String Theory

Solution to Assignment 1

Janosh Riebesell
October 11th, 2015 (due October 14th, 2015)

Lecturer: Timo Weigand

1 Differential Geometry for General Relativity

Consider the line element of a 2 -sphere of radius a,

$$
\begin{equation*}
\mathrm{d} s^{2}=g_{\mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}=a^{2}\left[\mathrm{~d} \theta^{2}+\sin ^{2}(\theta) \mathrm{d} \phi^{2}\right] . \tag{1}
\end{equation*}
$$

The metric $g_{\mu \nu}$ encodes all information on the geometry of a manifold. From it one can determine all those geometric quantities that are relevant for general relativity, namely

The metric Choosing $x^{1}=\theta$ and $x^{2}=\phi$, read off the matrix $g_{\mu \nu}$.
The Christoffel symbols The Christoffel symbols are defined as

$$
\begin{equation*}
\Gamma^{\lambda}{ }_{\mu \nu}=\frac{1}{2} g^{\lambda \kappa}\left(\frac{\partial g_{\mu \kappa}}{\partial x^{\nu}}+\frac{\partial g_{\nu \kappa}}{\partial x^{\mu}}-\frac{\partial g_{\mu \nu}}{\partial x^{\kappa}}\right) . \tag{2}
\end{equation*}
$$

They enter the covariant derivatives $\nabla_{\mu} V^{\nu}=\partial_{\mu} V^{\nu}+\Gamma^{\lambda}{ }_{\mu \nu} V^{\lambda}$, where the correction term with the Christoffel symbol ensures that the covariant derivative indeed transforms covariantly under arbitrary coordinate transformations $x^{\mu} \rightarrow x^{\prime \mu}\left(x^{\nu}\right)$, i.e.

$$
\begin{equation*}
\nabla_{\mu} V^{\nu}=\partial_{\mu} V^{\nu} \rightarrow\left(\nabla_{\mu} V^{\nu}=\partial_{\mu} V^{\nu}\right)^{\prime}=\frac{\partial x^{\lambda}}{\partial x^{\prime \mu}} \frac{\partial x^{\prime \nu}}{\partial x^{\rho}} \nabla_{\lambda} V^{\rho} \tag{3}
\end{equation*}
$$

without second derivatives in the coordinates. Compute the non-vanishing Christoffel symbols for the 2 -sphere (Hint: $\Gamma^{\kappa}{ }_{\lambda \mu}=\Gamma^{\kappa}{ }_{\mu \lambda}$).
The Riemann tensor The Riemann curvature tensor has the form

$$
\begin{equation*}
R_{\lambda \mu \nu}^{\kappa}=\partial_{\mu} \Gamma^{\kappa}{ }_{\lambda \nu}-\partial_{\nu} \Gamma^{\kappa}{ }_{\lambda \mu}+\Gamma_{\lambda \nu}^{\eta} \Gamma_{\eta \mu}^{\kappa}-\Gamma_{\lambda \mu}^{\eta} \Gamma_{\nu \eta}^{\kappa} . \tag{4}
\end{equation*}
$$

Calculate the non-vanishing components of the Riemann tensor for the 2 -sphere (Hint: $\left.R^{\kappa}{ }_{\lambda \mu \nu}=-R^{\kappa}{ }_{\lambda \mu \mu}\right)$.
Remark: The Riemann tensor measures the curvature of a space, for instance by quantifying the non-commutativity of the covariant derivatives,

$$
\begin{equation*}
\left[\nabla_{\mu}, \nabla_{\nu}\right] V^{\kappa}=R_{\lambda \mu \nu}^{\kappa} V^{\lambda} \tag{5}
\end{equation*}
$$

A space with vanishing Riemann tensor is flat, i.e. the metric can be brought to the standard Minkowskian (or Euclidean) form by means of a coordinate transformation.

The Ricci tensor The Ricci tensor is defined as

$$
\begin{equation*}
R_{\mu \nu}=R_{\mu \kappa \nu}^{\kappa} . \tag{6}
\end{equation*}
$$

Calculate the Ricci tensor for the 2 -sphere.
The scalar curvature The scalar curvature is given by

$$
\begin{equation*}
\mathcal{R}=g^{\mu \nu} R_{\mu \nu} \tag{7}
\end{equation*}
$$

Calculate the scalar curvature of the 2 -sphere. How does it behave in the limit $a \rightarrow \infty$? Interpret this behavior.

The Einstein tensor The Einstein tensor appears in the field equation of general relativity and it relates the curvature of space-time to the matter distribution,

$$
\begin{equation*}
G_{\mu \nu}=8 \pi G T_{\mu \nu}, \tag{8}
\end{equation*}
$$

where G denotes Newton's constant, $T_{\mu \nu}$ is the energy-momentum tensor, and $G_{\mu \nu}$ denotes the Einstein tensor,

$$
\begin{equation*}
G_{\mu \nu}=R_{\mu \nu}-\frac{1}{2} \mathcal{R} g_{\mu \nu} \tag{9}
\end{equation*}
$$

Calculate the Einstein tensor for the 2 -sphere.

