply e.g. Runge-Kutta

e leapfrog: very simple alternative in above case; define v = @, then

=P

Tpy1 =Tp + 0, 1AL v s =00 F f(@a)AL (3)
— 2nd-order accurate and requires only one evaluation per step
— name leapfrog due to interleaved advances of position and velocity
— better than higher-order schemes on some system due to being a
e symplectic integrator: structure-preserving method that ob-
serves special properties of Hamiltonian systems, e.g. energy and
phase-space volume conservation (Liouville theorem)
—letw:RIxR? = R, w(&,n) = Ap(exn) give area of parallelogram
P(¢ x 1) spanned by &, € R%; then linear map F : RY — R% is
symplectic if w(FE, Fn) =w(&,n)
— a differentiable map g : U — R? is symplectic if its Jacobian is
symplectic everywhere
— Poincaré’s theorem: time evolution generated by a Hamilto-
nian in phase-space is a symplectic transformation

3 Collisionless particle systems

central idea: describe large-N-body system as small-N system by
grouping real particles into fiducial macro particles
— for gravity, the e.o.m.s with (numerical) softening length € are

& = -Vo(x;), P(x) =-GY |, W

— purpose of e: prevent (highly correlated) bound states (requires
(V%) > Gem ), avoid numerical expense of large angle scattering in
singular potential; € introduces smallest resolved length scale

examples: electrons in plasma, globular star clusters, stars in a

galaxy, dark matter (all are also uncorrelated to good approx.)

4 Tree algorithms

more spec. hierarchical multipole algorithms enable fast, ap-

proximate force calculations for N-body systems (see sec. 3)

— group hierarchy organized in tree-like data structure

— scale with O(N In N), whereas direct summation is O(N?)

central idea: use multipole expansion for (grav.) potential created

by group of distant particles rather than sum up forces individually

— monopole: M = Zf;l m;, quadrupole: Q;; = chvzl mi[3(s —
xk)i(s — x1); — 0;;(s — xx)?], where s points to c.o.m.

— dipole vanishes when expansion is done relative to c.o.m.

— expansion accurate if opening angle 6 < Z; r, d radius and
distance of particle group

5 The particle-mesh technique

alternative to tree algorithms, used in MD and astrophysics
1. construct density field p on suitable auxiliary mesh 2. compute
potential ® on mesh by solving Poisson’s eq. 3. calculate force field
F from potential 4. calculate forces F'; at original particle positions
1. mass assignment onto auxiliary mesh via nearest grid point
(NGP), clouds in cell (CIC), or triangular shaped clouds (TSC)
— NGP: density jumps discont. when particle crosses cell bound-
ary, resulting force piece-wise constant; CIC: force piece-wise
linear and continuous, but derivative jumps; TSC: both force
and its derivative smooth
2. solve Poisson’s eq. A® = 47Gp either with Fourier transform
(sec. 6) or iteratively (sec. 7)

3. calculate acceleration a = —V® with finite differencing, e.g.
al(7’7]7k) = —%[@(Z + 17j7 k) - ¢(Z - 17j7 k)] + O(h‘Q) or with

larger stencil to reduce truncation error below O(h?)
4. interpolate from mesh to particles: Fi(zi) = m}_ apW(zi —
p), where sum runs over auxiliary mesh cells p = (3, j, k)
— W same assignment kernel as used in density construction,
ensures vanishing self-force and pairwise antisymmetric forces

6 Force calculation with Fourier transform techniques

tool for solving certain PDEs, e.g. Poisson’s eq. A® = 47w Gp; sol.
d(x) = -G I% = p* g is convolution of p with g(x) = —Ta]

e convolution thm.: F(fxg) = F(f)-F(g) = ® = F '[F(p)-F(g))
e in practice, to solve this requires assuming periodic b.c. in box of

size L, gives finite discrete k-space so we can apply (discrete) fast
Fourier transform (FFT), scales with O(N In N)

for nonperiodic problems: zero-padding constructs mesh s.t.
sources lives only in one quarter (in 2D), rest of mesh is zeroed-
out

