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Lecturer: Timo Weigand

1 Differential Geometry for General Relativity

Consider the line element of a 2-sphere of radius a,

ds2 = gµνdxµdxν = a2[dθ2 + sin2(θ)dφ2]. (1)

The metric gµν encodes all information on the geometry of a manifold. From it one can determine
all those geometric quantities that are relevant for general relativity, namely

The metric Choosing x1 = θ and x2 = φ, read off the matrix gµν .

The Christoffel symbols The Christoffel symbols are defined as

Γλµν =
1

2
gλκ

(
∂gµκ
∂xν

+
∂gνκ
∂xµ

− ∂gµν
∂xκ

)
. (2)

They enter the covariant derivatives ∇µV ν = ∂µV
ν+ΓλµνV

λ, where the correction term with
the Christoffel symbol ensures that the covariant derivative indeed transforms covariantly
under arbitrary coordinate transformations xµ → x′µ(xν), i.e.

∇µV ν = ∂µV
ν → (∇µV ν = ∂µV

ν)′ =
∂xλ

∂x′µ
∂x′ν

∂xρ
∇λV ρ, (3)

without second derivatives in the coordinates. Compute the non-vanishing Christoffel symbols
for the 2-sphere (Hint: Γκλµ = Γκµλ).

The Riemann tensor The Riemann curvature tensor has the form

Rκλµν = ∂µΓκλν − ∂νΓκλµ + ΓηλνΓκηµ − ΓηλµΓκνη. (4)

Calculate the non-vanishing components of the Riemann tensor for the 2-sphere (Hint:
Rκλµν = −Rκλνµ).

Remark: The Riemann tensor measures the curvature of a space, for instance by quantifying
the non-commutativity of the covariant derivatives,

[∇µ,∇ν ]V κ = RκλµνV
λ. (5)

A space with vanishing Riemann tensor is flat, i.e. the metric can be brought to the standard
Minkowskian (or Euclidean) form by means of a coordinate transformation.
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The Ricci tensor The Ricci tensor is defined as

Rµν = Rκµκν . (6)

Calculate the Ricci tensor for the 2-sphere.

The scalar curvature The scalar curvature is given by

R = gµνRµν . (7)

Calculate the scalar curvature of the 2-sphere. How does it behave in the limit a → ∞?
Interpret this behavior.

The Einstein tensor The Einstein tensor appears in the field equation of general relativity and it
relates the curvature of space-time to the matter distribution,

Gµν = 8πGTµν , (8)

where G denotes Newton’s constant, Tµν is the energy-momentum tensor, and Gµν denotes
the Einstein tensor,

Gµν = Rµν −
1

2
Rgµν . (9)

Calculate the Einstein tensor for the 2-sphere.

The metric For x1 = θ and x2 = φ, the equation

gµνdxµdxν = a2[dθ2 + sin2(θ)dφ2] (10)

implies

g = a2
(

1 0
0 sin2(θ)

)
, and hence g−1 =

1

a2

(
1 0
0 1

sin2(θ)

)
. (11)

The Christoffel symbols Since the Christoffel symbols carry three coordinate indices and we have
d = 2 dimensions (θ, φ), there are d3 = 8 Christoffel symbols in total. However, due to the
symmetry in the lower two indices, those with lower indices 12 and 21 are equal both for an
upper index of 1 and 2, so only 8− 2 = 6 of those symbols are independent. We calculate each
of those in turn. Since the only nonvanishing metric derivative is ∂g22

∂x1
= 2 sin(θ) cos(θ), all but

Γ1
22, Γ2

12, and Γ2
21 can immediately be seen to vanish:

Γ1
11 =

1

2
g1κ
(
∂g1κ
∂x1

+
∂g1κ
∂x1

− ∂g11
∂xκ

)
= 0, (12)

Γ1
12 =

1

2
g1κ
(
∂g1κ
∂x2

+
∂g2κ
∂x1

− ∂g12
∂xκ

)
=

1

2
g12

∂g22
∂x1

= 0 = Γ1
21, (13)

Γ1
22 =

1

2
g1κ
(
∂g2κ
∂x2

+
∂g2κ
∂x2

− ∂g22
∂xκ

)
= −1

2
g11

∂g22
∂x1

= − 1

2a2
∂[a2 sin2(θ)]

