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1 Path integral quantization

1.1 Transition amplitudes and correlation functions

• The path integral provides a formulation of quantum theory equivalent to canonical quantization.

• A quantum mechanical transition amplitude 〈qf , tf |qi, ti〉 = 〈qf |e
iĤ(tf−ti)|qi, ti〉 can, by partitioning

of the transition time δt =
tf−ti
N and insertion of complete sets of states 1 =

∫

Rdqk |qk〉〈qk| between
each partition, be expressed as

〈qf , tf |qi, ti〉 =

∫ q(tf )=qf

q(ti)=qi

Dq(t)Dp(t) ei
∫ tf
ti

dt L(p,q), (1)

with
∫ tf
ti
dt L(p, q) ≡ S[p, q] and L(p, q) = pq̇ −H(p, q).

• Analytic continuation by rotating t onto the lower half-plane via t→ t(1−iǫ) followed by performing
the momentum path integral as a Gaussian yields the Feynman-Kac formula

〈qf , tf |qi, ti〉 =

∫ q(tf )=qf

q(ti)=qi

Dq(t) ei
∫ tf
ti

dt L(q,q̇), (2)
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where the factor CN =
(
−im
2π δt

)N/2
from completion of the square is absorbed into Dq(t).

• The path integral for scalar fields φ(x) (as opposed to particles) is very similar to (2),

〈φf (x), tf |φi(x), ti〉 =

∫ φ(x,tf )=φf (x)

φ(x,ti)=φi(x)
Dφ ei

∫ tf
ti

d4xL(φ). (3)

The master formula for an n-point quantum correlation function reads

G(x1, . . . , xn) ≡ 〈Ω|T

n∏

j=1

φ̂(xj)|Ω〉 = lim
t→∞
·(1−iǫ)

∫
Dφ

∏n
j=1 φ(xj) e

i
∫ t
−t

d4xL(φ)

∫
Dφ ei

∫ t
−t

d4xL(φ)
(4)

– Time ordering T inside the path integral is taken care off automatically.

1.2 Generating functionals for correlation functions

• The generating functional Z[J ] of Green’s functions G(x1, . . . , xn) for some source J(x) reads

Z[J ] =

∫

Dφ eiS[φ]+iJ ·φ, (5)

where the functional inner product is defined as J · φ =
∫

R1,3d
4xJ(x)φ(x). Z[J ] maps the function

φ(x) to a number in C. It is called generating functional because

Z[J ]

Z[0]
=

∞∑

n=0

in

n!

( n∏

j=1

∫

R1,3

d4xjJ(xj)

)

G(x1, . . . , xn). (6)

• This can be solved for G(x1, . . . , xn) using the tools of functional calculus:

G(x1, . . . , xn) =
1

Z[0]

n∏

j=1

δ

iδJ(xj)
Z[J ]

∣
∣
∣
J=0

. (7)

• Z[0] contains no external points and represents the partition function Z[0] = e
∑

i Vi , where the

sum runs over all vacuum bubbles Vi of the theory. Consequently,
Z[J ]
Z[0] contains no vacuum bubbles.

• Counting of loops: A fully connected Feynman diagram with E external and I internal lines, V
vertices, and L loops (number of unfixed momentum integrals) satisfies Euler’s formula

L = I − V + 1. (8)

For Lint(φ) =
λ
n!φ

n(x) we have E + 2I = nV .1 Inserting eq. (8) yields

(n− 2)V = 2L+ (E − 2). (9)

Hence for fixed E, an expansion in L corresponds to an expansion in V .

1.3 Schwinger-Dyson equation

• An advantage of the path-integral method is that symmetries are more transparent. It becomes clear
that classical symmetries carry over to the quantum theory - but only provided the path integral
measure Dφ = Dφ′ is invariant. In that case, the Schwinger-Dyson equation

∫

Dφ
(

δS[φ]
δφ(x) + J(x)

)

eiS[φ]+iJ ·φ = 0 (10)

states the classical equation of motion δS
δφ + J = 0 (in presence of a source J), holds as an operator

equation in the quantum theory, i.e. inside the path integral (provided ∄ contact terms ∝ δ(x−xj)).

