Quantum Field Theory II - Final Exam

Tillmann Plehn, Heidelberg University

28.07.2012, 10:00-12:00

Problem 1: One-loop calculations in QED

Let us consider QED with a massless fermion field, which we describe by means of the Lagrangian $\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+i \bar{\psi} \not D \psi$, with the standard notation for the gauge covariant derivative $D_{\mu}=\partial_{\mu}+i e A_{\mu}$.

1. Using the corresponding Feynman rules, work out the general expression for the one-loop correction to the fermion propagator, $i \mathcal{M}[f(p) \rightarrow f(p)]$. Show explicitly that the result can be cast into $i \mathcal{M}[f(p) \rightarrow f(p)]=8 \pi \alpha_{\mathrm{em}} \bar{u}(p) \not p F\left(p^{2}\right) u(p)$, where $\alpha_{\mathrm{em}}=e^{2} / 4 \pi$ and the one-loop form factor $F\left(p^{2}\right)$ reads

$$
\begin{equation*}
F\left(p^{2}\right)=-\int_{0}^{1} \mathrm{~d} x \int \frac{\mathrm{~d}^{4} l}{(2 \pi)^{4}} \frac{x}{\left[l^{2}+x(1-x) p^{2}\right]^{2}} . \tag{1}
\end{equation*}
$$

Bear in mind that the Feynman parameters are a suitable handle for computing one-loop integrals. In particular, the following identity might be useful,

$$
\begin{equation*}
\frac{1}{a^{p} b^{q}}=\frac{\Gamma(p+q)}{\Gamma(p) \Gamma(q)} \int_{0}^{1} \mathrm{~d} x \frac{x^{p-1}(1-x)^{q-1}}{[a x+b(1-x)]^{p+q}} . \tag{2}
\end{equation*}
$$

Remember also that $\int \mathrm{d}^{4} k k=0$.
2. By similar arguments, one can prove that the one-loop correction to the photon propagator reads $i \mathcal{M}[\gamma(p) \rightarrow \gamma(p)]=\epsilon_{\mu}^{*}(p) \Pi^{\mu \nu}\left(p^{2}\right) \epsilon_{\nu}(p)$, with the polarization tensor yielding

$$
\begin{equation*}
\Pi^{\mu \nu}\left(p^{2}\right)=\alpha_{\mathrm{em}}\left[F_{1}\left(p^{2}\right) g^{\mu \nu}+F_{2}\left(p^{2}\right) \frac{p^{\mu} p^{\nu}}{p^{2}}\right] . \tag{3}
\end{equation*}
$$

Upon explicit calculation, one finds that $F_{1}\left(p^{2}\right)=-F_{2}\left(p^{2}\right)$. Explain why this is indeed a necessary requirement for QED to be consistently defined as a gauge theory. What is the physical interpretation of this result?

Problem 2: Renormalization Group Equation for QED

Let us consider the renormalization of QED at one-loop. To fix the notation, we first set along the relation between the bare coupling constant e_{0}, the fermion field ψ_{0}, the fermion mass m_{0}, and the photon field A_{0}; and their corresponding renormalized quantities:

$$
\begin{equation*}
e_{0}=Z_{e} e, \quad \psi_{0}=Z_{\psi}^{1 / 2} \psi, \quad m_{0}=Z_{m} m, \quad\left(A_{0}\right)_{\mu}=Z_{A}^{1 / 2} A_{\mu} \tag{4}
\end{equation*}
$$

The renormalization of the coupling constant we can fix by studying the fermion-photon interaction,

$$
\begin{equation*}
\mathcal{L} \supset e_{0} \bar{\psi}_{0} \gamma^{\mu} \psi_{0}\left(A_{0}\right)_{\mu}=e Z \bar{\psi} \gamma^{\mu} \psi A_{\mu} \tag{5}
\end{equation*}
$$

while the renormalization of the fermion mass ensues from the mass term in the Lagrangian,

$$
\begin{equation*}
\mathcal{L} \supset m_{0} \bar{\psi}_{0} \psi_{0}=Z_{m} m \bar{\psi} \psi \tag{6}
\end{equation*}
$$