The metric For $x^{1}=\theta$ and $x^{2}=\phi$, the equation

$$
\begin{equation*}
g_{\mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}=a^{2}\left[\mathrm{~d} \theta^{2}+\sin ^{2}(\theta) \mathrm{d} \phi^{2}\right] \tag{10}
\end{equation*}
$$

implies

$$
\boldsymbol{g}=a^{2}\left(\begin{array}{cc}
1 & 0 \tag{11}\\
0 & \sin ^{2}(\theta)
\end{array}\right), \quad \text { and hence } \quad \boldsymbol{g}^{-1}=\frac{1}{a^{2}}\left(\begin{array}{cc}
1 & 0 \\
0 & \frac{1}{\sin ^{2}(\theta)}
\end{array}\right) .
$$

The Christoffel symbols Since the Christoffel symbols carry three coordinate indices and we have $d=2$ dimensions (θ, ϕ), there are $d^{3}=8$ Christoffel symbols in total. However, due to the symmetry in the lower two indices, those with lower indices 12 and 21 are equal both for an upper index of 1 and 2 , so only $8-2=6$ of those symbols are independent. We calculate each of those in turn. Since the only nonvanishing metric derivative is $\frac{\partial g_{22}}{\partial x^{1}}=2 \sin (\theta) \cos (\theta)$, all but $\Gamma^{1}{ }_{22}, \Gamma^{2}{ }_{12}$, and $\Gamma^{2}{ }_{21}$ can immediately be seen to vanish:

$$
\begin{align*}
\Gamma^{1}{ }_{11} & =\frac{1}{2} g^{1 \kappa}\left(\frac{\partial g_{1 \kappa}}{\partial x^{1}}+\frac{\partial g_{1 \kappa}}{\partial x^{1}}-\frac{\partial g_{11}}{\partial x^{\kappa}}\right)=0, \tag{12}\\
\Gamma^{1}{ }_{12} & =\frac{1}{2} g^{1 \kappa}\left(\frac{\partial g_{1 \kappa}}{\partial x^{2}}+\frac{\partial g_{2 \kappa}}{\partial x^{1}}-\frac{\partial g_{12}}{\partial x^{\kappa}}\right)=\frac{1}{2} g^{12} \frac{\partial g_{22}}{\partial x^{1}}=0=\Gamma_{21}^{1}, \tag{13}\\
\Gamma^{1}{ }_{22} & =\frac{1}{2} g^{1 \kappa}\left(\frac{\partial g_{2 \kappa}}{\partial x^{2}}+\frac{\partial g_{2 \kappa}}{\partial x^{2}}-\frac{\partial g_{22}}{\partial x^{\kappa}}\right) \tag{14}\\
& =-\frac{1}{2} g^{11} \frac{\partial g_{22}}{\partial x^{1}}=-\frac{1}{2 a^{2}} \frac{\partial\left[a^{2} \sin ^{2}(\theta)\right]}{\partial \theta}=-\sin (\theta) \cos (\theta), \\
\Gamma^{2}{ }_{11} & =\frac{1}{2} g^{2 \kappa}\left(\frac{\partial g_{1 \kappa}}{\partial x^{1}}+\frac{\partial g_{1 \kappa}}{\partial x^{1}}-\frac{\partial g_{11}}{\partial x^{\kappa}}\right)=0, \tag{15}
\end{align*}
$$

$$
\begin{align*}
\Gamma_{12}^{2} & =\frac{1}{2} g^{2 \kappa}\left(\frac{\partial g_{1 \kappa}}{\partial x^{2}}+\frac{\partial g_{2 \kappa}}{\partial x^{1}}-\frac{\partial g_{12}}{\partial x^{\kappa}}\right) \\
& =\frac{1}{2} g^{22} \frac{\partial g_{22}}{\partial x^{1}}=\frac{1}{2 a^{2} \sin ^{2}(\theta)} \frac{\partial\left[a^{2} \sin ^{2}(\theta)\right]}{\partial \theta}=\cot (\theta)=\Gamma_{21}^{2} \tag{16}\\
\Gamma_{22}^{2} & =\frac{1}{2} g^{2 \kappa}\left(\frac{\partial g_{2 \kappa}}{\partial x^{2}}+\frac{\partial g_{2 \kappa}}{\partial x^{2}}-\frac{\partial g_{22}}{\partial x^{\kappa}}\right)=0 \tag{17}
\end{align*}
$$

The Riemann tensor The Riemann tensor has four indices. So for $d=2$ dimensions, the tensor contains a total of $d^{4}=16$ components. Due to the antisymmetry $R_{\lambda \mu \nu}^{\kappa}=-R_{\lambda \nu \mu}^{\kappa}$ of the last two indices, there is only $\frac{d}{2}(d-1)=1$ independent combination of those two indices, leaving the Riemann tensor with $d^{2} \cdot \frac{d}{2}(d-1)=4$ independent components. In particular, all eight entries where the last two indices are equal must be zero, i.e.

