Summary of Advanced Quantum Field Theory

Janosh Riebesell

April 2016

Contents

1	Patł	n integral quantization	1
	1.1	Transition amplitudes and correlation functions	1
	1.2	Generating functionals for correlation functions	2
	1.3	Schwinger-Dyson equation	2
	1.4	1PI effective action	3
	1.5	Fermionic path integral	3
	1.6	Executive summary of QFT	4
2	Ren	ormalization	1
	2.1	Superficial divergence	4
	2.2	Renormalization of QED	5
	2.3	Callan-Symanzyk equation	5
	2.4	Wilsonian interpretation	6
3	Qua	ntisation of Yang-Mills theory	7
	3.1	Classical Yang-Mills theory	7
	3.2	Quantizing Yang-Mills theory	3
	3.3	Faddeev-Popov ghosts	9
	3.4	BRST symmetry and physical Hilbert space	9

1 Path integral quantization

1.1 Transition amplitudes and correlation functions

- The path integral provides a formulation of quantum theory equivalent to canonical quantization.
- A quantum mechanical transition amplitude $\langle q_f, t_f | q_i, t_i \rangle = \langle q_f | e^{i\hat{H}(t_f t_i)} | q_i, t_i \rangle$ can, by partitioning of the transition time $\delta t = \frac{t_f t_i}{N}$ and insertion of complete sets of states $\mathbb{1} = \int_{\mathbb{R}} dq_k | q_k \rangle \langle q_k |$ between each partition, be expressed as

$$\langle q_f, t_f | q_i, t_i \rangle = \int_{q(t_i)=q_i}^{q(t_f)=q_f} \mathcal{D}q(t) \, \mathcal{D}p(t) \, e^{i \int_{t_i}^{t_f} \mathrm{d}t \, L(p,q)},\tag{1}$$

with $\int_{t_i}^{t_f} \mathrm{d}t \, L(p,q) \equiv S[p,q]$ and $L(p,q) = p\dot{q} - H(p,q)$.

• Analytic continuation by rotating t onto the lower half-plane via $t \to t(1-i\epsilon)$ followed by performing the momentum path integral as a Gaussian yields the **Feynman-Kac formula**

$$\langle q_f, t_f | q_i, t_i \rangle = \int_{q(t_i)=q_i}^{q(t_f)=q_f} \mathcal{D}q(t) \, e^{i \int_{t_i}^{t_f} \mathrm{d}t \, L(q,\dot{q})},\tag{2}$$

where the factor $C^N = \left(\frac{-im}{2\pi\,\delta t}\right)^{N/2}$ from completion of the square is absorbed into $\mathcal{D}q(t)$.

• The path integral for scalar fields $\phi(x)$ (as opposed to particles) is very similar to (2),

$$\langle \phi_f(x), t_f | \phi_i(x), t_i \rangle = \int_{\phi(\boldsymbol{x}, t_i) = \phi_i(\boldsymbol{x})}^{\phi(\boldsymbol{x}, t_f) = \phi_f(\boldsymbol{x})} \mathcal{D}\phi \, e^{i \int_{t_i}^{t_f} \mathrm{d}^4 x \, \mathcal{L}(\phi)}.$$
(3)

The master formula for an *n*-point quantum correlation function reads

$$G(x_1, \dots, x_n) \equiv \langle \Omega | \mathrm{T} \prod_{j=1}^n \hat{\phi}(x_j) | \Omega \rangle = \lim_{\substack{t \to \infty \\ \cdot (1-i\epsilon)}} \frac{\int \mathcal{D}\phi \prod_{j=1}^n \phi(x_j) e^{i\int_{-t}^t \mathrm{d}^4 x \,\mathcal{L}(\phi)}}{\int \mathcal{D}\phi \, e^{i\int_{-t}^t \mathrm{d}^4 x \,\mathcal{L}(\phi)}} \tag{4}$$

- Time ordering T inside the path integral is taken care off automatically.

1.2 Generating functionals for correlation functions

• The generating functional Z[J] of Green's functions $G(x_1, \ldots, x_n)$ for some source J(x) reads

$$Z[J] = \int \mathcal{D}\phi \, e^{iS[\phi] + iJ \cdot \phi},\tag{5}$$

where the functional inner product is defined as $J \cdot \phi = \int_{\mathbb{R}^{1,3}} d^4x J(x) \phi(x)$. Z[J] maps the function $\phi(x)$ to a number in \mathbb{C} . It is called *generating* functional because

$$\frac{Z[J]}{Z[0]} = \sum_{n=0}^{\infty} \frac{i^n}{n!} \left(\prod_{j=1}^n \int_{\mathbb{R}^{1,3}} \mathrm{d}^4 x_j J(x_j) \right) G(x_1, \dots, x_n).$$
(6)

• This can be solved for $G(x_1, \ldots, x_n)$ using the tools of functional calculus:

$$G(x_1, \dots, x_n) = \frac{1}{Z[0]} \prod_{j=1}^n \frac{\delta}{i\delta J(x_j)} Z[J]\Big|_{J=0}.$$
(7)

- Z[0] contains no external points and represents the **partition function** $Z[0] = e^{\sum_i V_i}$, where the sum runs over all vacuum bubbles V_i of the theory. Consequently, $\frac{Z[J]}{Z[0]}$ contains no vacuum bubbles.
- Counting of loops: A fully connected Feynman diagram with E external and I internal lines, V vertices, and L loops (number of unfixed momentum integrals) satisfies **Euler's formula**

$$L = I - V + 1. \tag{8}$$

For $\mathcal{L}_{int}(\phi) = \frac{\lambda}{n!} \phi^n(x)$ we have $E + 2I = nV.^1$ Inserting eq. (8) yields

$$(n-2)V = 2L + (E-2).$$
(9)

Hence for fixed E, an expansion in L corresponds to an expansion in V.