Finally, we need the renormalization factors, which in the $\overline{\mathrm{MS}}$ scheme render

$$
\begin{align*}
Z^{\overline{\mathrm{MS}}}=1-\frac{\alpha}{2 \pi} \frac{1}{\epsilon}, & Z_{\psi}^{\overline{\mathrm{MS}}}=1-\frac{\alpha}{2 \pi} \frac{1}{\epsilon} \\
Z_{A}^{\overline{\mathrm{MS}}}=1-\frac{2 \alpha}{3 \pi} \frac{1}{\epsilon}, & Z_{m}^{\overline{\mathrm{MS}}}=1-\frac{2 \alpha}{\pi} \frac{1}{\epsilon} . \tag{7}
\end{align*}
$$

From eqs. (4) and (5), one gets the following relations:

$$
\begin{equation*}
\text { i) } \alpha_{0}=\alpha Z_{A}^{-1} Z_{\psi}^{-2} Z^{2} \mu^{\epsilon}, \quad \text { ii) } m_{0}=m Z_{m} Z_{\psi}^{-1} \mu^{\epsilon} \tag{8}
\end{equation*}
$$

1. From the logarithms of eq. (8) i) and ii), derive the β-function at $\mathcal{O}\left(\alpha^{2}\right)$ and the mass anomalous dimension γ_{m} at $\mathcal{O}(\alpha)$. Recall that these quantities are defined as $\beta \equiv \frac{\mathrm{d} \alpha(\mu)}{\mathrm{d} \ln (\mu)}$ and $\gamma_{m} \equiv \frac{1}{m} \frac{\mathrm{~d} m(\mu)}{\mathrm{d} \ln (\mu)}$.
Hint: Bear in mind that $\frac{\mathrm{d} \alpha_{0}}{\mathrm{~d} \ln (\mu)}=0$ and $\frac{\mathrm{d} m_{0}}{\mathrm{~d} \ln (\mu)}=0$.
2. Use the above results to solve the equations $\beta \equiv \frac{\mathrm{d} \alpha(\mu)}{\mathrm{d} \ln (\mu)}$ and $\gamma_{m} \equiv \frac{1}{m} \frac{\mathrm{~d} m(\mu)}{\mathrm{d} \ln (\mu)}$ explicitly. Sketch the resulting scale dependence of the renormalized coupling constant $\alpha(\mu)$ and the fermion mass $m(\mu)$.
3. Suppose that we modify QED in such a way that the new β-function of the resulting theory can now be written as $\beta=\beta_{\mathrm{QED}} \alpha^{2}+\beta_{4} \alpha^{4}$, with β_{4} being a real parameter. Discuss the value and the stability of the corresponding fixed points for the possible values of β_{4}. In which cases would the theory be infrared safe? And asymptotically free?

Problem 3: QCD Feynman rules and color factors

Consider the Feynman diagrams displayed in fig. 1, which describe part of the tree-level and one-loop contributions, respectively, to the production of top-quark pairs at the LHC.

1. For each of these diagrams, write down the complete scattering matrix element $i \mathcal{M}(u \bar{u} \rightarrow t \bar{t})$, making use the QCD Feynman rules.
2. Compute (just) the overall color actor for
(a) the squared of the tree-level diagram.
(b) the interference of the tree-level and the one-loop diagrams: $M_{\text {tree }}^{\dagger} M_{\text {loop }}$.

Useful Identities:

$$
\begin{array}{ll}
\operatorname{Tr}\left(T^{A} T^{B}\right)=\frac{1}{2} \delta^{A B}, & \left(T^{A}\right)_{i j}\left(T^{A}\right)_{k l}=\frac{1}{2}\left(\delta_{i l} \delta_{j k}-\frac{1}{N_{\mathrm{c}}} \delta_{i j} \delta_{k l}\right) \tag{9}\\
f^{A B C} f^{A B D}=3 \delta^{C D}, & 2 T^{B} T^{C}=\left[T^{B}, T^{C}\right]+T^{B}, T^{C}
\end{array}
$$

Figure 1: Tree-level and one-loop contributions to the production of top-quark pairs.