$$
\begin{align*}
& R_{111}^{1}=R_{211}^{1}=R_{111}^{2}=R_{211}^{2}=0 \tag{18}\\
& R_{122}^{1}=R_{222}^{1}=R_{122}^{2}=R_{222}^{2}=0 \tag{19}
\end{align*}
$$

The remaining eight components are potentially nonzero, but form four pairs of two whose members differ only in sign. These we calculate by hand:

$$
\begin{align*}
& R^{1}{ }_{112}=-R_{121}^{1}=\partial_{1} \Gamma_{12}^{1}-\partial_{2} \Gamma^{1}{ }_{11}+\Gamma^{\eta}{ }_{12} \Gamma^{1}{ }_{\eta 1}-\Gamma^{\eta}{ }_{11} \Gamma^{1}{ }_{2 \eta}=0, \tag{20}\\
& R^{1}{ }_{212}=-R^{1}{ }_{221}=\partial_{1} \Gamma^{1}{ }_{22}-\partial_{2} \Gamma^{1}{ }_{22}+\Gamma^{\eta}{ }_{12} \Gamma^{1}{ }_{\eta 1}-\Gamma^{\eta}{ }_{21} \Gamma^{1}{ }_{2 \eta}=\partial_{1} \Gamma^{1}{ }_{22}-\Gamma^{2}{ }_{21} \Gamma^{1}{ }_{22} \\
& =\partial_{\theta}[-\sin (\theta) \cos (\theta)]-\cot (\theta) \cdot[-\sin (\theta) \cos (\theta)] \tag{21}\\
& =-\cos ^{2}(\theta)+\sin ^{2}(\theta)+\cos ^{2}(\theta)=\sin ^{2}(\theta), \\
& R^{2}{ }_{112}=-R^{2}{ }_{121}=\partial_{1} \Gamma^{2}{ }_{12}-\partial_{2} \Gamma^{2}{ }_{11}+\Gamma^{\eta}{ }_{12} \Gamma^{2}{ }_{\eta 1}-\Gamma^{\eta}{ }_{11} \Gamma^{2}{ }_{2 \eta}=\partial_{1} \Gamma^{2}{ }_{12}+\Gamma^{2}{ }_{12} \Gamma^{2}{ }_{21} \tag{22}\\
& =\partial_{\theta} \cot (\theta)+\cot (\theta) \cdot \cot (\theta)=-1-\cot ^{2}(\theta)+\cot ^{2}(\theta)=-1 \text {, } \\
& R^{2}{ }_{212}=-R_{221}^{2}=\partial_{1} \Gamma^{2}{ }_{22}-\partial_{2} \Gamma^{2}{ }_{21}+\Gamma^{\eta}{ }_{22} \Gamma^{2}{ }_{\eta 1}-\Gamma^{\eta}{ }_{21} \Gamma^{2}{ }_{2 \eta}=0 . \tag{23}
\end{align*}
$$

We found four nonvanishing components. The remark given in the exercise that a space with vanishing Riemann tensor is flat is in fact an "iff"-statement, i.e. a nonvanishing Riemann tensor implies that space is curved. We have therefore proven the unremarkable statement that the 2 -sphere is curved.

The Ricci tensor The $d^{2}=4$ components of the Ricci tensor of the 2 -sphere are given by

$$
\begin{align*}
& R_{11}=R^{\kappa}{ }_{1 \kappa 1}=R_{111}^{1}+R_{121}^{2}=1 \tag{24}\\
& R_{12}=R^{\kappa}{ }_{1 \kappa 2}=R_{112}^{1}+R_{122}^{2}=0 \tag{25}\\
& R_{21}=R^{\kappa}{ }_{2 \kappa 1}=R_{211}^{1}+R_{221}^{2}=0 \tag{26}\\
& R_{22}=R_{2 \kappa 2}^{\kappa}=R_{212}^{1}+R_{222}^{2}=\sin ^{2}(\theta) . \tag{27}
\end{align*}
$$

The scalar curvature In the case of the 2 -sphere, \mathcal{R} takes the very simple and memorable form,

$$
\begin{equation*}
\mathcal{R}=g^{\mu \nu} R_{\mu \nu}=g^{11} R_{11}+g^{22} R_{22}=\frac{1}{a^{2}} \cdot 1+\frac{1}{a^{2} \sin ^{2}(\theta)} \cdot \sin ^{2}(\theta)=\frac{2}{a^{2}} \tag{28}
\end{equation*}
$$

As expected, in the limit $a \rightarrow \infty$, we have

$$
\begin{equation*}
\lim _{a \rightarrow \infty} \mathcal{R}=0 \tag{29}
\end{equation*}
$$

i.e. a sphere of infinite radius has vanishing curvature.

