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1 Issues of floating point math

• common problems: overflow and round-off errors
• two’s complement: most significant bit (MSB) (a.k.a. sign bit s)

flags negative numbers
• floating point representations have a base β (β = 2 in IEEE stan-

dard), precision p (a.k.a mantissa), and exponent e
– representation not unique, shifting exponent and mantissa can

give same number multiple times; solution: normalization, i.e.
leading digit before the point always 1

– number in exponent E stored with bias b (hence E always positive
as opposed to two’s complement), e.g. e = E − 127 for floats

• in general, value f of IEEE float given by f = (−1)s(1 + M
2p ) · 2E−b

• machine precision: smallest increment in mantissa, εm = 1
2p

– pitfall: a+ b = a even for b 6= 0 if |b| < εm|a|

2 Integration of ordinary differential equations

• we seek solution y(t) to eq. of the form dy
dt

= f(y, t) subject to
boundary condition, most commonly initial value problem (IVP)

• forward or explicit Euler method: yn+1 = yn + f(yn)∆t +
Os(∆t2)
– simplest approach,but only first-order accurate Os(∆t2) and un-

stable for large stepsize ∆t
– explicit because r.h.s. depends only on known quantities

• backward or implicit Euler method: yn+1 = yn + f(yn+1)∆t
– excellent stability, hence useful for stiff eqs., but still inaccurate

for large ∆t
– often involves root-finding of nonlinear eq., numerically expensive

• implicit midpoint rule: yn+1 = yn + f(
yn+yn+1

2
)∆t+Os(∆t3)

– second-order accurate but implicit so difficult in practice
• Runge-Kutta methods: derive from exact solution yn+1 = yn +∫ tn+1

tn
f(y(t)) dt by approximating integral with trapezoidal rule:

k1 = f(yn, tn), k2 = f(yn + k1∆t, tn+1),

yn+1 = yn + 1
2
(k1 + k2)∆t+Os(∆t3)

(1)

– a.k.a. predictor-corrector scheme, k1 = predictor, k2 = corrector
– 2nd-order accurate, higher-order schemes exist, e.g. RK-4:

k1 = f(yn, tn), k2 = f(yn + k1
∆t
2
, tn + ∆t

2
),

k3 = f(yn + k2
∆t
2
, tn + ∆t

2
),k4 = f(yn + k3∆t, tn + ∆t),

yn+1 = yn + 1
6
(k1 + 2k2 + 2k3 + k4)∆t+Os(∆t5)

(2)

• adaptive step size: achieve optimum compromise between accu-
racy, efficiency and stability by e.g. estimating error based on dif-
ference between one full step and two half-steps, define local error
bounds, increase stepsize if below, decrease if above

• reduction to 1st order: bring higher-order diff. eqs. into stan-
dard form, e.g. cast ẍ = f(x) into ẏ = f̃(y) by defining y = (x, ẋ)
and f̃ = (ẋ,f(x)), then apply e.g. Runge-Kutta

• leapfrog: very simple alternative in above case; define v ≡ ẋ, then

xn+1 = xn + vn+ 1
2
∆t, vn+ 3

2
= vn+ 1

2
+ f(xn+1)∆t (3)

– 2nd-order accurate and requires only one evaluation per step
– name leapfrog due to interleaved advances of position and velocity
– better than higher-order schemes on some system due to being a

• symplectic integrator: structure-preserving method that ob-
serves special properties of Hamiltonian systems, e.g. energy and
phase-space volume conservation (Liouville theorem)
– let ω : Rd×Rd → R, ω(ξ, η) = AP (ξ×η) give area of parallelogram
P (ξ × η) spanned by ξ, η ∈ Rd; then linear map F : Rd → Rd is
symplectic if ω(Fξ, Fη) = ω(ξ, η)

– a differentiable map g : U → Rd is symplectic if its Jacobian is
symplectic everywhere

– Poincaré’s theorem: time evolution generated by a Hamilto-
nian in phase-space is a symplectic transformation

3 Collisionless particle systems

• central idea: describe large-N -body system as small-N system by
grouping real particles into fiducial macro particles
– for gravity, the e.o.m.s with (numerical) softening length ε are

ẍi = −∇Φ(xi), Φ(x) = −G
∑N
j=1

mj√
(x−xj)2+ε2

– purpose of ε: prevent (highly correlated) bound states (requires
〈v2〉 � Gm

ε
), avoid numerical expense of large angle scattering in

singular potential; ε introduces smallest resolved length scale
• examples: electrons in plasma, globular star clusters, stars in a

galaxy, dark matter (all are also uncorrelated to good approx.)