1.3 Schwinger-Dyson equation

• An advantage of the path-integral method is that symmetries are more transparent. It becomes clear that classical symmetries carry over to the quantum theory - but only provided the path integral measure $\mathcal{D}\phi = \mathcal{D}\phi'$ is invariant. In that case, the Schwinger-Dyson equation

$$\int \mathcal{D}\phi \left(\frac{\delta S[\phi]}{\delta \phi(x)} + J(x)\right) e^{iS[\phi] + iJ \cdot \phi} = 0 \tag{10}$$

states the classical equation of motion $\frac{\delta S}{\delta \phi} + J = 0$ (in presence of a source J), holds as an operator equation in the quantum theory, i.e. inside the path integral (provided \nexists contact terms $\propto \delta(x-x_j)$).

¹Every vertex connects to n lines, while every external line connects to one and every internal line to two vertices.

• For a continuous global classical symmetry $\phi \to \phi' = \phi + \delta \phi$ with conserved Noether current $j^{\mu}(x)$ given by $\frac{\delta S}{\delta \phi(x)} \delta \phi(x) = -\partial_{\mu} j^{\mu}(x) = 0$, acting on eq. (10) with $\prod_{j=1}^{n} \frac{\delta}{i \delta J(x_j)}$ and taking J = 0 afterwards gives the **Ward-Takahashi identity**, i.e. the statement of current conservation up to contact terms inside correlation functions,

$$\partial_{\mu} \left\langle \Omega \left| \mathrm{T} j^{\mu} \prod_{j=1}^{n} \phi(x_{j}) \right| \Omega \right\rangle = -i \sum_{j=1}^{n} \left\langle \Omega \right| \mathrm{T} \phi(x_{1}) \dots \phi(x_{j-1}) \left[\delta \phi(x) \delta(x-x_{j}) \right] \phi(x_{j+1}) \dots \phi(x_{n}) | \Omega \right\rangle.$$
(11)

Like eq. (10), the Ward-Takahashi identity only holds for classical symmetries of $S[\phi]$ that leave the measure invariant. If $\mathcal{D}\phi$ is affected, the symmetry is anomalous and current conservation (up to contact terms) does not hold at the quantum level.

1.4 1PI effective action

- $G(x_1, \ldots, x_n)$ receives contributions from partially connected Feynman diagrams. As established by the LSZ formalism, only fully connected Greens functions $G^c(x_1, \ldots, x_n)$ containing Feynman diagrams which do not factor into subdiagrams, enter the computation of scattering amplitudes.
- The generating functional of $G^c(x_1, \ldots, x_n)$ is called **effective action** and denoted iW[J]. It is closely related to Z[J] via $\frac{Z[J]}{Z[0]} = e^{iW[J]}$.
- An important subclass of fully connected Feynman diagrams are the 1-particle-irreducible (1PI) diagrams, which cannot be cut into two non-trivial diagrams by cutting a single (internal) line. These are generated by the **1PI effective action** $\Gamma[\varphi]$ defined as the Legendre transform of W[J],

$$\Gamma[\varphi] = W[J] - \varphi \cdot J, \tag{12}$$

where $\varphi(x) \equiv \frac{\delta W[J]}{\delta J(x)} = \langle \Omega | \hat{\phi}(x) | \Omega \rangle_J$, and we assumed there to be a bijection between J and φ .²

• $\Gamma[\varphi]$ and $S[\varphi]$ are the same functionals at tree-level, i.e. $\Gamma[\varphi] = S[\varphi] + K[\varphi]$ for some $K[\varphi]$ starting at one-loop. $\frac{\delta \Gamma[\varphi]}{\delta \varphi(x)} = -J(x)$ for J(x) = 0 yields the **quantum effective equation of motion**.

1.5 Fermionic path integral

- Fermionic anticommutation relations $\{\hat{\psi}, \hat{\psi}^{\dagger}\} = 1$, $\{\hat{\psi}, \hat{\psi}\} = \{\hat{\psi}^{\dagger}, \hat{\psi}^{\dagger}\} = 0$ can be implemented using anticommuting (nilpotent) Grassmann-valued fields $\psi(x)$ out of a **Grassmann algebra** A.
- The path integral for fermionic fields $\psi(x)$, $\bar{\psi}(x) = \psi^{\dagger}(x) \gamma^{0}$ takes the form

$$\langle \boldsymbol{\psi}_{f}(\boldsymbol{x}_{f}), t_{f} | \boldsymbol{\psi}_{f}(\boldsymbol{x}_{i}), t_{i} \rangle = \int_{\boldsymbol{\psi}(\boldsymbol{x}, t_{i}) = \boldsymbol{\psi}_{i}(\boldsymbol{x})}^{\boldsymbol{\psi}(\boldsymbol{x}, t_{f}) = \boldsymbol{\psi}_{f}(\boldsymbol{x})} \mathcal{D}\bar{\boldsymbol{\psi}}\mathcal{D}\boldsymbol{\psi} e^{i\int_{t_{i}}^{t_{f}} \mathrm{d}^{4}x \,\mathcal{L}(\boldsymbol{\psi}, \bar{\boldsymbol{\psi}})},$$
(13)

where $\mathcal{L}(\psi, \bar{\psi}) = \bar{\psi}(x)[i\gamma^{\mu}\partial_{\mu} - m_0]\psi(x) + \mathcal{L}_{int}$. The four $n \times n$ -gamma-matrices (one for every spacetime dimension) span the Clifford algebra $C\ell^n(\mathbb{C})$ defined by the anticommutator $\{\gamma^{\mu}, \gamma^{\nu}\} = 2\eta^{\mu\nu}\mathbb{1}_n$ with $n = 2^{d/2} = 4$. To project initial and final states to the vacuum $|\Omega\rangle$, the trick $m_0 \to m_0 - i\epsilon$ can be used (just like in the bosonic case).