The Einstein tensor We give the Einstein tensor of the 2 -sphere not component-wise, but in covariant matrix form:

$$
\boldsymbol{G}=\boldsymbol{R}-\frac{1}{2} \mathcal{R} \boldsymbol{g}=\left(\begin{array}{cc}
1 & 0 \tag{30}\\
0 & \sin ^{2}(\theta)
\end{array}\right)-\frac{1}{2} \frac{2}{a^{2}} a^{2}\left(\begin{array}{cc}
1 & 0 \\
0 & \sin ^{2}(\theta)
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) .
$$

According to the Einstein equation,

$$
\begin{equation*}
G_{\mu \nu}=8 \pi G T_{\mu \nu} \tag{31}
\end{equation*}
$$

a vanishing Einstein tensor requires a trivial matter distribution, $T_{\mu \nu}=0$.

2 Transformation of tensors and tensor densities

Consider the coordinate change

$$
\begin{equation*}
x^{\mu} \rightarrow x^{\prime \mu} \equiv x^{\mu^{\prime}} \tag{32}
\end{equation*}
$$

The associated transformation matrix and its inverse are

$$
\begin{equation*}
P_{\nu^{\prime}}^{\mu}=\frac{\partial x^{\mu}}{\partial x^{\prime \nu}}, \quad \text { and } \quad P_{\nu}^{\mu^{\prime}}=\frac{\partial x^{\prime \mu}}{\partial x^{\nu}} \tag{33}
\end{equation*}
$$

respectively. Recall that a tensor of type, say $T^{\mu}{ }_{\nu}$ transforms under eq. (32) as

$$
\begin{equation*}
T_{\nu}^{\mu} \rightarrow T_{\nu^{\prime}}^{\mu^{\prime}}=P_{\alpha}^{\mu^{\prime}} P_{\nu^{\prime}}^{\beta} T_{\beta}^{\alpha} \tag{34}
\end{equation*}
$$

A tensor density $\tilde{T}^{\mu}{ }_{\nu}$ of weight w is defined by the transformation behavior

$$
\begin{equation*}
\tilde{T}_{\nu}^{\mu} \rightarrow \tilde{T}_{\nu^{\prime}}^{\mu^{\prime}}=J^{w} P_{\alpha}^{\mu^{\prime}} P_{\nu^{\prime}}^{\beta} \tilde{T}_{\beta}^{\alpha} . \tag{35}
\end{equation*}
$$

(and obvious generalisations for general types of tensor densities), where $J=\operatorname{det}(\boldsymbol{P})$.
a) Given the tensor $S_{\mu \nu}$, convince yourself that $\sqrt{\operatorname{det}(\boldsymbol{S})}$ is a scalar density of weight 1 .
b) Consider now fields of tensors and tensor densities, e.g. $T^{\mu}{ }_{\nu}(x)$. Locally, i.e. infinitesimally, the transformation of eq. (32) can be parametrized as $x^{\mu}=x^{\mu}-\epsilon^{\mu}(x)$. Show the following infinitesimal variations for a scalar field $\Phi(x)$, the metric $g_{\mu \nu}(x)$ and the associated metric density $\sqrt{-\operatorname{det}(\boldsymbol{g})}$:
i) $\delta \Phi=\epsilon^{\mu} \partial_{\mu} \Phi$,
ii) $\delta g_{\mu \nu}=\epsilon^{\lambda} \partial_{\lambda} g_{\mu \nu}+\left(\partial_{\mu} \epsilon^{\lambda}\right) g_{\lambda \nu}+\left(\partial_{\nu} \epsilon^{\lambda}\right) g_{\mu \lambda}=\nabla_{\mu} \epsilon_{\nu}+\nabla_{\nu} \epsilon_{\mu}$,
iii) $\delta \sqrt{-\operatorname{det}(\boldsymbol{g})}=\partial_{\lambda}\left[\epsilon^{\lambda} \sqrt{-\operatorname{det}(\boldsymbol{g})}\right]$,
where the second equality in ii) is true for the metric connection satisfying $\nabla_{\lambda} g_{\mu \nu}=0$.
Hint: For a scalar field the transformed object is defined via the relation $\Phi^{\prime}\left(x^{\prime}\right)=\Phi(x)$.
a) Since $S_{\mu \nu}$ is said to be a tensor, we know it transforms as

$$
\begin{equation*}
S_{\mu \nu} \rightarrow S_{\mu^{\prime} \nu^{\prime}}=P_{\mu^{\prime}}^{\alpha} P_{\nu^{\prime}}^{\beta} S_{\alpha \beta} \tag{36}
\end{equation*}
$$

or in matrix notation

$$
\begin{equation*}
\boldsymbol{S} \rightarrow \boldsymbol{S}^{\prime}=\boldsymbol{P}_{x \rightarrow x^{\prime}}^{2} \boldsymbol{S} \tag{37}
\end{equation*}
$$