4 Tree algorithms

• more spec. hierarchical multipole algorithms enable fast, ap-
proximate force calculations for N -body systems (see sec. 3)
– group hierarchy organized in tree-like data structure
– scale with O(N lnN), whereas direct summation is O(N2)

• central idea: use multipole expansion for (grav.) potential created
by group of distant particles rather than sum up forces individually
– monopole: M =

∑N
i=1 mi, quadrupole: Qij =

∑N
k=1 mk[3(s −

xk)i(s− xk)j − δij(s− xk)2], where s points to c.o.m.
– dipole vanishes when expansion is done relative to c.o.m.
– expansion accurate if opening angle θ ≤ r

d
; r, d radius and

distance of particle group

5 The particle-mesh technique

• alternative to tree algorithms, used in MD and astrophysics
• 1. construct density field ρ on suitable auxiliary mesh 2. compute

potential Φ on mesh by solving Poisson’s eq. 3. calculate force field
F from potential 4. calculate forces F i at original particle positions
1. mass assignment onto auxiliary mesh via nearest grid point

(NGP), clouds in cell (CIC), or triangular shaped clouds (TSC)
– NGP: density jumps discont. when particle crosses cell bound-

ary, resulting force piece-wise constant; CIC: force piece-wise
linear and continuous, but derivative jumps; TSC: both force
and its derivative smooth

2. solve Poisson’s eq. ∆Φ = 4πGρ either with Fourier transform
(sec. 6) or iteratively (sec. 7)

3. calculate acceleration a = −∇Φ with finite differencing, e.g.
ax(i, j, k) = − 1

2h
[Φ(i + 1, j, k) − Φ(i − 1, j, k)] + O(h2) or with

larger stencil to reduce truncation error below O(h2)
4. interpolate from mesh to particles: F i(xi) = m

∑
p apW (xi −

xp), where sum runs over auxiliary mesh cells p = (i, j, k)
– W same assignment kernel as used in density construction,

ensures vanishing self-force and pairwise antisymmetric forces

6 Force calculation with Fourier transform techniques

• tool for solving certain PDEs, e.g. Poisson’s eq. ∆Φ = 4πGρ; sol.

Φ(x) = −G
∫ ρ(x′) dx′

|x−x′| = ρ ? g is convolution of ρ with g(x) = − G
|x|

• convolution thm.: F(f ?g) = F(f)·F(g)⇒ Φ = F−1[F(ρ)·F(g)]
• in practice, to solve this requires assuming periodic b.c. in box of

size L, gives finite discrete k-space so we can apply (discrete) fast
Fourier transform (FFT), scales with O(N lnN)
• for nonperiodic problems: zero-padding constructs mesh s.t.

sources lives only in one quarter (in 2D), rest of mesh is zeroed-
out

7 Iterative solvers and the multigrid technique

• ansatz: discretize Φ on regular N -point mesh with spacing h so
Poisson’s eq. at cell i ∈ {0, . . . , N − 1} is

Φi+1−2Φi+Φi−1

h2 = 4πGρi
• above can be cast into set of N linear eqs. AΦ = b with A sten-

cil matrix, b = 4πG(ρ0, . . . , ρN−1); analytic. solvable with Gauss
elimination, but not feasible for large N (scales O(N3))
• use Jacobi or Gauss-Seidel iteration instead by decomposing

A = D − U − L, yields Jac. update formula Φ
(n+1)
i = 1

2
(Φ

(n)
i+1 +

Φ
(n)
i−1 − 4πGh2ρi) or GS Φ(n+1) = D−1[UΦ(n) + LΦ(n+1) + b]
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– GS looks like, but is not implicit formula; no values of Φ(n+1) are
needed, because L has only elements below diagonal

– GS makes use of updated values immediately, ≈ twice as fast as
Jacobi, but has to be solved sequentially ⇒ not parallelizable