∂θ
= − sin(θ) cos(θ),

(14)

Γ2
11 =

1

2
g2κ
(
∂g1κ
∂x1

+
∂g1κ
∂x1

− ∂g11
∂xκ

)
= 0, (15)
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Γ2
12 =

1

2
g2κ
(
∂g1κ
∂x2

+
∂g2κ
∂x1

− ∂g12
∂xκ

)
=

1

2
g22

∂g22
∂x1

=
1

2a2 sin2(θ)

∂[a2 sin2(θ)]

∂θ
= cot(θ) = Γ2

21,

(16)

Γ2
22 =

1

2
g2κ
(
∂g2κ
∂x2

+
∂g2κ
∂x2

− ∂g22
∂xκ

)
= 0. (17)

The Riemann tensor The Riemann tensor has four indices. So for d = 2 dimensions, the tensor
contains a total of d4 = 16 components. Due to the antisymmetry Rκλµν = −Rκλνµ of the last

two indices, there is only d
2(d−1) = 1 independent combination of those two indices, leaving the

Riemann tensor with d2 · d2(d− 1) = 4 independent components. In particular, all eight entries
where the last two indices are equal must be zero, i.e.

R1
111 = R1

211 = R2
111 = R2

211 = 0, (18)

R1
122 = R1

222 = R2
122 = R2

222 = 0. (19)

The remaining eight components are potentially nonzero, but form four pairs of two whose
members differ only in sign. These we calculate by hand:

R1
112 = −R1

121 = ∂1Γ
1
12 − ∂2Γ1

11 + Γη12Γ
1
η1 − Γη11Γ

1
2η = 0, (20)

R1
212 = −R1

221 = ∂1Γ
1
22 − ∂2Γ1

22 + Γη12Γ
1
η1 − Γη21Γ

1
2η = ∂1Γ

1
22 − Γ2

21Γ
1
22

= ∂θ[− sin(θ) cos(θ)]− cot(θ) · [− sin(θ) cos(θ)]

= − cos2(θ) + sin2(θ) + cos2(θ) = sin2(θ),

(21)

R2
112 = −R2

121 = ∂1Γ
2
12 − ∂2Γ2

11 + Γη12Γ
2
η1 − Γη11Γ

2
2η = ∂1Γ

2
12 + Γ2

12Γ
2
21

= ∂θ cot(θ) + cot(θ) · cot(θ) = −1− cot2(θ) + cot2(θ) = −1,
(22)

R2
212 = −R2

221 = ∂1Γ
2
22 − ∂2Γ2

21 + Γη22Γ
2
η1 − Γη21Γ

2
2η = 0. (23)

We found four nonvanishing components. The remark given in the exercise that a space with
vanishing Riemann tensor is flat is in fact an “iff”-statement, i.e. a nonvanishing Riemann tensor
implies that space is curved. We have therefore proven the unremarkable statement that the
2-sphere is curved.

The Ricci tensor The d2 = 4 components of the Ricci tensor of the 2-sphere are given by

R11 = Rκ1κ1 = R1
111 +R2

121 = 1, (24)

R12 = Rκ1κ2 = R1
112 +R2

122 = 0, (25)

R21 = Rκ2κ1 = R1
211 +R2

221 = 0, (26)

R22 = Rκ2κ2 = R1
212 +R2

222 = sin2(θ). (27)

The scalar curvature In the case of the 2-sphere, R takes the very simple and memorable form,

R = gµνRµν = g11R11 + g22R22 =
1

a2
· 1 +

1

a2 sin2(θ)
· sin2(θ) =

2

a2
. (28)

As expected, in the limit a→∞, we have

lim
a→∞

R = 0, (29)

i.e. a sphere of infinite radius has vanishing curvature.

The Einstein tensor We give the Einstein tensor of the 2-sphere not component-wise, but in covariant
matrix form:

G = R− 1

2
Rg =

(
1 0
0 sin2(θ)

)
− 1

2

2

a2
a2
(

1 0
0 sin2(θ)

)
=

(
0 0
0 0

)
. (30)
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According to the Einstein equation,

Gµν = 8πGTµν , (31)

a vanishing Einstein tensor requires a trivial matter distribution, Tµν = 0.