Using that the determinant of a product of matrices is the product of the determinants, we have

$$
\begin{align*}
\sqrt{\operatorname{det}(\boldsymbol{S})} \rightarrow \sqrt{\operatorname{det}\left(\boldsymbol{S}^{\prime}\right)} & =\sqrt{\operatorname{det}\left(\boldsymbol{P}_{x \rightarrow x^{\prime}}^{2} \boldsymbol{S}\right)}=\sqrt{\left[\operatorname{det}\left(\boldsymbol{P}_{x \rightarrow x^{\prime}}\right)\right]^{2} \operatorname{det}(\boldsymbol{S})} \tag{38}\\
& =\operatorname{det}\left(\boldsymbol{P}_{x \rightarrow x^{\prime}}\right) \sqrt{\operatorname{det}(\boldsymbol{S})}=J_{x \rightarrow x^{\prime}}^{1} \sqrt{\operatorname{det}(\boldsymbol{S})}
\end{align*}
$$

and thus $\sqrt{\operatorname{det}(\boldsymbol{S})}$ is a tensor density of weight 1.
b) We now derive the infinitesimal transformation behavior of a scalar field as well as the metric and the square root of its negated determinant under the transformation $x^{\mu}=x^{\mu}-\epsilon^{\mu}\left(x^{\prime}\right)$.
i) Using $x^{\mu}=x^{\prime \mu}+\epsilon^{\mu}\left(x^{\prime}\right)$, the variation of a scalar field follows from the hint that $\Phi^{\prime}\left(x^{\prime}\right)=$ $\Phi(x)$ together with a simple Taylor expansion of $\Phi(x)$ around x^{\prime},

$$
\begin{align*}
\Phi(x) \rightarrow \Phi^{\prime}\left(x^{\prime}\right) & \stackrel{!}{=} \Phi(x)=\Phi\left(x^{\prime}+\epsilon\left(x^{\prime}\right)\right) \\
& =\left.\sum_{n=0}^{\infty} \frac{1}{n!} \frac{\partial^{n} \Phi\left(x^{\prime}+\epsilon\left(x^{\prime}\right)\right)}{\partial^{n}\left(x^{\prime \mu}+\epsilon^{\mu}\left(x^{\prime}\right)\right)}\right|_{x^{\prime \mu}+\epsilon^{\mu}\left(x^{\prime}\right)=x^{\prime \mu}}\left(x^{\prime \mu}+\epsilon^{\mu}\left(x^{\prime}\right)-x^{\prime \mu}\right)^{n} \tag{39}\\
& =\Phi\left(x^{\prime}\right)+\epsilon^{\mu}\left(x^{\prime}\right) \partial_{\mu^{\prime}} \Phi\left(x^{\prime}\right)+\mathcal{O}\left[\epsilon^{2}\left(x^{\prime}\right)\right] .
\end{align*}
$$

From this transformation law it follows that

$$
\begin{equation*}
\Phi^{\prime}(x)=\Phi(x)+\epsilon^{\mu}(x) \partial_{\mu} \Phi(x)+\mathcal{O}\left[\epsilon^{2}(x)\right] \tag{40}
\end{equation*}
$$

and hence the variation $\delta \Phi(x)$ of the scalar field $\Phi(x)$ given by the difference of the transformed and the original field reads

$$
\begin{equation*}
\delta \Phi(x)=\Phi^{\prime}(x)+\Phi(x)=\epsilon^{\mu}(x) \partial_{\mu} \Phi(x)+\mathcal{O}\left[\epsilon^{2}(x)\right] \tag{41}
\end{equation*}
$$

ii) For the metric $g_{\mu \nu}(x)$, we know that it strictly follows the transformational behavior (34) of a tensor (field). Therefore,

$$
\begin{equation*}
g_{\mu \nu}(x) \rightarrow g_{\mu^{\prime} \nu^{\prime}}\left(x^{\prime}\right)=P_{\mu^{\prime}}^{\alpha} P_{\nu^{\prime}}^{\beta} g_{\alpha \beta}(x) . \tag{42}
\end{equation*}
$$

Now, all we have to do is expand the expression on the right to first order in $\epsilon^{\mu}(x)$. This can be done by inserting our transformation $x^{\mu}=x^{\prime \mu}+\epsilon^{\mu}\left(x^{\prime}\right)$ into the definition of the transformation matrix $P_{\nu^{\prime}}^{\mu}$

$$
\begin{equation*}
P_{\mu^{\prime}}^{\alpha}=\frac{\partial x^{\alpha}}{\partial x^{\prime \mu}}=\frac{\partial x^{\prime \alpha}+\epsilon^{\alpha}\left(x^{\prime}\right)}{\partial x^{\prime \mu}}=\delta^{\alpha}{ }_{\mu}+\partial_{\mu^{\prime}} \epsilon^{\alpha}\left(x^{\prime}\right) \tag{43}
\end{equation*}
$$

