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Useful formulae:

Γα
µν =

1

2
gασ

(
∂µgσν + ∂νgσµ − ∂σgµν

)

Rµν = ∂αΓ
α
µν − ∂νΓ

α
µα + Γβ

µνΓ
α
βα − Γβ

µαΓ
α
βν

R = gµνRµν

ds2FLRW = c2 dt2 − a2(t)

(
dr2

1− kr2
+ r2 dΩ2

)

1 Warmup

Answer in short sentences, you may or may not need to use formulae to explain your
answers. Just use common sense.

a) By which property is inert mass the same as gravitational mass?

This is due to the fact that

In an arbitrary gravitational field, no local non-gravitational experiment can distinguish
a freely falling, non-rotating system from a uniformly moving system in absence of the
gravitational field.

The above quote is Einstein’s Equivalence Principle, a heuristic guiding principle for the construction
of general relativity.

b) Describe one way Newtonian gravity fails to predict empirical results!

Mercury’s orbit is not closed. It exhibits a precession of 47′′ per century not included in a description
based on Newtonian gravity.

Newtonian gravity also fails to explain gravitational lensing.

c) What is the difference between the idea of a Lorentz transformation and a Galilean
transformation?

Galilean transformations treat time- and space-coordinates separately, the idea behind being that every
observer agrees on a universal time, t = t′, irrespective of the frame of reference. Lorentz transformations
transform both time- and space-coordinates equally. The paradigm here that the speed of light is the
same for every observer whereas the flow of time depends on the velocity, i.e. the frame of reference.
This principle is known as relativity.

d) What is the normalisation condition for a lightlike vector kν?

k2 = gµνk
µkν = 0.
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e) What is the Ricci-Scalar of Euclidean space in spherical coordinates?

R = 0. The Ricci-scalar characterizes the curvature of a topological space. Euclidean space is flat,
hence it’s Ricci-scalar is zero (in every coordinate system).

f) Why is a global 4-dimensional vector space not sufficient to explain/calculate gravity?

Because vector spaces are linear and can therefore only model linear geometries.

Einstein’s breakthrough was to replace Minkowski spacetime with a curved spacetime, where the
curvature Rµν was created by and reacted back on energy and momentum Tµν . This two-way feedback
is the source of non-linearity in general relativity and is captured by Einstein’s field equations,

Gµν = Rµν −
1

2
Rgµν =

8πG

c4
Tµν , (1)

where Gµν is the so-called Einstein tensor and Rµν is the Ricci curvature tensor.

g) What do the Christoffel symbols describe?

Christoffel symbols describe how basis vectors change when moving between tangent spaces of different
points on a manifold. This allows them to carry out the effects of parallel transport dvµ

dλ +Γµ
ρσ

dxρ

dλ vσ = 0
on a vector vµ along a curve parametrized by λ.

h) Why do we have covariant and contravariant quantities?

Because geometric objects can behave differently under Lorentz transformations. Contractians of
covariant and contravariant objects are used to construct Lorentz invariant quantities.

i) Why can we transform gµν always into a diagonal form?

Because in any basis, the metric’s components are given by the scalar product of the basis vectors. The
metric is thus symmetric

gµν = eµ · eν = eν · eµ = gνµ,
1 (2)

and for any symmetric matrix S there exists an orthogonal matrix O such that

S = OT DO, (3)

where D is diagonal.

j) What is a Killing vector?

Killing vectors are used to characterize symmetries in a coordinate independent way. They are the
generators of a symmetry in the sense that moving each point on an object the same distance in the
direction of the Killing vector field will not distort distances. A vector field V µ(x) is a Killing vector
field if the Lie derivative of the metric w.r.t this vector field vanishes, i.e. if

LV gµν = 0. (4)

2 Christoffel symbol transformation properties

a) Show that the Christoffel symbols Γα
µν are not tensors.