• The generating functional for fermionic correlators is defined as

$$Z[\boldsymbol{\eta}, \bar{\boldsymbol{\eta}}] = \langle \Omega | \mathrm{T}e^{i \int_{\mathbb{R}^{1,3}} \mathrm{d}^{4}x \left[\mathcal{L}(\boldsymbol{\psi}, \bar{\boldsymbol{\psi}}) + \bar{\boldsymbol{\psi}}(x) \boldsymbol{\eta}(x) + \bar{\boldsymbol{\eta}}(x) \boldsymbol{\psi}(x) \right]} | \Omega \rangle = \int \mathcal{D}\bar{\boldsymbol{\psi}} \mathcal{D}\boldsymbol{\psi} \, e^{iS[\boldsymbol{\psi}, \bar{\boldsymbol{\psi}}] + i\bar{\boldsymbol{\psi}} \cdot \boldsymbol{\eta} + i\bar{\boldsymbol{\eta}} \cdot \boldsymbol{\psi}}, \qquad (14)$$

with the external sources $\bar{\eta}(x)$, $\eta(x)$ as Grassmann-valued classical fields.

²In the Euclidean theory $W_E[J]$ is convex and such a one-to-one correspondence between sources and ϕ -v.e.v.s exists.

1.6 Executive summary of QFT

- Start with a classical action $S[\phi]$ in which the field $\phi(x)$ arises as the continuum limit $N \to \infty$ of a system of N harmonic oscillators.
- In the classical limit $\hbar \to 0$, $\phi(x)$ is a definite function given by the classical equation of motion $\delta S[\phi]/\delta\phi(x) = 0$. For \hbar finite, quantum fluctuations arise. These are encoded in Z[J], where the path integral takes into account all possible functions $\phi(x)$ could assume.
- What we can compute in the quantum theory are correlation functions. In particular the quantum expectation value of the field $\phi(x)$ in the presence of a source J is

$$\varphi_J(x) \equiv \langle \phi(x) \rangle_J \equiv \langle \Omega | \hat{\phi}(x) | \Omega \rangle_J = \frac{1}{Z[0]} \int \mathcal{D}\phi \, \phi(x) \, e^{-S[\phi] + \phi \cdot J}. \tag{15}$$

• With our definition of W[J], we can compute this as

$$\varphi_J(x) = -\frac{\delta W[J]}{\delta J(x)}.$$
(16)

• In terms of the Legendre transform $\Gamma[\varphi]$ of W[J], we have

$$\frac{\delta\Gamma[\varphi]}{\delta\varphi(x)} = J(x). \tag{17}$$

By integrating out quantum fluctuations $f(x) = \phi(x) - \varphi(x)$, $\Gamma[\varphi]$ gives a quantum effective action

$$e^{-\Gamma[\varphi]} = \frac{1}{Z[0]} \int \mathcal{D}f \, e^{-S[\varphi+f] + \frac{\delta\Gamma}{\delta\varphi} \cdot f}.$$
(18)

Replacing $S[\phi]$ by $\Gamma[\varphi]$ introduces 1PI amputated vertices and fully resummed propagators. Thus, computing at tree-level with $\Gamma[\varphi]$ already gives the full quantum theory!

2 Renormalization

2.1 Superficial divergence

• For a scalar theory in *d* dimensions with (bare) Lagrangian $\mathcal{L}_0 = \frac{1}{2} (\partial \phi)^2 - \frac{m_0^2}{2} \phi^2 - \frac{\lambda_0}{n!} \phi^n$, the naive UV structure of a diagram \mathcal{D} with *L* loops $\propto \int_{\mathbb{R}^d} \mathrm{d}^d k$ and *I* propagators $\propto (k^2 - m^2)^{-1}$ is

$$\mathcal{D} \xrightarrow{k \to \infty} \frac{\int_{\mathbb{R}^d} \mathrm{d}^d k_1 \dots \int_{\mathbb{R}^d} \mathrm{d}^d k_L}{k_1^2 \dots k_I^2}.$$
 (19)

The superficial degree of divergence D of \mathcal{D} is defined as the difference in powers of momentum between numerator and denominator, i.e. D = dL - 2I.

- Regularizing the divergence with a momentum cutoff Λ , i.e. $\int_{-\infty}^{\infty} dk \rightarrow \lim_{\Lambda \to \infty} \int_{-\Lambda}^{\Lambda} dk$, diagrams fall into three categories of UV behavior: 1. $D > 0 \Rightarrow \mathcal{D} \propto \Lambda^D$ (superficially divergent). 2. $D < 0 \Rightarrow \mathcal{D} \propto \Lambda^{-|D|}$ (superf. finite). 3. $D = 0 \Rightarrow \mathcal{D} \propto \ln(\Lambda)$ (superf. log-divergent).
- The actual UV behavior may differ from the superficial one for three reasons: 1. For $D \ge 0$, a diagram may still be finite if symmetry constrains the amplitude or leads to cancellations among infinite terms. 2. For D < 0, a diagram may still be divergent if it contains a divergent subdiagram. 3. Tree-level diagrams have D = 0, but are finite.
- For \mathcal{L}_0 as above, D depends on the mass dimension of the coupling $[\lambda_0] = d \frac{d-2}{2}n$ as

$$D = d - [\lambda_0] V - \frac{d-2}{2} E.$$
 (20)

The UV properties of a theory are decisively determined by (the sign of) the prefactor of V.