For the metric $g_{\alpha \beta}(x)$, we do a Taylor expansion,

$$
\begin{aligned}
g_{\alpha \beta}(x) & =g_{\alpha \beta}\left(x^{\prime}+\epsilon\left(x^{\prime}\right)\right) \\
& =\left.\sum_{n=0}^{\infty} \frac{1}{n!} \frac{\partial^{n} g_{\alpha \beta}\left(x^{\prime}+\epsilon\left(x^{\prime}\right)\right)}{\partial^{n}\left(x^{\prime \gamma}+\epsilon^{\gamma}\left(x^{\prime}\right)\right)}\right|_{x^{\prime \gamma}+\epsilon^{\gamma}\left(x^{\prime}\right)=x^{\prime \gamma}}\left(x^{\prime \gamma}+\epsilon^{\gamma}\left(x^{\prime}\right)-x^{\prime \gamma}\right)^{n} \\
& =g_{\alpha \beta}\left(x^{\prime}\right)+\epsilon^{\gamma}\left(x^{\prime}\right) \partial_{\gamma^{\prime}} g_{\alpha \beta}\left(x^{\prime}\right)+\mathcal{O}\left[\epsilon^{2}\left(x^{\prime}\right)\right] .
\end{aligned}
$$

Inserting eq. (43) and part ii) into eq. (42), we get

$$
\begin{aligned}
g_{\mu^{\prime} \nu^{\prime}}\left(x^{\prime}\right)= & {\left[\delta^{\alpha}{ }_{\mu}+\partial_{\mu^{\prime}} \epsilon^{\alpha}\left(x^{\prime}\right)\right]\left[\delta^{\beta}{ }_{\nu}+\partial_{\nu^{\prime}} \epsilon^{\beta}\left(x^{\prime}\right)\right]\left[g_{\alpha \beta}\left(x^{\prime}\right)+\epsilon^{\gamma}\left(x^{\prime}\right) \partial_{\gamma^{\prime}} g_{\alpha \beta}\left(x^{\prime}\right)+\mathcal{O}\left[\epsilon^{2}\left(x^{\prime}\right)\right]\right] } \\
= & \delta^{\alpha}{ }_{\mu} \delta^{\beta}{ }_{\nu} g_{\alpha \beta}\left(x^{\prime}\right)+\left[\partial_{\mu^{\prime}} \epsilon^{\alpha}\left(x^{\prime}\right)\right] \delta^{\beta}{ }_{\nu} g_{\alpha \beta}\left(x^{\prime}\right)+\delta^{\alpha}{ }_{\mu}\left[\partial_{\nu^{\prime}} \epsilon^{\beta}\left(x^{\prime}\right)\right] g_{\alpha \beta}\left(x^{\prime}\right) \\
& +\delta^{\alpha}{ }_{\mu} \delta^{\beta}{ }_{\nu} \epsilon^{\gamma}\left(x^{\prime}\right) \partial_{\gamma^{\prime}} g_{\alpha \beta}\left(x^{\prime}\right)+\mathcal{O}\left[\epsilon^{2}\left(x^{\prime}\right)\right] \\
= & g_{\mu \nu}\left(x^{\prime}\right)+g_{\alpha \nu}\left(x^{\prime}\right) \partial_{\mu^{\prime}} \epsilon^{\alpha}\left(x^{\prime}\right)+g_{\mu \beta}\left(x^{\prime}\right) \partial_{\nu^{\prime}} \epsilon^{\beta}\left(x^{\prime}\right)+\epsilon^{\gamma}\left(x^{\prime}\right) \partial_{\gamma^{\prime}} g_{\mu \nu}\left(x^{\prime}\right)+\mathcal{O}\left[\epsilon^{2}\left(x^{\prime}\right)\right] .
\end{aligned}
$$

From this we infer that

$$
\begin{equation*}
g_{\mu^{\prime} \nu^{\prime}}(x)=g_{\mu \nu}(x)+g_{\alpha \nu}(x) \partial_{\mu} \epsilon^{\alpha}(x)+g_{\mu \beta}(x) \partial_{\nu} \epsilon^{\beta}(x)+\epsilon^{\gamma}(x) \partial_{\gamma} g_{\mu \nu}(x)+\mathcal{O}\left[\epsilon^{2}(x)\right] \tag{44}
\end{equation*}
$$

and hence

$$
\begin{align*}
\delta g_{\mu \nu}(x) & =g_{\mu^{\prime} \nu^{\prime}}(x)-g_{\mu \nu}(x) \\
& =g_{\alpha \nu}(x) \partial_{\mu} \epsilon^{\alpha}(x)+g_{\mu \beta}(x) \partial_{\nu} \epsilon^{\beta}(x)+\epsilon^{\gamma}(x) \partial_{\gamma} g_{\mu \nu}(x)+\mathcal{O}\left[\epsilon^{2}(x)\right] \tag{45}
\end{align*}
$$