A tensor T of rank (k, l) is a multilinear map that takes k dual vectors and l vectors and projects them
onto a number in R. T can be expanded as

T = Tµ1...µk
ν1...νl

∂µ1
⊗ · · · ⊗ ∂µk

⊗ dxν1 ⊗ · · · ⊗ dxνl . (5)

To qualify as a tensor, rather than just an array of numbers, the components of a tensor have to fulfill
a certain transformation law. Under the transformation xµ → x′µ the components have to change
according to

T
µ′

1
...µ′

k

ν′
1
...ν′

l

=
∂xµ

′

1

∂xµ1

. . .
∂xµ

′

k

∂xµk

∂xν1

∂xν
′

1

. . .
∂xνl

∂xν
′

l

Tµ1...µk
ν1...νl

. (6)

1This relation for the components of the metric does not hold in non-torsion-free spaces.
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The transformation law for the Christoffel symbols follows from the requirements imposed on the
covariant derivative. ∇ is set up to perform the functions of the partial derivative ∂, but in a coordinate-
independent way. Since we also want it to remain a linear operator obeying the product rule, it can be
written as the partial derivative plus a linear transformation, applied as a correction after the partial
derivative to make the result covariant. Thus, by requiring that

∇µv
ν = ∂µv

ν + Γν
µλv

λ (7)

for some vector vν transform as a tensor, we immediately see that Γν
µλ cannot transform as a tensor

because ∂µ doesn’t. We quantify this assertion be calculating the tranformation ∇µv
ν → ∇µ′vν

′

, where
as in eq. (6),

∇µ′vν
′

=
∂xµ

∂xµ′

∂xν
′

∂xν
∇µv

ν . (8)

We can evaluate both sides of eq. (8). For the left, we find

∇µ′vν
′

= ∂µ′vν
′

+ Γν′

µ′λ′vλ
′

=
∂xµ

∂xµ′

∂xν
′

∂xν
∂µv

ν +
∂xµ

∂xµ′
vν∂µ

∂xν
′

∂xν
+ Γν′

µ′λ′

∂xλ
′

∂xλ
vλ. (9)

Meanwhile, the right side yields

∂xµ

∂xµ′

∂xν
′

∂xν
∇µv

ν =
∂xµ

∂xµ′

∂xν
′

∂xν
∂µv

ν +
∂xµ

∂xµ′

∂xν
′

∂xν
Γν

µλv
λ. (10)

Comparing eqs. (9) and (10), we see that the first term in each is identical. That leaves

Γν′

µ′λ′

∂xλ
′

∂xλ
vλ =

∂xµ

∂xµ′

∂xν
′

∂xν
Γν

µλv
λ − ∂xµ

∂xµ′
vλ∂µ

∂xν
′

∂xλ
ν→λ

, (11)

where we renamed the index ν to λ in the last term. The vector vν was arbitrary, so eq. (11) must hold

for any vν . Hence, we may as well eliminate it on both sides. Lastly, by multiplying with ∂xλ

∂xλ′
, we can

isolate Γν′

µ′λ′ to find:

Γν′

µ′λ′ =
∂xµ

∂xµ′

∂xλ

∂xλ′

∂xν
′

∂xν
Γν

µλ − ∂xµ

∂xµ′

∂xλ

∂xλ′

∂2xν
′

∂xµ∂xλ
. (12)

Evidently, this does not fit the tensorial transformation behavior of eq. (6); the second term is surplus.

b) Show that Sα
µν = Γα

µν − Γα
νµ is a tensor.

Sα′

µ′ν′ = Γα′

µ′ν′ − Γα′

ν′µ′

=
∂xµ

∂xµ′

∂xν

∂xν′
∂xα

′

∂xα
Γα

µν −
∂xµ

∂xµ′

∂xν

∂xν′
∂2xα

′

∂xµ∂xν
− ∂xν

∂xν′
∂xµ

∂xµ′

∂xα
′

∂xα
Γα

νµ +
∂xν

∂xν′
∂xµ

∂xµ′

∂2xα
′

∂xν∂xµ

=
∂xµ

∂xµ′

∂xν

∂xν′
∂xα

′

∂xα
(
Γα

µν − Γα
νµ

)
=

∂xµ

∂xµ′

∂xν

∂xν′
∂xα

′

∂xα
Sα

µν

(13)

Sα
µν fit’s eq. (6)’s transformation law perfectly. Thus, it is indeed a rank (1, 2)-tensor.

c) Using the result from part b), prove that in Riemannian geometry Γα
µν = Γα

νµ.