1Every vertex connects to n lines, while every external line connects to one and every internal line to two vertices.
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• For a continuous global classical symmetry φ → φ′ = φ + δφ with conserved Noether current
jµ(x) given by δS

δφ(x)δφ(x) = −∂µj
µ(x) = 0, acting on eq. (10) with

∏n
j=1

δ
iδJ(xj)

and taking J = 0

afterwards gives the Ward-Takahashi identity, i.e. the statement of current conservation up to
contact terms inside correlation functions,

∂µ

〈

Ω
∣
∣
∣Tjµ

n∏

j=1

φ(xj)
∣
∣
∣Ω

〉

= −i

n∑

j=1

〈Ω|Tφ(x1) . . . φ(xj−1) [δφ(x)δ(x− xj)]φ(xj+1) . . . φ(xn)|Ω〉. (11)

Like eq. (10), the Ward-Takahashi identity only holds for classical symmetries of S[φ] that leave the
measure invariant. If Dφ is affected, the symmetry is anomalous and current conservation (up to
contact terms) does not hold at the quantum level.

1.4 1PI effective action

• G(x1, . . . , xn) receives contributions from partially connected Feynman diagrams. As established
by the LSZ formalism, only fully connected Greens functions Gc(x1, . . . , xn) containing Feynman
diagrams which do not factor into subdiagrams, enter the computation of scattering amplitudes.

• The generating functional of Gc(x1, . . . , xn) is called effective action and denoted iW [J ]. It is

closely related to Z[J ] via Z[J ]
Z[0] = eiW [J ].

• An important subclass of fully connected Feynman diagrams are the 1-particle-irreducible (1PI)
diagrams, which cannot be cut into two non-trivial diagrams by cutting a single (internal) line.
These are generated by the 1PI effective action Γ[ϕ] defined as the Legendre transform of W [J ],

Γ[ϕ] =W [J ]− ϕ · J, (12)

where ϕ(x) ≡ δW [J ]
δJ(x) = 〈Ω|φ̂(x)|Ω〉J , and we assumed there to be a bijection between J and ϕ.2

• Γ[ϕ] and S[ϕ] are the same functionals at tree-level, i.e. Γ[ϕ] = S[ϕ] +K[ϕ] for some K[ϕ] starting

at one-loop. δΓ[ϕ]
δϕ(x) = −J(x) for J(x) = 0 yields the quantum effective equation of motion.

1.5 Fermionic path integral

• Fermionic anticommutation relations {ψ̂, ψ̂
†
} = 1, {ψ̂, ψ̂} = {ψ̂

†
, ψ̂

†
} = 0 can be implemented

using anticommuting (nilpotent) Grassmann-valued fields ψ(x) out of a Grassmann algebra A.

• The path integral for fermionic fields ψ(x), ψ̄(x) = ψ†(x)γ0 takes the form

〈ψf (xf ), tf |ψf (xi), ti〉 =

∫ ψ(x,tf )=ψf (x)

ψ(x,ti)=ψi(x)
Dψ̄Dψ ei

∫ tf
ti

d4xL(ψ,ψ̄), (13)

where L(ψ, ψ̄) = ψ̄(x)[iγµ∂µ − m0]ψ(x) + Lint. The four n × n-gamma-matrices (one for every
spacetime dimension) span the Clifford algebra Cℓn(C) defined by the anticommutator {γµ,γν} =
2 ηµν1n with n = 2d/2 = 4. To project initial and final states to the vacuum |Ω〉, the trick m0 →
m0 − iǫ can be used (just like in the bosonic case).

• The generating functional for fermionic correlators is defined as

Z[η, η̄] = 〈Ω|Tei
∫
R1,3

d4x [L(ψ,ψ̄)+ψ̄(x)η(x)+η̄(x)ψ(x)]|Ω〉 =

∫

Dψ̄Dψ eiS[ψ,ψ̄]+iψ̄·η+iη̄·ψ, (14)

with the external sources η̄(x), η(x) as Grassmann-valued classical fields.