To see that the second equality in ii) holds, we simply calculate

$$
\begin{align*}
\nabla_{\mu} \epsilon_{\nu}+\nabla_{\nu} \epsilon_{\mu}= & \nabla_{\mu}\left(g_{\alpha \nu} \epsilon^{\alpha}\right)+\nabla_{\nu}\left(g_{\mu \beta} \epsilon^{\beta}\right)=g_{\alpha \nu} \nabla_{\mu} \epsilon^{\alpha}+g_{\mu \beta} \nabla_{\nu} \epsilon^{\beta}+\epsilon^{\gamma} \underbrace{\nabla_{\gamma} g_{\mu \nu}}_{0} \\
= & g_{\alpha \nu}\left(\partial_{\mu} \epsilon^{\alpha}+\Gamma^{\alpha}{ }_{\mu \delta} \epsilon^{\delta}\right)+g_{\mu \beta}\left(\partial_{\nu} \epsilon^{\beta}+\Gamma^{\beta}{ }_{\nu \zeta} \epsilon^{\zeta}\right) \\
& +\epsilon^{\gamma}\left(\partial_{\gamma} g_{\mu \nu}-\Gamma^{\alpha}{ }_{\mu \gamma} g_{\alpha \nu}-\Gamma^{\beta}{ }_{\nu \gamma} g_{\mu \beta}\right) \tag{46}\\
= & g_{\alpha \nu} \partial_{\mu} \epsilon^{\alpha}+g_{\mu \beta} \partial_{\nu} \epsilon^{\beta}+\epsilon^{\gamma} \partial_{\gamma} g_{\mu \nu} \\
& +g_{\alpha \nu} \Gamma^{\alpha}{ }_{\mu \delta} \epsilon^{\delta}-\epsilon^{\gamma} \Gamma^{\alpha}{ }_{\mu \gamma} g_{\alpha \nu}+g_{\mu \beta} \Gamma^{\beta}{ }_{\nu \zeta} \epsilon^{\zeta}-\epsilon^{\gamma} \Gamma^{\beta}{ }_{\nu \gamma} g_{\mu \beta} \\
= & g_{\alpha \nu} \partial_{\mu} \epsilon^{\alpha}+g_{\mu \beta} \partial_{\nu} \epsilon^{\beta}+\epsilon^{\gamma} \partial_{\gamma} g_{\mu \nu}=\delta g_{\mu \nu}-\mathcal{O}\left[\epsilon^{2}\right] .
\end{align*}
$$

iii) By part a), we have

$$
\begin{equation*}
\sqrt{-\operatorname{det}[\boldsymbol{g}(x)]} \rightarrow \sqrt{-\operatorname{det}\left[\boldsymbol{g}^{\prime}\left(x^{\prime}\right)\right]}=J_{x \rightarrow x^{\prime}} \sqrt{-\operatorname{det}[\boldsymbol{g}(x)]}=J_{x \rightarrow x^{\prime}} g(x), \tag{47}
\end{equation*}
$$

where to save on writing, we introduced the shorthand notation $\sqrt{-\operatorname{det}[\boldsymbol{g}(x)]}=g(x)$. To find the infinitesimal variation $\delta \sqrt{-\operatorname{det}[\boldsymbol{g}(x)]}=\delta g(x)$, we expand eq. (47) to first order in $\epsilon(x)$,

$$
\begin{align*}
g^{\prime}\left(x^{\prime}\right) & =J_{x \rightarrow x^{\prime}} g(x)=\operatorname{det}\left(\boldsymbol{P}_{x \rightarrow x^{\prime}}\right) g\left(x^{\prime}+\epsilon\left(x^{\prime}\right)\right) \\
& =\underbrace{\operatorname{det}\left[\mathbf{1}+\boldsymbol{\partial}_{x^{\prime}} \boldsymbol{\epsilon}\left(x^{\prime}\right)\right]}_{1+\operatorname{Tr}\left[\boldsymbol{\partial}_{x^{\prime}} \epsilon\left(x^{\prime}\right)\right]+\mathcal{O}\left[\epsilon^{2}\left(x^{\prime}\right)\right]}\left(g\left(x^{\prime}\right)+\epsilon^{\gamma}\left(x^{\prime}\right) \partial_{\gamma^{\prime}} g\left(x^{\prime}\right)+\mathcal{O}\left[\epsilon^{2}\left(x^{\prime}\right)\right]\right) \tag{48}\\
& =g\left(x^{\prime}\right)+\left[\partial_{\mu^{\prime}} \epsilon^{\mu}\left(x^{\prime}\right)\right] g\left(x^{\prime}\right)+\epsilon^{\mu}\left(x^{\prime}\right) \partial_{\mu^{\prime}} g\left(x^{\prime}\right)+\mathcal{O}\left[\epsilon^{2}\left(x^{\prime}\right)\right] \\
& =g\left(x^{\prime}\right)+\partial_{\mu^{\prime}}\left[\epsilon^{\mu}\left(x^{\prime}\right) g\left(x^{\prime}\right)\right]+\mathcal{O}\left[\epsilon^{2}\left(x^{\prime}\right)\right],
\end{align*}
$$