The tensor Sα
µν defined in part b) is just the torsion tensor. Since a Riemannian geometry is, by

definition, torsion-free, we have 0 = Sα
µν = Γα

µν − Γα
νµ and thus Γα

µν = Γα
νµ.
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3 Radial infall towards a Kerr Black Hole

The metric of a Kerr black hole is given by the components

gtt = −
(

1− 2m

r

)

, gtφ = −2mr

ρ2
a sin2 θ, grr =

ρ2

∆
, gθθ = ρ2, gφφ =

Σ2

ρ2
sin2 θ.

with the functions

∆ = r2 − 2mr + a2, ρ2 = r2 + a2 cos2 θ, Σ2 = (r2 + a2)2 − a2∆sin2 θ.

Set up the ‘Lagrangian’ for a test particle falling from r = ∞ to r = 0

a) radially in the equatorial plane.

The action can be written in terms of the line element ds as

S = −mc

∫

ds = −mc

∫
ds

dλ
dλ = −mc

∫ √

gµν
dxµ

dλ

dxν

dλ
dλ, (14)

where λ is an affine parameter of the geodesic over which we integrate.2 The name affine parameter
stems from its connection to the proper time τ via an affine transformation τ → λ = aτ + b for some
constant a and b. dλ = a dτ is just a scaled proper time, so we may identify our Lagrangian with

L = −mc

√

gµν
dxµ

dλ

dxν

dλ
. (15)

The equations of motion are unaffected a rescaling of the Lagrangian, so we drop the unwelcome
prefactor −mc and also the square root. Defining L′ = L2, we see that the latter’s effect on the
equations of motion amounts to

0 =
d

dλ

∂L′

∂ẋµ
− ∂L′

∂xµ
=

d

dλ

(

2L
∂L

∂ẋµ

)

− 2L
∂L

∂xµ
, (16)

where we can simply divide by 2L since L = ds
dλ = c dτ

a dτ = c
a

is just a constant.

With these simplifications and denoting ∂xµ

∂τ
= ẋµ the Lagrangian reads

L = gµν
dxµ

dτ

dxν

dτ
= gtt ṫ

2 + gtφ ṫ φ̇+ grr ṙ
2 + gθθ θ̇

2 + gφφ φ̇
2

= −
(

1− 2m

r

)

ṫ2 − 2mr

ρ2
a sin2 θ ṫ φ̇+

ρ2

∆
ṙ2 + ρ2 θ̇2 +

Σ2

ρ2
sin2 θ φ̇2.

(17)

However, since we are tasked with considering the specific case of a radially inbound test particle moving
in the equatorial plane, we may set all time derivatives of angles to zero, θ̇ = φ̇ = 0 and θ = π/2. Thus,

L = −
(

1− 2m

r

)

ṫ2 +
r2 + a2

0
︷ ︸︸ ︷

cos2 θ

r2 − 2mr + a2
ṙ2 = −

(

1− 2m

r

)

ṫ2 +
ṙ2

1− 2m
r

+ a2

r2

. (18)

b) along the polar axis.

Travelling along the polar axis from r = ∞ to r = 0 still implies θ̇ = φ̇ = 0. However, now θ = 0 so
that cos2 θ = 1. We therefore have to modify the result of eq. (18) only slightly,

L = −
(

1− 2m

r

)

ṫ2 +
r2 + a2

r2 − 2mr + a2
ṙ2 = −

(

1− 2m

r

)

ṫ2 +
ṙ2

1− 2mr
r2+a2

(19)

2A geodesic is the curved-space generalization of the notion of a “straight line” in Euclidean space.
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c) Derive the equations of motion for r in both cases, assuming that the particle is at rest
at r = ∞.