2In the Euclidean theory WE [J ] is convex and such a one-to-one correspondence between sources and φ-v.e.v.s exists.
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1.6 Executive summary of QFT

• Start with a classical action S[φ] in which the field φ(x) arises as the continuum limit N → ∞ of a
system of N harmonic oscillators.

• In the classical limit ~ → 0, φ(x) is a definite function given by the classical equation of motion
δS[φ]/δφ(x) = 0. For ~ finite, quantum fluctuations arise. These are encoded in Z[J ], where the
path integral takes into account all possible functions φ(x) could assume.

• What we can compute in the quantum theory are correlation functions. In particular the quantum
expectation value of the field φ(x) in the presence of a source J is

ϕJ(x) ≡ 〈φ(x)〉J ≡ 〈Ω|φ̂(x)|Ω〉J =
1

Z[0]

∫

Dφφ(x) e−S[φ]+φ·J . (15)

• With our definition of W [J ], we can compute this as

ϕJ(x) = −
δW [J ]

δJ(x)
. (16)

• In terms of the Legendre transform Γ[ϕ] of W [J ], we have

δΓ[ϕ]

δϕ(x)
= J(x). (17)

By integrating out quantum fluctuations f(x) = φ(x)− ϕ(x), Γ[ϕ] gives a quantum effective action

e−Γ[ϕ] =
1

Z[0]

∫

Df e
−S[ϕ+f ]+ δΓ

δϕ
·f
. (18)

Replacing S[φ] by Γ[ϕ] introduces 1PI amputated vertices and fully resummed propagators. Thus,
computing at tree-level with Γ[ϕ] already gives the full quantum theory!

2 Renormalization

2.1 Superficial divergence

• For a scalar theory in d dimensions with (bare) Lagrangian L0 =
1
2(∂φ)

2 −
m2

0

2 φ
2 − λ0

n! φ
n, the naive

UV structure of a diagram D with L loops ∝
∫

Rd d
dk and I propagators ∝ (k2 −m2)−1 is

D
k→∞
−−−→

∫

Rd d
dk1 . . .

∫

Rd d
dkL

k21 . . . k
2
I

. (19)

The superficial degree of divergence D of D is defined as the difference in powers of momentum
between numerator and denominator, i.e. D = dL− 2I.

– Regularizing the divergence with a momentum cutoff Λ, i.e.
∫∞
−∞dk → limΛ→∞

∫ Λ
−Λdk, dia-

grams fall into three categories of UV behavior: 1. D > 0 ⇒ D ∝ ΛD (superficially divergent).
2. D < 0 ⇒ D ∝ Λ−|D| (superf. finite). 3. D = 0 ⇒ D ∝ ln(Λ) (superf. log-divergent).

– The actual UV behavior may differ from the superficial one for three reasons: 1. For D ≥ 0,
a diagram may still be finite if symmetry constrains the amplitude or leads to cancellations
among infinite terms. 2. For D < 0, a diagram may still be divergent if it contains a divergent
subdiagram. 3. Tree-level diagrams have D = 0, but are finite.

• For L0 as above, D depends on the mass dimension of the coupling [λ0] = d− d−2
2 n as

D = d− [λ0]V −
d− 2

2
E. (20)

The UV properties of a theory are decisively determined by (the sign of) the prefactor of V .
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1. If D ∝ +V , there exists an infinite number of superficially divergent amplitudes since for every
E, diagrams with high enough V diverge. The theory is thus non-renormalizable ⇔ [λ0] < 0.

2. If D 6∝ V (and d ≥ 2), only a finite number of diagrams is divergent but divergences appear at

every loop-order. Such theories are called renormalizable and arise for [λ0] = 0.

3. If D ∝ −V , for high-enough loop order, all diagrams become superf. finite, making the theory
super-renormalizable ⇔ [λ0] > 0.

– E.g. for n = d = 4, we have [λ0] = 0 and D = 4−E independent of L or V . Hence, φ4-theory in
d = 4 is renormalizable with only three superficially divergent diagrams (at every loop-order).