• red-black ordering: some update rules allow decomposition of
cells into disjoint sets whose update depends only on cells from
other set(s), e.g. for Poisson’s eq.: chessboard pattern

• convergence of Jac. and GS often ‘stalls’; high-ν errors die quickly,
but low-ν, high-λ errors slowly; reason: per step, information travels
only one stencil length, convergence needs several sweeps

• solution: multigrid; central idea: go to coarser mesh, compute
improved initial guess, helps speed up convergence on fine grid
– because multigrid operates on coarser grid for most of time, it is

much faster, cheaper than Jac. and GS
– fine→ coarse and back requires restriction and prolongation op-

erators; in 1D: prol. with I2h
h =] 1

2
, 1, 1

2
[, restr. with Ih2h = [ 1

4
, 1

2
, 1

4
]

8 Molecular dynamics simulations

• aim: simulate atoms, molecules, proteins, etc. in microscopic detail
over relevant timespan to determine mech., electr., etc. properties

• important point: uses Newton’s classical e.o.m.s, based on approx-
imation of inter- and/or intra-molecular forces, force laws may be
empirical or quantum mechanically derived

• intimately connected to stat. mech.: precise microstate unimpor-
tant, interested in ensemble averages of macro. var. T , P , ρ, etc.

• ergodic hypothesis: postulates ensemble avr. = time avr., thus
evolve MD sim. to reach equilibrium, then measure time avr. A =
lim
τ→∞

1
τ

∫ t0+τ

t0
A(Γ(t)) dt of macros. quantity A(Γ), fct. of microstate

Γ
• finite range interactions: molecules interact only over short

range, e.g. Lennard-Jones potential V (r) = 4ε
[
σ12

r12
− σ6

r6

]
⇒ in-

troduce cutoff Vc(r) = 0 for r > rc and search grid, ignore particles
in cells farther than rc; reduces scaling from O(N2) to O(N)

9 Basic gas dynamics

• Euler eqs.: describe continuity of mass, momentum, energy during
dynamics of ideal, i.e. frictionless, gas

∂ρ

∂t
+∇ · (ρv) = 0,

∂ρv

∂t
+∇(ρv2 +P ) = 0,

∂ρe

∂t
+∇ · [(ρe+P )v] = 0

with total energy (per unit mass) e = u + v2

2
, u thermal energy;

closed by eq. of state P = (γ − 1)ρu with adiabatic index γ =
CP /CV

• Navier-Stokes eqs.: describe dynamics of real fluids with internal
stress due to viscosity (dissipates relative motion into heat)

∂ρv

∂t
+∇(ρv2 +P ) = ∇Π,

∂ρe

∂t
+∇ · [(ρe+P )v] = ∇(Πv) (4)

(first one identical to Euler) with viscous stress tensor (material
property) Π = η[∇ · v + (∇ · v)ᵀ + 2

3
(∇ · v)1] + ξ(∇ · v)1, where

η (ξ) scales traceless (diagonal) part, i.e. shear (bulk) viscosity
• shocks: hydro-flows can develop shock waves where density, ve-

locity, temperature, specific entropy jump; typical for hyperbolic
PDEs; shocks decelerate, compress and heat up fluid
– differential form of Euler eqs. breaks down at discontinuity,

(weak) integral formulation remains valid; assuming rest frame
of shock (vs = 0) and piece-wise constant states left/right leads
to Rankine-Hugoniot jump cdts.

ρv = ρ′v′, ρv2 +P = ρ′v′2 +P ′, (ρe+P )v = (ρ′e′+P ′)v′ (5)

– presence of shock requires Mach number M = v
cs
> 1, i.e. pre-

shock gas streams supersonically into discontinuity, c2s = γP
ρ

• fluid instabilities: start with two phases (ρ1, v1), (ρ2, v2), gravity
g in −z-direction, consider single pert. Fourier mode ξ = ξ̃ei(kx−ωt)

– Rayleigh-Taylor: v1 = v2 = 0 ⇒ disp. rel. ω2 = (ρ1−ρ2)kg
ρ1+ρ2

;

unstable solutions with Im(ω) > 0 exist for ρ1 > ρ2

– Kelvin-Helmholtz: g = 0, i.e. pure shear flow ⇒ ω1,2 =

k (ρ1v1+ρ2v2)
ρ1+ρ2

± ik ρ1ρ2
ρ1+ρ2

|v1 − v2|; Im(ω) > 0 always if v1 6= v2,
i.e. small perturbation at phase interface will grow rapidly into
characteristic KH vortices (fluid turbulences)