- 1. If $D \propto +V$, there exists an infinite number of superficially divergent amplitudes since for every E, diagrams with high enough V diverge. The theory is thus **non-renormalizable** $\Leftrightarrow [\lambda_0] < 0$.
- 2. If $D \not\propto V$ (and $d \ge 2$), only a finite number of diagrams is divergent but divergences appear at every loop-order. Such theories are called **renormalizable** and arise for $[\lambda_0] = 0$.
- 3. If $D \propto -V$, for high-enough loop order, all diagrams become superf. finite, making the theory super-renormalizable $\Leftrightarrow [\lambda_0] > 0$.
- E.g. for n = d = 4, we have $[\lambda_0] = 0$ and D = 4 E independent of L or V. Hence, ϕ^4 -theory in d = 4 is renormalizable with only three superficially divergent diagrams (at every loop-order).
- By the **BPHZ theorem**, (power counting) renormalizability is sufficient for a theory to maintain predictivity. (The non-trivial aspect of this theorem concerns the complete cancellation of divergent subdiagrams by counterterms of the previous loop-order.)

2.2 Renormalization of QED

- **Regularization** is the practice of isolating divergences. The three common methods in QFT are
 - 1. Cutoff reg. regularizes divergent momentum integrals via $\int_{-\infty}^{\infty} dk \to \lim_{\Lambda \to \infty} \int_{-\Lambda}^{\Lambda} dk$. However, this is inconsistent with the Ward identities and gauge invariance because transformations of the sort $A^{\mu} \to A^{\mu} + \partial^{\mu} \alpha(x)$ cannot be carried out at the cutoff, making it a useless method in QED.
 - 2. Dimensional reg. (used most often) evaluates divergent integrals in $d = 4 \epsilon$ dimensions. The result is expanded in powers of ϵ which isolates the divergence as a pole as $\epsilon \to 0$.
 - 3. Pauli-Villars reg. takes a divergent diagram and subtracts from it the same diagram but with a fictitious massive particle in the loop, e.g. a photon of mass Λ . This removes the divergence because for $k \to \infty$, the mass in the loop becomes irrelevant and both diagrams asymptote to the same value. But for $\Lambda \to \infty$, the auxiliary diagram vanishes and we recover the actual process.
- The QED Lagrangian with symmetry group U(1) describes the coupling of spin-1/2 bispinor fields $\psi(x)$ (electron, positron) to a covariant spin-1 gauge field $A_{\mu}(x)$ (photon) generated by the transformation behavior of the spinors themselves. \mathcal{L}_{QED} can be expressed i.t.o. the field strength tensor $F_{\mu\nu} = \partial_{\mu}A_{\nu} \partial_{\nu}A_{\mu}$, and the covariant derivative $D_{\mu} = \partial_{\mu} + ieA_{\mu}$ as

$$\mathcal{L}_{\text{QED}} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \bar{\psi} (i\gamma^{\mu} D_{\mu} - m) \psi = -\frac{1}{4} F^2 + \bar{\psi} (i\gamma^{\mu} \partial_{\mu} - m) \psi - A_{\mu} j^{\mu}, \qquad (21)$$

where m is the fermion mass, e is the coupling constant equal to the (electric) charge of the bispinor field and $j^{\mu} = e \bar{\psi} \gamma^{\mu} \psi$ is the conserved fermion current associated with the U(1) symmetry.

• A QED diagram with $E_e(E_{\gamma})$ external fermions (photons) has superficial degree of divergence

$$D = 4 - \frac{3}{2}E_e - E_{\gamma}.$$
 (22)

Since [e] = 0, QED is renormalizable with seven superficially (four actually³) divergent diagrams.

2.3 Callan-Symanzyk equation

- Renormalization automatically introduces a mass scale μ the **renormalization scale** into the quantum theory via the renormalization conditions (even when the classical theory was scale-free).
- To quantify the dependence of coupling constants on the renormalization scale μ , we can study the **Callan-Symanzik** (or **renormalization group**) equation (here for massive ϕ^4 -theory)

$$\left(\mu\partial_{\mu} + \beta_{\lambda}\partial_{\lambda} + \beta_{m^{2}}\partial_{m^{2}} + n \cdot \gamma_{\phi}\right)G_{n}(x_{1}, \dots, x_{n}) = 0,$$
(23)

³The symmetries at work preventing some of QED's superficial divergences are discrete charge conjugation $j^{\mu} \to -j^{\mu}$, $A^{\mu} \to -A^{\mu}$, chiral symmetry (arises for m = 0), and the Ward identity $k^{\mu}\mathcal{D}_{\mu} = 0$ for a diagram $\mathcal{D} = \xi^{\mu}\mathcal{D}_{\mu}$ involving an external photon of momentum k^{μ} ($k^2 = 0$) and polarization ξ^{μ} .

where $\beta_{\lambda} = \mu \frac{d\lambda}{d\mu}|_{\lambda_0,m_0}$, $\beta_{m^2} = \mu \frac{dm^2}{d\mu}|_{\lambda_0,m_0}$, and $\gamma_{\phi} = \frac{\mu}{2} \frac{d\ln(Z)}{d\mu}|_{\lambda_0,m_0}$. β_{λ} for example describes how the physical coupling λ changes as we change the energy scale μ at which we perform an experiment.