• By the BPHZ theorem, (power counting) renormalizability is sufficient for a theory to maintain
predictivity. (The non-trivial aspect of this theorem concerns the complete cancellation of divergent
subdiagrams by counterterms of the previous loop-order.)

2.2 Renormalization of QED

• Regularization is the practice of isolating divergences. The three common methods in QFT are

1. Cutoff reg. regularizes divergent momentum integrals via
∫∞
−∞dk → limΛ→∞

∫ Λ
−Λdk. However,

this is inconsistent with the Ward identities and gauge invariance because transformations of the
sort Aµ → Aµ+ ∂µα(x) cannot be carried out at the cutoff, making it a useless method in QED.

2. Dimensional reg. (used most often) evaluates divergent integrals in d = 4− ǫ dimensions. The
result is expanded in powers of ǫ which isolates the divergence as a pole as ǫ→ 0.

3. Pauli-Villars reg. takes a divergent diagram and subtracts from it the same diagram but with
a fictitious massive particle in the loop, e.g. a photon of mass Λ. This removes the divergence
because for k → ∞, the mass in the loop becomes irrelevant and both diagrams asymptote to the
same value. But for Λ → ∞, the auxiliary diagram vanishes and we recover the actual process.

• The QED Lagrangian with symmetry group U(1) describes the coupling of spin-1/2 bispinor fields
ψ(x) (electron, positron) to a covariant spin-1 gauge field Aµ(x) (photon) generated by the trans-
formation behavior of the spinors themselves. LQED can be expressed i.t.o. the field strength tensor
Fµν = ∂µAν − ∂νAµ, and the covariant derivative Dµ = ∂µ + ieAµ as

LQED = −
1

4
Fµν F

µν + ψ̄(iγµDµ −m)ψ = −
1

4
F 2 + ψ̄(iγµ∂µ −m)ψ −Aµj

µ, (21)

where m is the fermion mass, e is the coupling constant equal to the (electric) charge of the bispinor
field and jµ = eψ̄γµψ is the conserved fermion current associated with the U(1) symmetry.

• A QED diagram with Ee (Eγ) external fermions (photons) has superficial degree of divergence

D = 4−
3

2
Ee − Eγ . (22)

Since [e] = 0, QED is renormalizable with seven superficially (four actually3) divergent diagrams.

2.3 Callan-Symanzyk equation

• Renormalization automatically introduces a mass scale µ - the renormalization scale - into the
quantum theory via the renormalization conditions (even when the classical theory was scale-free).

• To quantify the dependence of coupling constants on the renormalization scale µ, we can study the
Callan-Symanzik (or renormalization group) equation (here for massive φ4-theory)

(

µ∂µ + βλ∂λ + βm2∂m2 + n · γφ

)

Gn(x1, . . . , xn) = 0, (23)

3The symmetries at work preventing some of QED’s superficial divergences are discrete charge conjugation jµ → −jµ,
Aµ → −Aµ, chiral symmetry (arises for m = 0), and the Ward identity kµDµ = 0 for a diagram D = ξµDµ involving
an external photon of momentum kµ (k2 = 0) and polarization ξµ.
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where βλ = µdλ
dµ |λ0,m0

, βm2 = µdm2

dµ |λ0,m0
, and γφ = µ

2
d ln(Z)

dµ |λ0,m0
. βλ for example describes how

the physical coupling λ changes as we change the energy scale µ at which we perform an experiment.

– The CS equation allows us to (perturbatively) compute βλ, βm2 , γφ explicitly by first computing

Gn(x1, . . . , xn) and then plugging it into (23). E.g. βλ = 3λ2

16π2 +O(λ3) for massless φ4-theory.

– The change in λ(µ) as we change µ is called renormalisation group flow or running coupling.
λ(µ) gives the strength of the interaction at energy scale µ.

• Depending on the sign of β there are three qualitatively different RG behaviors.

