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Fock space Let H denote a single-particle Hilbert space. Then the n-fold (anti-)symmetrized
tensor product Hn

± = P±H⊗n constitutes the n-boson (-fermion) subspace of the many-particle
Fock space F±(H) given by the direct sum

F±(H) =

∞⊕

n=0

Hn
± = C⊕H⊕ (P±H⊕H)⊕ (P±H⊕H⊕H)⊕ . . . . (1)

The (anti-)symmetrizer is defined as

P±|ψ1〉 ⊗ · · · ⊗ |ψn〉 =
1

n!

∑

π∈Sn

(±1)π|ψπ(1)〉 ⊗ · · · ⊗ |ψπ(n)〉, (2)

with Sn the symmetric group of order n! of all permutations on n objects. An element |ψ〉 of
F±(H) is then given by

|Ψ〉± = |Ψ0〉± ⊕ |Ψ1〉± ⊕ |Ψ2〉± ⊕ . . .

= a0|0〉 ⊕ |ψ1〉 ⊕
∑

ij

aij |ψ2,i, ψ2,j〉± ⊕ . . .
(3)

where |0〉 is the vacuum state1, |ψ1〉 ∈ H is a single-particle state (without any statistics), and

aij |ψ2,iψ2,j〉± =
aij

2

(
|ψ2,i〉 ⊗ |ψ2,j〉 ± |ψ2,j〉 ⊗ |ψ2,i〉

)
∈ P±H⊕H, with aij = ±aji ∈ C. (4)

For the Fock space F±(H) to be itself a Hilbert space requires that its elements have finite norm.
Since each state is an infinite series, this is a non-trivial requirement. If implemented, F±(H)
consists only of those infinite tuples |Ψ〉± = (|Ψ0〉±, |Ψ1〉±, |Ψ2〉±, . . . ) for which

‖|Ψ〉±‖
2
± =

∞∑

n=0

〈Ψn|Ψn〉± <∞, (5)

where each of the n-particle subspaces Hn
± has its own inner product defined by

〈Ψn|Ψn〉± =
∑

i1,...,in
j1,...,jn

a∗i1,...,,inaj1,...,jn 〈ψi1 |ψj1〉 · · · 〈ψin |ψjn〉. (6)

Pure and entangled states For density operators, we had made the important distinction
between pure and mixed states described respectively by operators of the form

ρ = |ψ〉〈ψ|, and ρ =
∑

n

pn |ψn〉〈ψn|, (7)

with 0 ≤ pn ≤ 1,
∑

n pn = 1. A similar distinction can be made for elements of a Fock space
where a pure n-particle state can be written as a direct product of single-particle states,

|ψ〉± = P± |ψ1〉 ⊗ |ψ2〉 ⊗ · · · ⊗ |ψn〉. (8)

Of the n particles, anyone might be in state |ψ1〉, |ψ2〉, |ψ3〉, etc. We don’t care which one is
where. Our formalism does not distinguish between individual particles, only how many there

1|0〉 has length 1, meaning that for |Ψ〉± normalized, a0 ∈ C can be non-zero only if all the higher coefficients

are zero and then it must be phase a0 = eiφ. This makes sense because if a state contains particles, it should

not also contain the vacuum.
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are. Quantum mechanics tells us they are fundamentally indistinguishable, would make any
assignment of particles to states an artificial construct existent only in our description with no
basis in nature, similar to coordinate systems in general relativity and string theory. This is the
central insight behind second quantization.

A state that cannot be written as a pure states (or product of pure states) is called entangled.
Entangled states are given by linear combinations of pure states such as the one in (3). As
such, they don’t correspond to any fixed number of particles but may contain contributions
from states with an infinite range of particles.

