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Issues of floating point arithmetic

1 Machine epsilon

Write a computer program in C, C++, or Python that experimentally determines the machine
epsilon εm, i.e. the smallest number εm such that 1+ εm still evaluates to something different
from 1, for the following data types:

(a) float,

(b) double,

(c) long double.

Note: 1The significance of εm lies in its ability to establish an upper bound on the relative
error due to rounding in floating point arithmetic, where rounding denotes the process of
finding the closest match to any real number r ∈ R within a floating point system.

The simplest way to find the value of εm in C and C++ for different data types is to consult
the macro constants FLT_EPSILON, DBL_EPSILON, and LDBL_EPSILON defined by the float.h header.
They can be printed to the console via

printf("according to <float.h> header :\n\tfloat epsilon = \t%e\n\tdouble

epsilon = \t%e\n\tond double epsilon = \t%Le\n", FLT_EPSILON ,

DBL_EPSILON , LDBL_EPSILON);

By way of calculating these values ourselves, we can use the simple algorithm

float f_epsilon = 1;

while (1 + f_epsilon /2 != 1) {

f_epsilon /= 2;

}

and equivalently for double and long double. This approximate solution yields

εm,f = 1.192 093× 2−7, εm,d = 2.220 446× 2−16, εm,ld = 1.084 202× 2−19.

which coincides to given precision with the corresponding float.h macro constants.

1Notes are written out of personal interest and not relevant for the solution of the exercise.
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2 Pitfalls of floating point arithmetic

Consider the following numbers:

double a = 1.0 e17;

double b = -1.0e17;

double c = 1.0;

double x = (a + b) + c;

double y = a + (b + c);

Calculate the results for x and y. Which one is correct, if any? Explain, why the law of
associativity is broken here.

x will give the correct answer of 1.0. When evaluating y, a double does not have sufficient
accuracy to correctly perform the sum of b and c since

1 = |c| < εm,d · |b| ≈ 2.22× 10−16 × 1017 ≈ 22. (1)

The value of c will be lost to machine precision and y evaluates to 0.0.

3 Pitfalls of floating point representation

Consider the following C/C++ code:

float x = 0.01;

double y = x;

double z = 0.01;

int i=x*10000;

int j=y*10000;

int k=z*10000;

printf("%d %d %d\n", i, j, k);

which prints out three integer numbers.

(a) Explain why the numbers are not all equal.

(b) Determine the rational number n/m, where n and m are natural numbers, that is
represented by the single-precision IEEE-754 floating point variable x in the above
example. Note: This number is not 1/100.

(a) The above code snippet prints 100 99 100. The reason is that while the fraction 1/100
has a simple enough representation as a decimal number, it cannot be represented exactly
in binary format.

1/100 = (0.01)10 = (0.0000001010001111)2

Writing

#include <stdio.h>

int main() {

float x = 0.01;

printf("%.29f", x);}

reveals that the stored value of x is 0.009 999 999 776 482 582 092 285 156 25. This value is
then assigned to y without further loss of precision since double has a higher precision
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than float. This same higher precision allows y to carry along the rounding error it
received from x through the multiplication by 10 000, whereas the float x incurs another
rounding error compensating the first. Multiplied by 10 000, x and y become 100.0 and
99.999 997 764 . . . , respectively. This result is then cast to type int, where digits after the
floating point are simply truncated. This explains the values of 100 and 99 for i and j.

When assigning 0.01 to the double z, we produce less of a rounding error right from the
start. However, z still has finite precision and so is similarly unable to store 0.01 exactly.
It’s internal value is 0.010 000 000 000 000 000 208 166 . . . . The error now overstimates so
when casting z to type int, we simply get 100 again.

(b) By writing x as x
1 , expanding the fraction by 1029 and reducing as far as possible, we get

the rational representation of x:

x =
5368709

536870912
.

4 Packing of numbers

Estimate how many numbers there are in the interval between 1.0 and 2.0, and in between
the interval of 511.0 to 512.0, for IEEE-754 numbers with

(a) single precision.

(b) double precision.

The spacing between numbers in floating-point format depends on their implementation.

(a) IEEE-754 numbers with single precision are 32 bit in size, of which 1 bit, the first, is the
sign bit, followed by 8 exponent bits, and another 23 fraction bits to encode the actual
numbers after the floating point. (The IEEE standard prescribes a so-called normalized
significand, which requires the number in front of the point to be 1 with the exponent
adjusted accordingly.) Thus, with an exponent of zero, we can (including the sign bit)
represent 224 different numbers, exactly half of which, the positive ones, lie in the interval
[1, 2). (That makes for a spacing of 2−23 in the interval [1, 2) for IEEE-754 single-precision
numbers.)

To represent numbers in the interval [511, 512), the exponent bits encode the decimal 8.
Therefore, number spacing is scaled by a factor of 28 and we estimate only 223/28 = 215

numbers within [511, 512).

(b) IEEE-754 numbers with double precision are 64 bit in size, of which again the first is the
sign bit, followed by 11 exponent bits, and 52 bits for the mantissa.

Thus, there are 252 numbers in the interval [1, 2) and 244 in [511, 512).

5 Summing a long list of numbers

On the lecture’s moodle-site, you’ll find a binary file numbers.dat (8 MB). This contains
first a 32 bit integer number that gives the number of double-precision values stored in the
file (106 in the provided example), followed by the numbers themselves.
Write a read-statement for these numbers, and then try to sum them up, using different
approaches.
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(a) First, sum the numbers with a simple loop, sequentially from beginning to end. Write
down the result.

(b) Next, sum them from end to beginning, reversing the initial direction of the loop. Write
down the result.

(c) Sort the numbers by their magnitude, and sum them from small to large. What do you
get now?

(d) Repeat the last experiment by using a summation variable of type long double. Do
you think the obtained result is trustworthy and correct? (Optional: Try to get real
‘quad-double’ precision to work where the machine epsilon εm is of the order of 2−35 or
so. Check the manual of your compiler what long double actually stands for and how
you can switch on real 128 bit floating point precision emulated in software.)

(e) Write a program that exactly sums the list of numbers using the GMP library (GNU
big number library) that allows arbitrary precision floating point accuracy. What do
you get?

(a) A sequential (forward) sum of all values stored in numbers.dat, except the first one, yields
Σfor = −6 516 239 353 685 426.

(b) Summing backwards, on the other hand, gives Σback = 96 953 142 435 211 540 151 926 784.

(c) Sorting the numbers in numbers.dat and summing again, we get Σsort = 0.

(d) Using long double precision to do the sorted sum, we still get Σlong = 0.

(e) Finally, bringing out the heavy machinery and performing the sorted sum with 512 bit-
precision, we obtain the confidence inspiring result Σgmp = 42.
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