- The CS equation allows us to (perturbatively) compute β_{λ} , β_{m^2} , γ_{ϕ} explicitly by first computing $G_n(x_1, \ldots, x_n)$ and then plugging it into (23). E.g. $\beta_{\lambda} = \frac{3\lambda^2}{16\pi^2} + \mathcal{O}(\lambda^3)$ for massless ϕ^4 -theory.
- The change in $\lambda(\mu)$ as we change μ is called **renormalisation group flow** or **running coupling**. $\lambda(\mu)$ gives the strength of the interaction at energy scale μ .
- Depending on the sign of β there are three qualitatively different **RG** behaviors.
 - 1. If $\beta(\lambda) > 0$, $\lambda(\mu)$ increases as μ increases. If we start with a perturbative value λ_0 at μ_0 and follow the RG flow for increasing μ , then at some scale, $\lambda(\mu)$ may cease to be perturbative. If by a non-perturbative analysis beyond that point one finds $\beta(\lambda) > 0 \quad \forall \lambda$, then $\lambda(\mu)$ increases indefinitely. This can result in a divergent coupling $\lambda \to \infty$, either asymptotically as $\mu \to \infty$, or even for finite values of $\mu \to \mu_{\rm L}$. The latter instance is referred to as a **Landau pole**.
 - One appears e.g. in QED at $\mu_{\rm L} = \mu_0 \exp\left(\frac{3\pi}{2\alpha_0}\right)$ since

$$\alpha(\mu) = \frac{\alpha_0}{1 - \frac{2\alpha_0}{3\pi} \ln\left(\frac{\mu}{\mu_0}\right)} \xrightarrow{\mu \to \mu_{\rm L}} \infty.$$
(24)

On the other hand, $\beta(\lambda) > 0$ means the theory is perturbatively well-defined in the infrared, where λ becomes small. If $\lambda \to 0$ as $\mu \to 0$, the theory even becomes free in the infrared. Such a non-interacting fixed point is called **Gaussian fixed point**.

- 2. If $\beta(\lambda) < 0$, $\lambda(\mu)$ decreases as μ increases. The theory is perturbative in the UV, but may cease to be perturbative in the IR. If $\lambda \to 0$ as $\mu \to \infty$, the theory becomes free in the UV. This is called **asymptotic freedom**.⁴
- 3. If $\beta = 0 \quad \forall \mu, \lambda$ is independent of μ . Such a theory is **conformal**, i.e. scale-independent. Since the counterterms do not induce any scale dependence, there cannot be any UV divergences altogether and the theory is UV finite.

2.4 Wilsonian interpretation

- The original understanding of renormalization was:
 - The cutoff Λ is merely a way to regulate divergent integrals without physical meaning.
 - Renormalization is a trick to remove the cutoff-dependence in physical amplitudes. This procedure allows us to take $\Lambda \to \infty$ without encountering divergences.
 - This comes at the cost of losing predictability for some physical masses and couplings.
 - In a renormalizable theory, only a finite number of such physical couplings must be taken as input parameters from experiment to end up with a well-defined (otherwise predictive) theory.
- The Wilsonian approach gives a different interpretation: We should think of QFT as an *effective* description accurate only for energies below an intrinsic cutoff Λ_0 . At energies beyond Λ_0 the field theory picture does not correctly model the microscopic degrees of freedom.⁵
 - The only known theory that is UV finite and asymptotes to a weakly coupled QFT in the infrared is **string theory**, which abandons the concept of pointlike particles, replacing them with excitations of a one-dimensional string of length ℓ_s . The string length is the intrinsic cutoff of the low-energy effective QFT. At distances near ℓ_s , the theory deviates from a regular field theory in that it becomes non-local, thus avoiding UV divergences and and arbitrary input parameters.

⁴In d = 4, the only known example for asymptotic freedom is Yang-Mills theory.

⁵For example, QFT neglects gravity but all matter gravitates and gravity becomes non-negligible (compared to the other forces) near the Planck scale $M_{\rm pl} \approx 1/\sqrt{G_{\rm N}} \approx 10^{18} \,\text{GeV}$.

- Integrating out the degrees of freedom between the regulator Λ and an even smaller cutoff $\Lambda_0 < \Lambda$ yields the **Wilsonian effective action** S_W^{eff} . When computing correlators at scales below Λ_0 via S_W^{eff} , only momenta $|k| \leq \Lambda_0$ appear in the loops since all effects of the modes with $\Lambda_0 < |k| < \Lambda$ are already encoded in S_W^{eff} . This is not to be confused with the quantum effective action $\Gamma[\varphi]$ which gives the full quantum theory already at tree-level. S_W^{eff} includes only those quantum effects due to the integrated-out modes k between $\Lambda_0 < |k| < \Lambda$ and loops must still be performed.
 - Successive applications of this integration to a lower cutoff gives rise to the **renormalisation semi-group** (semi because we can only lower the cutoff; there does not exist an inverse operation).
 - The running couplings in the Wilsonian picture are interpreted as the dependency of the couplings in S_W^{eff} on the cutoff. This identifies Λ_0 as the renormalization scale μ .