7 lterative solvers and the multigrid technique

ansatz: discretize ® on regular N-point mesh with spacing h so
Poisson’s eq. at cell i € {0,..., N — 1} is % = 4rGp;
above can be cast into set of NV linear eqs. A® = b with A sten-
cil matrix, b = 47G(po, ..., pN—1); analytic. solvable with Gauss
elimination, but not feasible for large N (scales O(N?))

use Jacobi or Gauss-Seidel iteration instead by decomposing
A =D — U — L, yields Jac. update formula <I>§"+1) = %(@EE +
"™ — 4xGh2p;) or GS @) = D U™ 4+ LD 4 p]
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— (S looks like, but is not implicit formula; no values of ™1 are
needed, because L has only elements below diagonal
— GS makes use of updated values immediately, ~ twice as fast as
Jacobi, but has to be solved sequentially = not parallelizable
e red-black ordering: some update rules allow decomposition of
cells into disjoint sets whose update depends only on cells from
other set(s), e.g. for Poisson’s eq.: chessboard pattern
e convergence of Jac. and GS often ‘stalls’; high-v errors die quickly,
but low-v, high-\ errors slowly; reason: per step, information travels
only one stencil length, convergence needs several sweeps
e solution: multigrid; central idea: go to coarser mesh, compute
improved initial guess, helps speed up convergence on fine grid
— because multigrid operates on coarser grid for most of time, it is
much faster, cheaper than Jac. and GS
— fine — coarse and back requires restriction and prolongation op-
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erators; in 1D: prol. with I2" :]%, 1, %[, restr. with I%, = [i, %, 1l

8 Molecular dynamics simulations

e aim: simulate atoms, molecules, proteins, etc. in microscopic detail
over relevant timespan to determine mech., electr., etc. properties

e important point: uses Newton’s classical e.o.m.s, based on approx-
imation of inter- and/or intra-molecular forces, force laws may be
empirical or quantum mechanically derived

e intimately connected to stat. mech.: precise microstate unimpor-
tant, interested in ensemble averages of macro. var. T, P, p, etc.

e ergodic hypothesis: postulates ensemble avr. = time avr., thus
evolve MD sim. to reach equilibrium, then measure time avr. A =
lim £ :U+TA(F(t)) dt of macros. quantity A(T"), fct. of microstate
T—00 0
r

e finite range interactions: molecules interact only over short

range, e.g. Lennard-Jones potential V(r) = 4e [‘:% - ‘;—:] = in-
troduce cutoff V.(r) = 0 for r > r. and search grid, ignore particles
in cells farther than r.; reduces scaling from O(N?) to O(N)

9 Basic gas dynamics

e Euler eqgs.: describe continuity of mass, momentum, energy during
dynamics of ideal, i.e. frictionless, gas
ap Jdpe

— o, 21 p) =02, v. _
E-I-V-(pv)—(), En +V(pv°+P) =0, ot +V-[(pe+P)v] =0

with total energy (per unit mass) e = u + %, u thermal energy;
closed by eq. of state P = (y — 1)pu with adiabatic index v =
Cp/Cv

e Navier-Stokes eqs.: describe dynamics of real fluids with internal
stress due to wiscosity (dissipates relative motion into heat)

%Ltv +V(pv” + P) = VII,

9pe

224V - [(pe+ Pyv] = V(ITv) (4)

(first one identical to Euler) with viscous stress tensor (material
property) I =7V - v + (V- 0)T + 2(V - v)1] + {(V - v)1, where
n (€) scales traceless (diagonal) part, i.e. shear (bulk) viscosity
e shocks: hydro-flows can develop shock waves where density, ve-
locity, temperature, specific entropy jump; typical for hyperbolic
PDEs; shocks decelerate, compress and heat up fluid
— differential form of Euler eqs. breaks down at discontinuity,
(weak) integral formulation remains valid; assuming rest frame
of shock (vs = 0) and piece-wise constant states left/right leads
to Rankine-Hugoniot jump cdts.
p’l)2+P — p/U/2+Pl,

pv = p'v, (pe+P)v = (p'e'+P' ) (5)