1. If β(λ) > 0, λ(µ) increases as µ increases. If we start with a perturbative value λ0 at µ0 and
follow the RG flow for increasing µ, then at some scale, λ(µ) may cease to be perturbative. If
by a non-perturbative analysis beyond that point one finds β(λ) > 0 ∀λ, then λ(µ) increases
indefinitely. This can result in a divergent coupling λ→ ∞, either asymptotically as µ→ ∞, or
even for finite values of µ→ µL. The latter instance is referred to as a Landau pole.

– One appears e.g. in QED at µL = µ0 exp
(

3π
2α0

)

since

α(µ) =
α0

1− 2α0

3π ln
(

µ
µ0

)
µ→µL−−−−→ ∞. (24)

On the other hand, β(λ) > 0 means the theory is perturbatively well-defined in the infrared,
where λ becomes small. If λ → 0 as µ → 0, the theory even becomes free in the infrared. Such
a non-interacting fixed point is called Gaussian fixed point.

2. If β(λ) < 0, λ(µ) decreases as µ increases. The theory is perturbative in the UV, but may cease
to be perturbative in the IR. If λ → 0 as µ → ∞, the theory becomes free in the UV. This is
called asymptotic freedom.4

3. If β = 0 ∀µ, λ is independent of µ. Such a theory is conformal, i.e. scale-independent. Since the
counterterms do not induce any scale dependence, there cannot be any UV divergences altogether
and the theory is UV finite.

2.4 Wilsonian interpretation

• The original understanding of renormalization was:

– The cutoff Λ is merely a way to regulate divergent integrals without physical meaning.

– Renormalization is a trick to remove the cutoff-dependence in physical amplitudes. This procedure
allows us to take Λ → ∞ without encountering divergences.

– This comes at the cost of losing predictability for some physical masses and couplings.

– In a renormalizable theory, only a finite number of such physical couplings must be taken as input
parameters from experiment to end up with a well-defined (otherwise predictive) theory.

• The Wilsonian approach gives a different interpretation: We should think of QFT as an effective

description accurate only for energies below an intrinsic cutoff Λ0. At energies beyond Λ0 the field
theory picture does not correctly model the microscopic degrees of freedom.5

– The only known theory that is UV finite and asymptotes to a weakly coupled QFT in the in-
frared is string theory, which abandons the concept of pointlike particles, replacing them with
excitations of a one-dimensional string of length ℓs. The string length is the intrinsic cutoff of the
low-energy effective QFT. At distances near ℓs, the theory deviates from a regular field theory in
that it becomes non-local, thus avoiding UV divergences and and arbitrary input parameters.

4In d = 4, the only known example for asymptotic freedom is Yang-Mills theory.
5For example, QFT neglects gravity but all matter gravitates and gravity becomes non-negligible (compared to the
other forces) near the Planck scale Mpl ≈ 1/

√
GN ≈ 1018 GeV.
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• Integrating out the degrees of freedom between the regulator Λ and an even smaller cutoff Λ0 < Λ
yields the Wilsonian effective action Seff

W . When computing correlators at scales below Λ0 via
Seff
W , only momenta |k| ≤ Λ0 appear in the loops since all effects of the modes with Λ0 < |k| < Λ are

already encoded in Seff
W . This is not to be confused with the quantum effective action Γ[ϕ] which

gives the full quantum theory already at tree-level. Seff
W includes only those quantum effects due to

the integrated-out modes k between Λ0 < |k| < Λ and loops must still be performed.

– Successive applications of this integration to a lower cutoff gives rise to the renormalisation

semi-group (semi because we can only lower the cutoff; there does not exist an inverse operation).

– The running couplings in the Wilsonian picture are interpreted as the dependency of the couplings
in Seff

W on the cutoff. This identifies Λ0 as the renormalization scale µ.

3 Quantisation of Yang-Mills theory

3.1 Classical Yang-Mills theory

• The gauge field Aµ(x) of a Yang-Mills theory with non-Abelian Lie groupH6 (whose elements are
the gauge transformations that leave the theory invariant) takes values in the associated Lie algebra

h. h is a vector space equipped with a non-associative antisymmetric bilinear map [·, ·] : h× h → h,
the Lie bracket.