The Euler-Lagrange equation for r reads

0
!
=

d

dτ

∂L

∂ṙ
− ∂L

∂r
. (20)

For the scenario described in part a), we get

0 =
d

dτ

(

2ṙ

1− 2m
r

+ a2

r2

)

+
2m

r2
ṫ2 +

ṙ2
(

1− 2m
r

+ a2

r2

)2

(
2m

r2
− 2a2

r3

)

=
2r̈

1− 2m
r

+ a2

r2

− 2ṙ
(

1− 2m
r

+ a2

r2

)2

(
2m

r2
− 2a2

r3

)

ṙ +
2m

r2
ṫ2 +

ṙ2
(

1− 2m
r

+ a2

r2

)2

(
2m

r2
− 2a2

r3

)

⇒ 0 = r̈ −

(
m
r2

− a2

r3

)

ṙ2

1− 2m
r

+ a2

r2

+
m

r2
ṫ2
(

1− 2m

r
+

a2

r2

)

= r̈ −
(
mr − a2

)
ṙ2

r3 − 2mr + a2r
+

m

r2
ṫ2
(

1− 2m

r
+

a2

r2

)

,

(21)
whereas the one from part b) yields

0 =
d

dτ

(

2ṙ

1− 2mr
r2+a2

)

+
2m

r2
ṫ2 +

ṙ2
(

1− 2mr
r2+a2

)2

(

− 2m

r2 + a2
+

2mr

(r2 + a2)2
2r

)

=
2r̈

1− 2mr
r2+a2

− 2ṙ
(

1− 2mr
r2+a2

)2

(

− 2m

r2 + a2
+

2mr

(r2 + a2)2
2r

)

ṙ

+
2m

r2
ṫ2 +

ṙ2
(

1− 2mr
r2+a2

)2

(

− 2m

r2 + a2
+

2mr

(r2 + a2)2
2r

)

⇒ 0 = r̈ −

(
2mr2

(r2+a2)2
− m

r2+a2

)

ṙ2

1− 2mr
r2+a2

+
m

r2
ṫ2
(

1− 2mr

r2 + a2

)

= r̈ − m(r2 − a2)ṙ2

(r2 + a2)(r2 + a2 − 2mr)
+

m

r2
ṫ2
(

1− 2mr

r2 + a2

)

.

(22)

d) Why do they not agree? Do they, if a = 0?

As expected, the equations of motion for a particle inbound radially in the equatorial plane and along
the polar axis differ. The reason is that the metric is not isotropic: space looks differently when viewed
from the origin r = 0 depending on the direction.

If however, we set a = 0 we would expect the equations to agree since all angle dependencies in our
metric come with a factor of a. Indeed, we find for both cases,

0 = r̈ +
mṙ2

2mr − r2
+

m

r2
ṫ2
(

1− 2m

r

)

. (23)

4 Metric comparison

Given the line element
ds2 = du2 + cosh2 u dv2

we notice its similarity with two-dimensional radial coordinates

ds2 = dr2 + r2 dφ2.

So let’s call u and r the radii in Lobatchevski space and Euclidean space, respectively.
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a) What are the circumferences of a circle in both spaces?

Geometrically, a circle is defined as the set of all points that are at a given distance r, the radius, from
a given point c, the center. On a smooth manifold, this set of points forms a closed path γ. The length
of this path can be calculated from the line element via

I[γ] =

∫

γ

ds =

∫

γ

√

gµν dx
µ dxν . (24)

We assume that in both Euclidean and Lobatchevski space, the radii take values in r ∈ (0,∞) ∋ u and
the angles φ ∈ (0, 2π) ∋ v. For the case of radial coordinates, inserting the above line element then
gives

IE =

∫

γ

√

dr2 + r2 dφ2 =

∫ 2π

0

√
(

dr

dφ

)2

+ r2 dφ =

∫ 2π

0
r dφ = 2πr, (25)

where dr/dφ = 0, because we take r to be the radius of our circle which is not supposed to change
along the length of it. Using the same argument for Lobatchevski coordinates, we find that in this
space, the circumference of a circle is given by

IL =

∫

γ

√

du2 + cosh2 u dφ2 =

∫ 2π

0

√
(

du

dv

)2

+ cosh2 u dφ =

∫ 2π

0
coshu dφ = 2π coshu. (26)

b) What are the surfaces of circles in both spaces?