— presence of shock requires Mach number M = :’—S > 1, i.e. pre-

shock gas streams supersonically into discontinuity, ¢2 = 2£

e fluid instabilities: start with two phases (p1,v1), (p2, v2), gravity
g in —z-direction, consider single pert. Fourier mode & = £e?(F* =+
— Rayleigh-Taylor: v; = vs = 0 = disp. rel. w? = %;

unstable solutions with Im(w) > 0 exist for p1 > p2

— Kelvin-Helmholtz: g = 0, i.e. pure shear flow = wi2 =
.k(pl;iif);”) + ikp?{f/fz |1 — val; .Im(w) > O always if vl ;é va,
i.e. small perturbation at phase interface will grow rapidly into

characteristic KH vortices (fluid turbulences)

10 Eulerian hydrodynamics

e important linear and homogeneous PDEs: Laplace Au = 0, heat
conduction dyu = A2 Au, wave propagation 92u = c2Au

e classify 2nd-order linear PDEs a8§u+b818yu+68§u+d8zu+eé‘qur
fu = g according to D = b* — 4ac: D < 0 elliptic (static problems
without time dependence), D = 0 parabolic (slowly changing pro-
cesses, e.g. diffusion), D > 0 hyperbolic (dynamical processes that
can develop discontinuities)

e Riemann problem: IVP for hyperbolic system of two (piece-
wise constant) phases characterized at ¢t = 0 by state vectors
U, = (pi, Pi,vi), 1 € {R, L}, task: evolve system for ¢t > 0

(always present) contact wave: boundary between phases

— may be sandwiched between shock and/or rarefaction waves

— waves propagate with constant speed, fluid properties (p*, P*, v*)
at © = 0 constant in time for t > 0

— for v, = vr = 0, Riemann problem simplifies to Sod shock tube

11 Smoothed particle hydrodynamics

e (versatile mesh-free) technique to approximate fluid continuum dy-
namics through particles (interpolation points)

e advantages: 1. provides automatically adaptive spatial resolution
and density 2. ensures conservation of energy, (angular) momentum,
mass, entropy 3. Galilean invariant and advection-error-free 4. can
deal with complicated geometries and large empty regions due to
mesh-free nature 5. robust: does not produce negative p’s and T"s

e disadvantage: limited accuracy in multi-dim. flows, gives rise to
velocity noise, degrades accuracy and leads to slow convergence

12 Finite element methods

e for solving PDEs, good at flexible geometries, odd b.c., allows spa-
tially variable resolution

e central idea: 1. divide solution into smaller regions (elements) con-
taining points (nodes), possible boundaries: segments (1D), trian-
gles (2D), tetrahedra (3D) 2. chose (linearly indep.) basis fets.
(called shape fcts.). to describe solution on each element, e.g. poly-
nomial basis 3. n coefficients in element expansion require n nodes
to uniquely specify reconstruction inside element

13 Monte Carlo Techniques

e lie at the heart of stochastic simulations
e error of Monte Carlo integration Iy given by width o of its proba-
bility distribution Py (In); always a Gaussian according to central

(f2)=(f)?
N

- x 1/\/N, irrespective of dimensionality d of integration domain

e importance sampling: choose random points preferentially
around peaks of function to be integrated

e virtues of pseudo-random number generators: repeatability,
randomness, speed, portability, long period, insensitivity to seed

e exact inversion: method for creating nonuniform PDF p(y) from
uniform distr. g(x) = ;= over the interval [a, b]; uses conservation
of probability to equate respective CDFs

Q@) = [ awrar L [*

e rejection method: used to create uninvertible random number
distr. p(y) from distr. f(y) > p(y) we can produce
— 1. generate y from f(y) 2. generate z from uniform distr. with
bounds 0 < z < f(y) 3. if z < p(y), return y as sample value
4. else reject trial value for y and start again
e Markov chain: discrete sequence of states x; generated by Markov
process f which must 1. preserve eq. distr. peq(z) of stochastic
process 2. starting from z, be able to reach any other state ' (er-
godicity)
e Metropolis-Hastings algorithm: 1. from current state x, pro-
pose new state =’ with proposal probability ¢(z — ') 2. ac-
cept proposed move with probability given by Hasting’s ratio

| p)a@ —a)
? p(z)g(z—a’)
chain (again)

— fulfills detailed balance: peq(x)Wy(z — ') = peq(z') Wy (2! — )

limit theorem so oy =V

p(y')dy’ = P(y) (6)

r = min ( ) 3. otherwise reject ' and add = to Markov
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