• Like any element of h, Aµ(x) can be expressed i.t.o. of a basis {T a}, a ∈ {1, . . . , dim(h)} of h (that
forms a complete set of generators of the underlying Lie group H):

Aµ(x) = Aµ
a(x)T

a (summation over a implied) (25)

• The basis elements satisfy the Lie algebra’s defining relation

[T a, T b] = ifabcT
c, (26)

i.t.o. the structure constants fabc .
7 Eq. (26) in turn fulfills the Jacobi identity

[
[T a, T b], T c

]
+
[
[T b, T c], T a

]
+
[
[T c, T a], T b

]
= 0. (27)

– As an example, the Lie algebra su(2) of dimension 3 has as one possible basis the three Pauli
matrices σi which generate the corresponding Lie group SU(2). In this basis, the structure
constants are given by the components of the Levi-Civita symbol ǫijk.

• Every Lie algebra also possesses a symmetric bilinear form, the Killing form

κab = T a ◦ T b, (28)

which is invariant under the adjoint action of the Lie group H,

hT a h−1 ◦ hT a h−1 = T a ◦ T b ∀h ∈ H. (29)

– When working with H in matrix representation, e.g. H = SU(N), the generators T a are Hermi-
tian traceless N ×N -matrices and the Killing form ◦ acts simply as the trace on h,

T a ◦ T b = trh(T
a T b) =

1

2
δab. (30)

The last equality only holds if H is compact as a manifold, in which case the Killing form is
positive definite and can be suitably normalized.

6Generally, any compact, semi-simple Lie group will do, but most forms of Yang-Mills theory are based on SU(N) with
associated Lie algebra su(N).

7The fab
c restrict the result of taking the Lie bracket of two generators T a, T b to a linear combination of all generators

{T c}, thereby determining the Lie brackets of all elements of h. This almost completely establishes the group structure
of H, explaining the name structure constants.
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– The Killing form κab and its inverse8 cκab can be used to raise and lower Lie-algebra indices, e.g.

fabc = fabdκ
dc. (31)

With all indices appearing on the same footing, the structure constants are totally antisymmetric
and therefore invariant under cyclic permutations.9

• Under a gauge transformation U ∈ H parametrized as U(x) = e−igα(x) with g ∈ R and α(x) ∈ h

the gauge potential Aµ(x) transforms to linear order as

Aµ(x) → Aµ(x) +Dµα(x), (32)

where the adjoint covariant derivative acts on h-valued fields α(x),

Dµα(x) ≡ ∂µα(x) + ig
[
Aµ(x), α(x)

]
. (33)

• The associated field strength tensor of Aµ is given by

Fµν(x) =
1

ig

[
Dµ, Dν

]
= ∂µAν(x)− ∂νAµ(x) + ig

[
Aµ(x), Aν(x)

]
. (34)

– Fµν transforms under the adjoint action of H, Fµν → U Fµν U
−1, and satiefies the Bianchi

identity D(ρFµν) = 0.

– I.t.o. the field strength Fµν , the gauge-invariant Yang-Mills Lagrangian can be written as

LYM(A) = −
1

2
trh,R1,3(F 2) = −

1

4
F a
µν F

µν
a . (35)

The commutator in Fµν introduces cubic and quartic gauge field interactions into LYM. The
gauge field’s equation of motion is

DµF
µν = 0 ⇔ ∂µF

µν = −ig
[
Aµ(x), F

µν
]
. (36)

3.2 Quantizing Yang-Mills theory

• Gauge invariance as well as the fact that A0(x) appears without a time-derivative in LYM, i.e. is a
non-dynamical field without conjugate momentum Π0, complicates the quantization of Yang-Mills
theory. Variation of the action SYM[A] w.r.t. to A0(x) yields DiF

0i = 0 (i ∈ {1, 2, 3}) which is itself
a non-dynamical constraint, with A0(x) merely an unphysical Lagrange multiplier enforcing it.