3 Quantisation of Yang-Mills theory

3.1 Classical Yang-Mills theory

- The gauge field A_μ(x) of a Yang-Mills theory with non-Abelian Lie group H⁶ (whose elements are the gauge transformations that leave the theory invariant) takes values in the associated Lie algebra h. h is a vector space equipped with a non-associative antisymmetric bilinear map [·, ·] : h × h → h, the Lie bracket.
- Like any element of \mathfrak{h} , $A_{\mu}(x)$ can be expressed i.t.o. of a basis $\{T^a\}$, $a \in \{1, \ldots, \dim(\mathfrak{h})\}$ of \mathfrak{h} (that forms a complete set of generators of the underlying Lie group H):

$$A^{\mu}(x) = A^{\mu}_{a}(x) T^{a}$$
 (summation over *a* implied) (25)

• The basis elements satisfy the Lie algebra's defining relation

$$[T^a, T^b] = i f^{ab}_{\ c} T^c, \tag{26}$$

i.t.o. the structure constants f^{ab}_{c} .⁷ Eq. (26) in turn fulfills the Jacobi identity

$$\left[[T^a, T^b], T^c \right] + \left[[T^b, T^c], T^a \right] + \left[[T^c, T^a], T^b \right] = 0.$$
(27)

- As an example, the Lie algebra su(2) of dimension 3 has as one possible basis the three Pauli matrices σ_i which generate the corresponding Lie group SU(2). In this basis, the structure constants are given by the components of the Levi-Civita symbol ϵ^{ijk} .
- Every Lie algebra also possesses a symmetric bilinear form, the Killing form

$$\kappa^{ab} = T^a \circ T^b,\tag{28}$$

which is invariant under the **adjoint action** of the Lie group H,

$$h T^a h^{-1} \circ h T^a h^{-1} = T^a \circ T^b \qquad \forall h \in H.$$

$$\tag{29}$$

- When working with H in matrix representation, e.g. H = SU(N), the generators T^a are Hermitian traceless $N \times N$ -matrices and the Killing form \circ acts simply as the trace on \mathfrak{h} ,

$$T^a \circ T^b = \operatorname{tr}_{\mathfrak{h}}(T^a T^b) = \frac{1}{2} \,\delta^{ab}.$$
(30)

The last equality only holds if H is compact as a manifold, in which case the Killing form is positive definite and can be suitably normalized.

⁶Generally, any compact, semi-simple Lie group will do, but most forms of Yang-Mills theory are based on SU(N) with associated Lie algebra $\mathfrak{su}(N)$.

⁷The f^{ab}_{c} restrict the result of taking the Lie bracket of two generators T^{a} , T^{b} to a linear combination of all generators $\{T^{c}\}$, thereby determining the Lie brackets of all elements of \mathfrak{h} . This almost completely establishes the group structure of H, explaining the name structure constants.

- The Killing form κ^{ab} and its inverse⁸ $c\kappa_{ab}$ can be used to raise and lower Lie-algebra indices, e.g.

$$f^{abc} = f^{ab}_{\ \ d} \kappa^{dc}. \tag{31}$$

With all indices appearing on the same footing, the structure constants are totally antisymmetric and therefore invariant under cyclic permutations.⁹

• Under a gauge transformation $U \in H$ parametrized as $U(x) = e^{-ig\alpha(x)}$ with $g \in \mathbb{R}$ and $\alpha(x) \in \mathfrak{h}$ the gauge potential $A^{\mu}(x)$ transforms to linear order as

$$A^{\mu}(x) \to A^{\mu}(x) + D^{\mu}\alpha(x), \tag{32}$$

where the adjoint covariant derivative acts on \mathfrak{h} -valued fields $\alpha(x)$,

$$D^{\mu}\alpha(x) \equiv \partial^{\mu}\alpha(x) + ig[A^{\mu}(x), \alpha(x)].$$
(33)

• The associated **field strength tensor** of A^{μ} is given by

$$F_{\mu\nu}(x) = \frac{1}{ig} [D_{\mu}, D_{\nu}] = \partial_{\mu} A_{\nu}(x) - \partial_{\nu} A_{\mu}(x) + ig [A_{\mu}(x), A_{\nu}(x)].$$
(34)

- $-F_{\mu\nu}$ transforms under the adjoint action of $H, F_{\mu\nu} \rightarrow U F_{\mu\nu} U^{-1}$, and satisfies the Bianchi identity $D_{(\rho}F_{\mu\nu)} = 0$.
- I.t.o. the field strength $F_{\mu\nu}$, the gauge-invariant **Yang-Mills Lagrangian** can be written as

$$\mathcal{L}_{\rm YM}(A) = -\frac{1}{2} \operatorname{tr}_{\mathfrak{h}, \mathbb{R}^{1,3}}(F^2) = -\frac{1}{4} F^a_{\mu\nu} F^{\mu\nu}_a.$$
(35)

The commutator in $F_{\mu\nu}$ introduces cubic and quartic gauge field interactions into \mathcal{L}_{YM} . The gauge field's equation of motion is

$$D_{\mu}F^{\mu\nu} = 0 \qquad \Leftrightarrow \qquad \partial_{\mu}F^{\mu\nu} = -ig[A_{\mu}(x), F^{\mu\nu}]. \tag{36}$$