where to get to the second line we used $\boldsymbol{P}_{x \rightarrow x^{\prime}}=\mathbf{1}+\boldsymbol{\partial}_{x^{\prime}} \boldsymbol{\epsilon}\left(x^{\prime}\right)$, i.e. eq. (43) in matrix form. From eq. (48), we infer

$$
\begin{equation*}
g^{\prime}(x)=g(x)+\partial_{\mu}\left[\epsilon^{\mu}(x) g(x)\right]+\mathcal{O}\left[\epsilon^{2}(x)\right] \tag{49}
\end{equation*}
$$

from which in turn it follows that

$$
\begin{equation*}
\delta g(x)=g^{\prime}(x)-g(x)=\partial_{\mu}\left[\epsilon^{\mu}(x) g(x)\right]+\mathcal{O}\left[\epsilon^{2}(x)\right] \tag{50}
\end{equation*}
$$

or in unshortened notation,

$$
\begin{equation*}
\delta \sqrt{-\operatorname{det}[\boldsymbol{g}(x)]}=\partial_{\mu}\left[\epsilon^{\mu}(x) \sqrt{-\operatorname{det}[\boldsymbol{g}(x)]}\right]+\mathcal{O}\left[\epsilon^{2}(x)\right] . \tag{51}
\end{equation*}
$$

3 Action Principle

a) Consider a field $\varphi(x)$ and an action in d spacetime dimensions with Minkowskian signature $(-1,+1, \ldots,+1)$ of the form

$$
\begin{equation*}
S[\varphi]=\int \mathrm{d}^{d} x \mathcal{L}\left(\varphi(x), \partial_{\mu} \varphi(x)\right) \tag{52}
\end{equation*}
$$

The simplest example is the action for the free scalar field

$$
\begin{equation*}
S[\varphi]=-\frac{1}{2} \int \mathrm{~d}^{d} x\left(\partial_{\mu} \varphi \partial^{\mu} \varphi+m^{2} \varphi^{2}\right) \tag{53}
\end{equation*}
$$

The variation of the general action (52) is defined as

$$
\begin{equation*}
\delta S[\varphi]=\int \mathrm{d}^{d} x\left(\frac{\partial \mathcal{L}}{\partial \varphi} \delta \varphi+\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \varphi\right)} \delta\left(\partial_{\mu} \varphi\right)\right) \tag{54}
\end{equation*}
$$

Using integration by parts and neglecting boundary terms show that the action principle $\delta S[\varphi]=0$ implies the Euler Lagrange equations

$$
\begin{equation*}
\partial_{\mu} \frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \varphi\right)}=\frac{\partial \mathcal{L}}{\partial \varphi} . \tag{55}
\end{equation*}
$$

b) Use this result to derive the Klein-Gordon equation as the Euler-Lagrange equation of the free scalar field action (53).
a) Using partial integration on the second term in the variation of the action (54), $\delta S[\varphi]$ becomes

$$
\begin{equation*}
\delta S[\varphi]=\underbrace{\left.\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \varphi\right)} \delta \varphi\right|_{\partial \mathbb{R}^{d}}}_{0}+\int \mathrm{d}^{d} x\left(\frac{\partial \mathcal{L}}{\partial \varphi}-\partial_{\mu} \frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \varphi\right)}\right) \delta \varphi \tag{56}
\end{equation*}
$$

Since we assume we are working with localized physical systems, we take the boundary terms to vanish at spatial and temporal infinity, i.e. the term in front can be disregarded.

At this point, we resort to Hamilton's principle of a stationary action, $\delta S[\varphi]=0$, which we require to hold for all possible variations $\delta \varphi$ of $\varphi(x) . \delta S[\varphi]=0$ can hence only be true in general if the integrand itself vanishes. We thus arrive at the renowned Euler-Lagrange equation

$$
\begin{equation*}
\frac{\partial \mathcal{L}}{\partial \varphi}-\partial_{\mu} \frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \varphi\right)}=0 \tag{57}
\end{equation*}
$$

b) Comparing eqs. (52) and (53), we see that the Lagrangian $\mathcal{L}\left(\varphi(x), \partial_{\mu} \varphi(x)\right)$ of the free scalar field is given by

$$
\begin{equation*}
\mathcal{L}\left(\varphi(x), \partial_{\mu} \varphi(x)\right)=-\frac{1}{2}\left(\partial_{\mu} \varphi \partial^{\mu} \varphi+m^{2} \varphi^{2}\right) \tag{58}
\end{equation*}
$$

Inserting this expression into eq. (57), we obtain as equation of motion,

$$
\begin{equation*}
-m^{2} \varphi+\partial_{\mu} \partial^{\mu} \varphi=0 \tag{59}
\end{equation*}
$$

which written in a more familiar form reads

$$
\begin{equation*}
\left(\square_{x}-m^{2}\right) \varphi(x)=0 \tag{60}
\end{equation*}
$$