Basis A particularly convenient basis for a Fock space can be written i.t.o. occupation numbers.
Given a single-particle basis {|ψn〉}n∈N0

of H2, we can denote a basis state of F±(H) with ni
particles in state |ψi〉 for i ∈ N0 by

|{ni}
±
i 〉 = |n0, n1, n2, . . . 〉± = P±

∞⊗

i=0

|ψi〉
⊗ni

= P± |ψ0〉
⊗n0 ⊗ |ψ1〉

⊗n1 ⊗ . . .

(9)

where again n−i ∈ {0, 1} for fermions and n+i ∈ N0 for bosons. Of course, for a finite-particle
state, at some point all particles will be distributed among the available single-particle states,
resulting in a lot of trailing zeros from all the ni with i > imax. To simplify our notation, these
zeros can safely be dropped without changing the state. The number of particles in a state like
(9) is

N̂ |n0, n1, . . . , nk〉± =

∞∑

i=0

ni |n0, n1, . . . , nk〉±, (10)

where N̂ denotes the number operator on F±(H). If we restrict our considerations to many-
particle systems without interactions among the particles (typical examples include the ideal
Bose and Fermi gases), then the energy of a many-particle state is just

Ĥ |n0, n1, . . . , nk〉± =

∞∑

i=0

ni ǫi |n0, n1, . . . , nk〉±, (11)

where Ĥ is the Hamiltonian on F±(H), and ǫi denotes the energy of the single-particle state
|ψi〉. Thus, in the case of non-interacting systems, the occupation number states are eigenstates
of both the number operator and the Hamiltonian. Operators that allow for a shared eigenbasis

commute. If N̂ carries no explicit time dependence, i.e. ∂N̂
∂t

= 0, then Heisenberg’s equation

dÂ

dt
=
i

~
[Ĥ, Â] +

∂Â

∂t
(12)

implies that the total number of particles must be conserved. Of course, this is not a particularly

surprising statement. ∂N̂
∂t

6= 0 would describe an open system which particles can exit or enter
based on external stimuli. Without this possibility and in the absence of interactions, there is
no mechanism by which particles could be created, destroyed, removed from or brought into the
system. Thus their number must be conserved.

From eqs. (10) and (11), we can infer what form Ĥ and N̂ must take when constructed from
their single-particle counterparts ĥ and n̂ acting on H, namely

Ĥ =
∞∑

n=0

(
ĥ⊗ 1⊗ · · · ⊗ 1

︸ ︷︷ ︸

n−1 times

+ 1⊗ ĥ⊗ 1⊗ · · · ⊗ 1
︸ ︷︷ ︸

n−2 times

+ · · ·+ 1⊗ · · · ⊗ 1
︸ ︷︷ ︸

n−1 times

⊗ ĥ
)
, (13)

and likewise for N̂ . For instance, acting only on the two-particle subspace H2
±, Ĥ would be

ĥ⊗ 1+ 1⊗ ĥ, where 1 is the identity on H.

2In the case of an ideal Bose or Fermi gas with Hamiltonian Ĥ = p̂2

2m
= ~

2k2

2m
the momentum eigenstates |k〉 are

a particularly convenient choice of basis since the Hamiltonian and momentum operator p̂ = ~k commute.
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Grand canonical partition function Using the occupation number basis, the grand canonical
partition function on the space F±(H) can be evaluated as the weighted sum over states

Z±
g = trF±(H)

(
e−β(Ĥ−µ N̂)

)
=

∞∑

N=0

∑

{ni}
±

i

〈{ni}
±
i |e

−β(Ĥ−µ N̂)|{ni}
±
i 〉 δN,

∑
ni
. (14)

This is a rather complicated sum running over all possible combinations of occupation numbers
ni of all single-particle states |ψi〉 ∈ H. The Kronecker symbol ensures that in each term of the
sum over N only configurations with the correct number of total particles appear. If we had
instead chosen to work in the canonical ensemble, we would still have this restriction but the

sum over N (and the fugacity zN̂ = eβµN̂ ) would be absent from the partition function, making
the evaluation of Zc extremely difficult. The sum over all possible number of particles turns out
to be a crucial advantage of the grand canonical ensemble when it comes to quantum gases.