10 Eulerian hydrodynamics

• important linear and homogeneous PDEs: Laplace ∆u = 0, heat
conduction ∂tu = λ2∆u, wave propagation ∂2

t u = c2∆u
• classify 2nd-order linear PDEs a∂2

xu+b∂x∂yu+c∂2
yu+d∂xu+e∂yu+

fu = g according to D = b2 − 4ac: D < 0 elliptic (static problems
without time dependence), D = 0 parabolic (slowly changing pro-
cesses, e.g. diffusion), D > 0 hyperbolic (dynamical processes that
can develop discontinuities)
• Riemann problem: IVP for hyperbolic system of two (piece-

wise constant) phases characterized at t = 0 by state vectors
U i = (ρi, Pi,vi), i ∈ {R,L}, task: evolve system for t > 0
– (always present) contact wave: boundary between phases
– may be sandwiched between shock and/or rarefaction waves
– waves propagate with constant speed, fluid properties (ρ?, P ?,v?)

at x = 0 constant in time for t > 0
– for vL = vR = 0, Riemann problem simplifies to Sod shock tube

11 Smoothed particle hydrodynamics

• (versatile mesh-free) technique to approximate fluid continuum dy-
namics through particles (interpolation points)
• advantages: 1. provides automatically adaptive spatial resolution

and density 2. ensures conservation of energy, (angular) momentum,
mass, entropy 3. Galilean invariant and advection-error-free 4. can
deal with complicated geometries and large empty regions due to
mesh-free nature 5. robust: does not produce negative ρ’s and T ’s
• disadvantage: limited accuracy in multi-dim. flows, gives rise to

velocity noise, degrades accuracy and leads to slow convergence

12 Finite element methods

• for solving PDEs, good at flexible geometries, odd b.c., allows spa-
tially variable resolution
• central idea: 1. divide solution into smaller regions (elements) con-

taining points (nodes), possible boundaries: segments (1D), trian-
gles (2D), tetrahedra (3D) 2. chose (linearly indep.) basis fcts.
(called shape fcts.). to describe solution on each element, e.g. poly-
nomial basis 3. n coefficients in element expansion require n nodes
to uniquely specify reconstruction inside element

13 Monte Carlo Techniques

• lie at the heart of stochastic simulations
• error of Monte Carlo integration IN given by width σN of its proba-

bility distribution PN (IN ); always a Gaussian according to central

limit theorem so σN = V

√
〈f2〉−〈f〉2

N

– ∝ 1/
√
N , irrespective of dimensionality d of integration domain

• importance sampling: choose random points preferentially
around peaks of function to be integrated

• virtues of pseudo-random number generators: repeatability,
randomness, speed, portability, long period, insensitivity to seed

• exact inversion: method for creating nonuniform PDF p(y) from
uniform distr. q(x) = 1

b−a over the interval [a, b]; uses conservation
of probability to equate respective CDFs

Q(x) =

∫ x

−∞
q(x′) dx′

!
=

∫ y

−∞
p(y′) dy′ = P (y) (6)

• rejection method: used to create uninvertible random number
distr. p(y) from distr. f(y) ≥ p(y) we can produce
– 1. generate y from f(y) 2. generate z from uniform distr. with

bounds 0 ≤ z < f(y) 3. if z ≤ p(y), return y as sample value
4. else reject trial value for y and start again

• Markov chain: discrete sequence of states xi generated by Markov
process f which must 1. preserve eq. distr. peq(x) of stochastic
process 2. starting from x, be able to reach any other state x′ (er-
godicity)
• Metropolis-Hastings algorithm: 1. from current state x, pro-

pose new state x′ with proposal probability q(x → x′) 2. ac-
cept proposed move with probability given by Hasting’s ratio

r = min
(

1, p(x
′)q(x′→x)

p(x)q(x→x′)

)
3. otherwise reject x′ and add x to Markov

chain (again)

– fulfills detailed balance: peq(x)Wf (x→ x′)
X
= peq(x′)Wf (x′ → x)
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