3.2 Quantizing Yang-Mills theory

- Gauge invariance as well as the fact that $A_0(x)$ appears without a time-derivative in \mathcal{L}_{YM} , i.e. is a non-dynamical field without conjugate momentum Π_0 , complicates the quantization of Yang-Mills theory. Variation of the action $S_{YM}[A]$ w.r.t. to $A_0(x)$ yields $D_i F^{0i} = 0$ ($i \in \{1, 2, 3\}$) which is itself a **non-dynamical constraint**, with $A_0(x)$ merely an unphysical Lagrange multiplier enforcing it.
- Canonical quantization of constrained systems requires special technology (e.g. the Gupta-Bleuler procedure for U(1) gauge theories). Hence, path integral quantization is preferred for Yang-Mills.
- The naive path integral quantization of a gauge field A^{μ} proceeds by formulating an action S[A], inverting the kinetic term $(K \cdot A)^{\mu} = -\partial^2 A^{\mu} + \partial^{\mu} \partial_{\nu} A^{\nu}$ to find the propagator $iD_F = K^{-1}$, and then perturbatively tackling the interacting theory. This runs into trouble because K is in fact not invertible due to its non-trivial kernel ker $(K) \neq \{0\}$. Rather, $(K \cdot \partial \alpha) = 0 \quad \forall \alpha(x) \in \mathfrak{h}^{10}$
- The cure is to remove the non-invertibility of K by excluding all but one element out of each set of gauge-equivalent field configurations related to first order by $A^{\mu} \rightarrow A^{\mu} + \partial^{\mu} \alpha$. Untruncated, a full gauge transformation is given by

$$A^{\mu} \to A^{\mu}_{h} = h A^{\mu} h^{-1} + \frac{i}{g} (\partial_{\mu} h) h^{-1}, \quad \text{for any } h \in H.$$
 (37)

 $^{{}^{8}}c$ is merely a normalization factor determined by the structure of the Lie group H as a manifold.

⁹This is not so much naturally the case as up to our choice of basis matrices $\{T^a\}$. It can be proven that a basis always exists in which the f^{abc} have these properties.

¹⁰This problem is entirely due to gauge invariance and has nothing to do with the gauge group being Abelian or not.

 A^{μ} and A^{μ}_{h} are physically equivalent and lead the path integral to overcount because if one satisfies the e.o.m. so does the other. Given any A^{μ} , all equivalent field configurations lie in the same **orbit**

$$O_A = \left\{ A_h^{\mu} | h \in H \right\}. \tag{38}$$

Hence, let \mathcal{A} denote the space of all field configurations $A^{\mu}(x)$, then the physically inequivalent ones are captured precisely by the quotient space \mathcal{A}/H which picks out exactly one field per orbit.

• Some path integral manipulations yield the **Yang-Mills partition function**

$$Z_{\rm YM} = \int_{\mathcal{A}} \mathcal{D}A \,\delta[F(A)] \,\det(\Delta_{\rm FP}) \,e^{iS_{\rm YM}[A]},\tag{39}$$

where the argument of the functional Dirac delta is the gauge fixing condition F(A) which, given any field configuration $A^{\mu}(x) \in \mathcal{A}$ achieves $F(A^h) = 0$ (ideally) for exactly one unique $h \in H^{11}$, thereby effectively reducing the integration domain from \mathcal{A} to \mathcal{A}/H . $\Delta_{\rm FP} = -\frac{\partial F(A)}{\partial A^{\mu}}D^{\mu}$ is the Faddeev-Popov matrix. Eq. (39) can be used to calculate vacuum expectation values of any (gauge-invariant!) operator $\mathcal{O}(A) = \mathcal{O}(A^h)$ by the usual $t \to \infty(1 - i\epsilon)$ prescription (see eq. (4)).

3.3 Faddeev-Popov ghosts

• Introducing the h-valued Nakanishi-Lautrup auxiliary field B(x), we can rewrite $\delta[F(A)]$ as

$$\delta[F(A)] = \int \mathcal{D}B \, e^{i \int_{\mathbb{R}^{1,3}} \mathrm{d}^4 x \, B_a(x) F^a(x)}.$$
(40)

With the Grassmann- \mathfrak{h} -valued **Faddeev-Popov ghost** c(x) and **antighost** $\bar{c}(x)$, $\Delta_{\rm FP}$ becomes

$$\Delta_{\rm FP} = \int \mathcal{D}\bar{c} \,\mathcal{D}c \,e^{i\int_{\mathbb{R}^{1,3}} \mathrm{d}^4 x \,\bar{c}_a(x) \,[\Delta_{\rm FP} c(x)]^a}.\tag{41}$$

Inserting eqs. (40) and (41) into eq. (39), gives $Z_{\rm YM}$ as

$$Z_{\rm YM} = \int \mathcal{D}A \, \mathcal{D}B \, \mathcal{D}\bar{c} \, \mathcal{D}c \, e^{iS[A,B,\bar{c},c]}.$$
(42)

where the ABc action is

$$S[A, B, \bar{c}, c] = \int_{\mathbb{R}^{1,3}} \mathrm{d}^4 x \Big(-\frac{1}{4} F^a_{\mu\nu} F^{\mu\nu}_a + B_a(x) F^a(x) + \bar{c}_a(x) \left[\Delta_{\mathrm{FP}} c(x) \right]^a \Big).$$
(43)

The ghosts transform as scalar fields under SO(1,3), but have fermionic statistics due to their Grassmannian nature. Thus they violate the spin-statistics theorem as well as unitarity since their Fock space does not have a positive definite norm.

3.4 BRST symmetry and physical Hilbert space¹²

• The problem of determining the physical Hilbert space $H_{\rm phys}$ has two parts. We need to 1. guarantee a positive-definite norm on $H_{\rm phys}$, and 2. show that time-evolution does not lead out of $H_{\rm phys}$, i.e. the S-matrix needs to be a unitary operator on $H_{\rm phys}$. If the criterion for a state to lie in $H_{\rm phys}$ is related to a symmetry of the full interacting theory, then invariance of the physical Hilbert space under time-evolution follows automatically because the S-matrix respects all symmetries.