We make full use of it by dropping both the sum over N and the Kronecker symbol. This lets
the ni roam freely, so to speak. We still sum over all possibilities of distributing an arbitrary
number of particles (up to infinitely many) onto the single-particle states in H, thus still taking
into account every possible value for the total particle number N . By furthermore using (10)
and (11), Z±

g factorizes into

Z±
g =

∑

{ni}
±

i

e−β
∑

∞

j=0
nj(ǫj−µ) 〈{ni}

±
i |{ni}

±
i 〉

︸ ︷︷ ︸

1

=
∞ or 1∑

n±

0
=0

∞ or 1∑

n±

1
=0

∞ or 1∑

n±

2
=0

· · ·

∞∏

j=0

e−β nj(ǫj−µ) =

∞∏

j=0

∞ or 1∑

n±

j =0

e−β nj(ǫj−µ).

(15)

For fermions, the sum over nj contains only two terms,

Z−
g =

∞∏

j=0

(

1 + e−β (ǫj−µ)
)

, (16)

while for bosons, we may use the geometric series to get

Z+
g =

∞∏

j=0

1

1− e−β (ǫj−µ)
. (17)

Of course, there is an important point to consider here. The geometric series will only converge
if ǫj − µ > 0 ∀ j, i.e. if all single-particle energies are larger than the chemical potential. If we
set the ground state energy to E0 = 0, then the bosonic grand partition function can only be
computed in this way for systems with µ < 0. For fermions, due to their capped occupation
number, µ remains unrestricted.

The grand potential is the logarithm of the partition function,

Ω±
g = −

1

β
ln
(
Z±
g

)
= ±

1

β

∞∑

j=0

ln
(
1∓ e−β (ǫj−µ)

)
. (18)

It is a function of temperature, chemical potential and volume. The volume enters via the sum
over single-particle states indexed by j and via their energies ǫj . Once we have an explicit
expression for Ω±

g , we can immediately calculate from it average occupation numbers for all
single-particle states by differentiating w.r.t. that state’s energy. To see this, note that

〈ni〉g =
1

Z±
g

trF±(H)

(
ni e

−β(Ĥ−µ N̂)
)
=

1

Z±
g

∞∏

j=0

∑

nj

ni e
−β nj(ǫj−µ)

=
1

Z±
g

∞∏

j=0

∑

nj

(

−
1

β

∂

∂ǫi

)

e−β nj(ǫj−µ) = −
1

β

1

Z±
g

∂

∂ǫi
Z±
g

= −
1

β

∂

∂ǫi
ln
(
Z±
g

)
=

∂

∂ǫi
Ω±
g

(19)
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Inserting (18) gives

〈ni〉± = ±
1

β

∂

∂ǫi

∞∑

j=0

ln
(
1∓ e−β (ǫj−µ)

)
= ±

1

β

1

1∓ e−β (ǫi−µ)

∂

∂ǫi

(
∓e−β (ǫi−µ)

)

=
e−β (ǫi−µ)

1∓ e−β (ǫi−µ)
=

1

eβ (ǫi−µ) ∓ 1
.

(20)

These are the familiar Bose-Einstein and Fermi-Dirac distributions.3 We plot them as well as
that the Maxwell-Boltzmann distribution below.
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This illustrates the problem we mentioned earlier that the bosonic partition function diverges
for ǫi − µ < 0 which carries over to the occupation numbers. Fermions, even though their
distribution differs from that of bosons only by an inconspicuous sign, are well-behaved at any
chemical potential.

3Note that we ignored the issue of spin throughout this entire discussion. However, if the single-particle energies

are spin-independent and we don’t introduce any spin-spin interactions within multi-particle states, then

treating particles with spin s will only result in an uninteresting degeneracy factor gs = 2s+ 1.
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