• Canonical quantization of constrained systems requires special technology (e.g. the Gupta-Bleuler
procedure for U(1) gauge theories). Hence, path integral quantization is preferred for Yang-Mills.

• The naive path integral quantization of a gauge field Aµ proceeds by formulating an action S[A],
inverting the kinetic term (K · A)µ = −∂2Aµ + ∂µ∂νA

ν to find the propagator iDF = K−1, and
then perturbatively tackling the interacting theory. This runs into trouble because K is in fact not
invertible due to its non-trivial kernel ker(K) 6= {0}. Rather, (K · ∂α) = 0 ∀α(x) ∈ h.10

• The cure is to remove the non-invertibility of K by excluding all but one element out of each set of
gauge-equivalent field configurations related to first order by Aµ → Aµ + ∂µα. Untruncated, a full
gauge transformation is given by

Aµ → Aµ
h = hAµh−1 +

i

g
(∂µh)h

−1, for any h ∈ H. (37)

8c is merely a normalization factor determined by the structure of the Lie group H as a manifold.
9This is not so much naturally the case as up to our choice of basis matrices {T a}. It can be proven that a basis always
exists in which the fabc have these properties.

10This problem is entirely due to gauge invariance and has nothing to do with the gauge group being Abelian or not.
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Aµ and Aµ
h are physically equivalent and lead the path integral to overcount because if one satisfies

the e.o.m. so does the other. Given any Aµ, all equivalent field configurations lie in the same orbit

OA =
{
Aµ

h|h ∈ H
}
. (38)

Hence, let A denote the space of all field configurations Aµ(x), then the physically inequivalent ones
are captured precisely by the quotient space A/H which picks out exactly one field per orbit.

• Some path integral manipulations yield the Yang-Mills partition function

ZYM =

∫

A
DAδ[F (A)] det(∆FP) e

iSYM[A], (39)

where the argument of the functional Dirac delta is the gauge fixing condition F (A) which, given
any field configuration Aµ(x) ∈ A achieves F (Ah) = 0 (ideally) for exactly one unique h ∈ H11,

thereby effectively reducing the integration domain from A to A/H. ∆FP = −∂F (A)
∂Aµ Dµ is the

Faddeev-Popov matrix. Eq. (39) can be used to calculate vacuum expectation values of any
(gauge-invariant!) operator O(A) = O(Ah) by the usual t→ ∞(1− iǫ) prescription (see eq. (4)).

3.3 Faddeev-Popov ghosts

• Introducing the h-valued Nakanishi-Lautrup auxiliary field B(x), we can rewrite δ[F (A)] as

δ[F (A)] =

∫

DB ei
∫
R1,3

d4xBa(x)Fa(x). (40)

With the Grassmann-h-valued Faddeev-Popov ghost c(x) and antighost c̄(x), ∆FP becomes

∆FP =

∫

Dc̄Dc ei
∫
R1,3

d4x c̄a(x) [∆FPc(x)]
a

. (41)

Inserting eqs. (40) and (41) into eq. (39), gives ZYM as

ZYM =

∫

DADBDc̄Dc eiS[A,B,c̄,c]. (42)

where the ABc action is

S[A,B, c̄, c] =

∫

R1,3

d4x
(

−
1

4
F a
µν F

µν
a +Ba(x)F

a(x) + c̄a(x) [∆FP c(x)]
a
)

. (43)

The ghosts transform as scalar fields under SO(1, 3), but have fermionic statistics due to their
Grassmannian nature. Thus they violate the spin-statistics theorem as well as unitarity since their
Fock space does not have a positive definite norm.

3.4 BRST symmetry and physical Hilbert space12

• The problem of determining the physical Hilbert space Hphys has two parts. We need to 1. guarantee
a positive-definite norm on Hphys, and 2. show that time-evolution does not lead out of Hphys, i.e.
the S-matrix needs to be a unitary operator on Hphys. If the criterion for a state to lie in Hphys is
related to a symmetry of the full interacting theory, then invariance of the physical Hilbert space
under time-evolution follows automatically because the S-matrix respects all symmetries.