If metric is symmetric, the line element can be rewritten as ds =
∏

µ
√
gµµ dxµ. For spherical coordinates,

this gives
ds =

√
grrgφφ dr dφ = r dr dφ, (27)

and for Lobatchevski coordinates

ds =
√
guugvv du dv = coshu du dv. (28)

Integrating this measure over all angles from 0 to r and u, respectively, yields

AE =

∫ 2π

0

∫ r

0
r′ dr′ dφ′ = 2π

1

2
r′

2

∣
∣
∣
∣

r

0

= πr2 (29)

and

AL =

∫ 2π

0

∫ u

0
coshu′ du′ dv′ = 2π sinhu′

∣
∣u

0
= 2π sinhu (30)

c) How do you explain the differences? How do you interpret them?

Euclidean space is flat, Lobatchevski space is curved. Curvature has an effect on lengths and areas. In
this case, since Lobatchevski space is hyperbolic, i.e. has a constant negative curvature (think wormhole
or a cylinder compressed in the middle), both length and area of a circle should increase much more
rapidly with radius, than in Euclidean space. Indeed, coshu = 1

2(e
−u + eu) grows much faster than r.

d) Can you bring both line elements into Cartesian form, i.e. ds2 = dx2 + dy2?

Two-dimensional Cartesian coordinates (x, y) are given in terms of polar coordinates (r, φ) by

(
x(r, φ)
y(r, φ)

)

=

(
r cosφ
r sinφ

)

. (31)

This relation can be inverted:
(
r(x, y)
φ(x, y)

)

=

( √

x2 + y2

arctan
(
x
y

)

)

. (32)
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Therefore, dr = dr(x, y) = x dx√
x2+y2

+ y dy√
x2+y2

and dφ = dφ(x, y) = y dx
x2+y2

− x dy
x2+y2

. Inserting these

relations into the line element ds2 = dr2 + r2 dφ2, we recover the Cartesian line element:

ds2 =

(

x dx
√

x2 + y2
+

y dy
√

x2 + y2

)2

+ (x2 + y2)

(
y dx

x2 + y2
− x dy

x2 + y2

)2

=
x2 dx2

x2 + y2
+

2xy dx dy

x2 + y2
+

y2 dy2

x2 + y2
+

y2 dx2

x2 + y2
− 2xy dx dy

x2 + y2
+

x2 dy2

x2 + y2

=
1

x2 + y2
(
x2 dx2 + y2 dy2 + y2 dx2 + x2 dy2

)
= dx2 + dy2

(33)

Since radial coordinates are simply an adapted set of coordinates to describe spherically symmetric
systems in flat Euclidean space, it should come as no surprise, that we were able to transform the line
element back into Cartesian coordinates.

Lobatchevski space, however, is hyperbolic. It has curvature, regardless of the coordinate set used to
describe it. Thus, it is impossible to bring its line element into Cartesian form.

5 Friedmann universe

a) What are the two big assumptions in FLRW-cosmology and how do they manifest in the
line element ds2?

A Friedmann-Lemaître-Robertson-Walker cosmology assumes the universe is isotropic and homogeneous.
These assumptions are sufficient to derive the general form of the metric (i.e. Einstein’s field equations
are not required for this; they only serve to determine the scale factor a2(t)). The line element reads

ds2 = c2 dt2 − a2(t)

[
dr2

1− kr2
+ r2

(
dθ2 + sin2 θ dφ2

)
]

. (34)

For every FLRW-metric, there exists a set of coordinates such that the spatial part of the metric is
time-independent.

b) The line element seems to be singular at a certain radius r; does the Universe become
unphysical at this radius?