¹¹The ideal case usually doesn't come to pass due to an irritating **residual gauge symmetry** that results in several gauge equivalent field configurations, so-called **Gribov copies**, which all fulfill F(A) = 0. Thus even the gauge-fixed path integral would still overcount if we did not restrict it to a fundamental domain where the gauge is unique.

• Note that the ABc action (43) possesses a global residual fermionic symmetry - the BRST symmetry. It is implemented via the Grassmann-odd nilpotent operator R acting as

$$R A^{\mu} = -D^{\mu}c = -(\partial^{\mu}c + ig[A^{\mu}, c]), \qquad R c = \frac{ig}{2} \{c, \bar{c}\}, \qquad R \bar{c} = -B, \qquad R B = 0.$$
(44)

Defining $\psi(x) = \bar{c}^a \partial_\mu A^\mu_a + \frac{\xi}{2} \bar{c}^a B_a$, with the **gauge-fixing parameter** ξ , the ABc Lagrangian reads

$$\mathcal{L}(A, B, \bar{c}, c) = -\frac{1}{4} F^{a}_{\mu\nu} F^{\mu\nu}_{a} - R \psi, \qquad (45)$$

which fulfills $R \mathcal{L} = 0$, because for the first term, R is just a gauge transformation on A^{μ} that leaves F^2 invariant, and $R^2 = 0$ in the second.

• Like any quantum symmetry, the **BRST symmetry transformation**

$$\delta_{\epsilon} \Phi = \epsilon R \Phi, \qquad \Phi \in \{A, B, \bar{c}, c\}$$
(46)

with ϵ a global Grassmann-valued parameter, is generated (in canonical quantization) by its associated **Noether charge** (operator) \hat{Q}_{BRST} in the sense that

$$\left[\epsilon \hat{Q}_{\text{BRST}}, \hat{\Phi}\right] = i\delta_{\epsilon} \hat{\Phi}.$$
(47)

The **BRST charge** \hat{Q}_{BRST} is conserved, nilpotent, and hermitian:

$$\hat{Q}_{\text{BRST}} = 0 \iff [\hat{H}, \hat{Q}_{\text{BRST}}] = 0, \qquad \hat{Q}_{\text{BRST}}^2 = 0, \qquad \hat{Q}_{\text{BRST}}^\dagger = \hat{Q}_{\text{BRST}}.$$
 (48)

• Some useful mathematics for finding \mathcal{H}_{phys} of quantum Yang-Mills theory: Any state $|\psi\rangle$ in a vector space \mathcal{H} with a nilpotent linear operator $\hat{Q} : \mathcal{H} \to \mathcal{H}$ acting on it can be classified as either

- \hat{Q} -closed if $\hat{Q}|\psi\rangle = 0$, i.e. if $|\psi\rangle \in \ker(\hat{Q})$, or

- \hat{Q} -exact if $\exists |\chi\rangle \in \mathcal{H}$ such that $|\psi\rangle = \hat{Q}|\chi\rangle$, i.e. if $|\psi\rangle \in \text{Im}(\hat{Q})$.

Since for all \hat{Q} -exact $|\psi\rangle$ it holds that $\hat{Q}|\psi\rangle = \hat{Q}^2|\chi\rangle = 0$, we have $\operatorname{Im}(\hat{Q}) \subset \operatorname{ker}(\hat{Q})$. Further, the \hat{Q} -cohomology is defined as the quotient space $\mathcal{C}(\hat{Q}) \equiv \operatorname{ker}(\hat{Q})/\operatorname{Im}(\hat{Q})$.

• Back to physics: The space of states on which the time-evolution operator $\hat{U} = \mathrm{T}e^{i\int_{\mathbb{R}}\hat{H}\,\mathrm{d}t}$ is independent of the specific choice of gauge-fixing condition is given by ker $(\hat{Q}_{\mathrm{BRST}})$. Time evolution should not depend on gauge, so we require

$$|\psi\rangle \in \mathcal{H}_{\text{phys}}$$
 only if $Q_{\text{BRST}}|\psi\rangle = 0.$ (49)

Within ker (\hat{Q}_{BRST}) , the BRST-exact states have zero overlap with all other states since $\forall |\psi\rangle \in Im(\hat{Q}_{BRST})$ with $|\psi\rangle = \hat{Q}_{BRST}|\chi\rangle$ and $\forall |\xi\rangle \in ker(\hat{Q}_{BRST})$

$$\langle \psi | \xi \rangle = \langle \chi | \hat{Q}_{\text{BRST}}^{\dagger} | \xi \rangle = \langle \chi | \underbrace{\hat{Q}_{\text{BRST}} | \xi}_{0} = 0.$$
(50)

States with zero overlap with all other states can never be measured and are therefore unphysical. We thus define the **physical Hilbert space** of quantum Yang-Mills theory as the cohomology

$$\mathcal{H}_{\rm phys} = \mathcal{C}(\hat{Q}_{\rm BRST}) = \frac{\ker(\hat{Q}_{\rm BRST})}{\operatorname{Im}(\hat{Q}_{\rm BRST})}.$$
(51)

• Evalutating the physical state condition eq. (49) reveals $B_{\bar{c}}$, and *c*-excitations to be unphysical. The only physical states are of the form

$$|\psi\rangle \in \mathcal{H}_{\text{phys}} \quad \Leftrightarrow \quad |\psi\rangle = \xi_{\mu} |A^{\mu}(\boldsymbol{k})\rangle \quad \text{with } k^{2} = 0 \text{ and } \xi_{\mu} k^{\mu} = 0.$$
 (52)