11The ideal case usually doesn’t come to pass due to an irritating residual gauge symmetry that results in several
gauge equivalent field configurations, so-called Gribov copies, which all fulfill F (A) = 0. Thus even the gauge-fixed
path integral would still overcount if we did not restrict it to a fundamental domain where the gauge is unique.

12We are finished with the path integral and return to the formalism of canonical quantization from here on.
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• Note that the ABc action (43) possesses a global residual fermionic symmetry - the BRST

symmetry. It is implemented via the Grassmann-odd nilpotent operator R acting as

RAµ = −Dµc = −(∂µc+ ig[Aµ, c]), R c =
ig

2
{c, c̄}, R c̄ = −B, RB = 0. (44)

Defining ψ(x) = c̄a∂µA
µ
a +

ξ
2 c̄

aBa, with the gauge-fixing parameter ξ, the ABc Lagrangian reads

L(A,B, c̄, c) = −
1

4
F a
µν F

µν
a −Rψ, (45)

which fulfills RL = 0, because for the first term, R is just a gauge transformation on Aµ that leaves
F 2 invariant, and R2 = 0 in the second.

• Like any quantum symmetry, the BRST symmetry transformation

δǫΦ = ǫRΦ, Φ ∈ {A,B, c̄, c}, (46)

with ǫ a global Grassmann-valued parameter, is generated (in canonical quantization) by its asso-
ciated Noether charge (operator) Q̂BRST in the sense that

[
ǫQ̂BRST, Φ̂

]
= iδǫΦ̂. (47)

The BRST charge Q̂BRST is conserved, nilpotent, and hermitian:

˙̂
QBRST = 0 ⇔ [Ĥ, Q̂BRST] = 0, Q̂2

BRST = 0, Q̂†
BRST = Q̂BRST. (48)

• Some useful mathematics for finding Hphys of quantum Yang-Mills theory: Any state |ψ〉 in a vector

space H with a nilpotent linear operator Q̂ : H → H acting on it can be classified as either

– Q̂-closed if Q̂|ψ〉 = 0, i.e. if |ψ〉 ∈ ker(Q̂), or

– Q̂-exact if ∃ |χ〉 ∈ H such that |ψ〉 = Q̂|χ〉, i.e. if |ψ〉 ∈ Im(Q̂).

Since for all Q̂-exact |ψ〉 it holds that Q̂|ψ〉 = Q̂2|χ〉 = 0, we have Im(Q̂) ⊂ ker(Q̂). Further, the
Q̂-cohomology is defined as the quotient space C(Q̂) ≡ ker(Q̂)/ Im(Q̂).

• Back to physics: The space of states on which the time-evolution operator Û = Tei
∫
R
Ĥ dt is in-

dependent of the specific choice of gauge-fixing condition is given by ker(Q̂BRST). Time evolution
should not depend on gauge, so we require

|ψ〉 ∈ Hphys only if Q̂BRST|ψ〉 = 0. (49)

Within ker(Q̂BRST), the BRST-exact states have zero overlap with all other states since ∀ |ψ〉 ∈
Im(Q̂BRST) with |ψ〉 = Q̂BRST|χ〉 and ∀ |ξ〉 ∈ ker(Q̂BRST)

〈ψ|ξ〉 = 〈χ|Q̂†
BRST|ξ〉 = 〈χ|Q̂BRST|ξ〉

︸ ︷︷ ︸

0

= 0. (50)

States with zero overlap with all other states can never be measured and are therefore unphysical.
We thus define the physical Hilbert space of quantum Yang-Mills theory as the cohomology

Hphys = C(Q̂BRST) =
ker(Q̂BRST)

Im(Q̂BRST)
. (51)

• Evalutating the physical state condition eq. (49) reveals B-,c̄-, and c-excitations to be unphysical.
The only physical states are of the form

|ψ〉 ∈ Hphys ⇔ |ψ〉 = ξµ|A
µ(k)〉 with k2 = 0 and ξµk

µ = 0. (52)
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