Indeed, at r = 1/
√
k, the grr -component of the metric diverges. However, this is a coordinate singularity

and not physically rooted. The Ricci-scalar of eq. (34) is

R = − 6

a2
(aä+ ȧ2 + k). (35)

It is completely independent of r, θ, and φ, i.e. spatially homogeneous, and in particular, does not
diverge for r = 1/

√
k.

c) Write down the radial equation of motion of a particle in a FLRW-cosmology. Does
Newton’s first law apply?

Following the argument made in problem 3, we take as our Lagrangian again the square of the line
element differentiated with respect to the proper time τ , i.e.

L = gµν
dxµ

dτ

dxν

dτ
= c2ṫ2 − a2(t)

[

ṙ2

1− kr2
+ r2

(

θ̇2 + sin2 θ φ̇2
)
]

. (36)
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Then the Euler-Lagrange equation for the radial coordinate r reads

0 =
d

dτ

∂L

∂ṙ
− ∂L

∂r
=

d

dτ

(

−a2(t)
2ṙ

1− kr2

)

+ a2(t)

(

2krṙ2

(1− kr2)2
+ 2r

(

θ̇2 + sin2 θ φ̇2
)
)

= −2a(t)ȧ(t)ṫ
2ṙ

1− kr2
− a2(t)

2r̈

1− kr2
− a2(t)

4krṙ2

(1− kr2)2

+ a2(t)

(

2krṙ2

(1− kr2)2
+ 2r

(

θ̇2 + sin2 θ φ̇2
)
)

⇒ 0 = r̈ + 2
ȧ(t)

a(t)
ṫṙ +

krṙ2

1− kr2
− r(1− kr2)

(

θ̇2 + sin2 θ φ̇2
)

.

(37)

The question is not entirely unambiguous. It could be that by ‘radial equation of motion’ not the
Euler-Lagrange of the coordinate r is meant but instead (as in problem 3) the equation of motion of a
particle moving only radially. In that case, eq. (37) reduces to

0 = r̈ + 2
ȧ(t)

a(t)
ṫṙ +

krṙ2

1− kr2
(38)

Newton’s first law states that when viewed in an inertial reference frame, an object either remains at
rest or continues to move at a constant velocity without change of direction, unless acted upon by an
external force. Considering the forceless case, r̈ = 0, we find

0 = 2H(t)ṫ+
krṙ

1− kr2
⇒ ṙ

ṫ
=

dr

dτ

dτ

dt
=

dr

dt
= −2H(t)

1− kr2

kr
, (39)

where H(t) = ȧ(t)/a(t) is the Hubble parameter. Equation (39) clearly shows that the velocity changes
over time even if no forces act upon the test particle. This is clearly in violation of Newton’s first law.

d) The covariant Ricci-tensor in this metric is

R =







−3 ä
a

0 0 0

0 aä+2ȧ2+2k
1−kr2

0 0

0 0 r2(aä+ 2ȧ2 + 2k) 0
0 0 0 r2(aä+ 2ȧ2 + 2k) sin2 θ







.

Find the Ricci scalar! Why is it finite even if k = 0?

To find the Ricci-scalar given in eq. (35), we contract the Ricci-tensor R = gµνRµν , where gµν is just
1

gµν
due to the reciprocity of the metric, gµνgνλ = δµλ and the FLRW-metric being symmetric. Thus,

R = −3
ä

a
− 1− kr2

a2
aä+ 2ȧ2 + 2k

1− kr2
− 1

a2r2
r2(aä+ 2ȧ2 + 2k)

− 1

a2r2 sin2 θ
r2(aä+ 2ȧ2 + 2k) sin2 θ

= −3
ä

a
− 3

aä+ 2ȧ2 + 2k

a2
= − 6

a2
(aä+ ȧ2 + k).

(40)

For k = 0, we have a curvature of R = − 6
a2
(aä + ȧ2), which is indeed finite. It is again not clearly

stated, but we assume that the question is actually aimed at an explanation of why R is not zero.
This is because k = 0 only eliminates spatial curvature. The Ricci-scalar, however, is a measure of the
curvature of spacetime. Spacetime as a whole is, of course, still bent due to the presence of the scale
factor a(t).
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