2 Transformation of tensors and tensor densities

Consider the coordinate change
xµ → x′µ ≡ xµ′ . (32)

The associated transformation matrix and its inverse are

Pµν′ =
∂xµ

∂x′ν
, and Pµ

′
ν =

∂x′µ

∂xν
, (33)

respectively. Recall that a tensor of type, say Tµν transforms under eq. (32) as

Tµν → Tµ
′

ν′ = Pµ
′
αP

β
ν′ T

α
β . (34)

A tensor density T̃µν of weight w is defined by the transformation behavior

T̃µν → T̃µ
′

ν′ = JwPµ
′
αP

β
ν′ T̃

α
β . (35)

(and obvious generalisations for general types of tensor densities), where J = det(P ).

a) Given the tensor Sµν , convince yourself that
√

det(S) is a scalar density of weight 1.

b) Consider now fields of tensors and tensor densities, e.g. Tµν (x). Locally, i.e. infinitesimally,
the transformation of eq. (32) can be parametrized as x′µ = xµ − εµ(x). Show the following
infinitesimal variations for a scalar field Φ(x), the metric gµν(x) and the associated metric
density

√
−det(g):

i) δΦ = εµ∂µΦ,

ii) δgµν = ελ∂λgµν + (∂µε
λ)gλν + (∂νε

λ)gµλ = ∇µεν +∇νεµ,
iii) δ

√
−det(g) = ∂λ[ελ

√
−det(g)],

where the second equality in ii) is true for the metric connection satisfying ∇λgµν = 0.

Hint: For a scalar field the transformed object is defined via the relation Φ′(x′) = Φ(x).

a) Since Sµν is said to be a tensor, we know it transforms as

Sµν → Sµ′ν′ = Pαµ′ P
β
ν′ Sαβ . (36)

or in matrix notation
S → S′ = P 2

x→x′S. (37)

Using that the determinant of a product of matrices is the product of the determinants, we have√
det(S)→

√
det(S′) =

√
det(P 2

x→x′S) =
√

[det(P x→x′)]2 det(S)

= det(P x→x′)
√

det(S) = J1
x→x′

√
det(S),

(38)

and thus
√

det(S) is a tensor density of weight 1.

b) We now derive the infinitesimal transformation behavior of a scalar field as well as the metric and
the square root of its negated determinant under the transformation x′µ = xµ − εµ(x′).
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i) Using xµ = x′µ + εµ(x′), the variation of a scalar field follows from the hint that Φ′(x′) =
Φ(x) together with a simple Taylor expansion of Φ(x) around x′,

Φ(x)→ Φ′(x′)
!

= Φ(x) = Φ(x′ + ε(x′))

=
∞∑
n=0

1

n!

∂nΦ(x′ + ε(x′))

∂n(x′µ + εµ(x′))

∣∣∣∣
x′µ + εµ(x′) = x′µ

(
x′µ + εµ(x′)− x′µ

)n
= Φ(x′) + εµ(x′)∂µ′Φ(x′) +O[ε2(x′)].

(39)

From this transformation law it follows that

Φ′(x) = Φ(x) + εµ(x)∂µΦ(x) +O[ε2(x)], (40)

and hence the variation δΦ(x) of the scalar field Φ(x) given by the difference of the trans-
formed and the original field reads

δΦ(x) = Φ′(x) + Φ(x) = εµ(x)∂µΦ(x) +O[ε2(x)]. (41)

ii) For the metric gµν(x), we know that it strictly follows the transformational behavior (34)
of a tensor (field). Therefore,

gµν (x)→ gµ′ν′ (x
′) = Pαµ′ P

β
ν′ gαβ (x). (42)

Now, all we have to do is expand the expression on the right to first order in εµ(x). This
can be done by inserting our transformation xµ = x′µ + εµ(x′) into the definition of the
transformation matrix Pµν′

Pαµ′ =
∂xα

∂x′µ
=
∂x′α + εα(x′)

∂x′µ
= δαµ + ∂µ′ε

α(x′). (43)

For the metric gαβ (x), we do a Taylor expansion,

gαβ (x) = gαβ (x′ + ε(x′))

=

∞∑
n=0

1

n!

∂ngαβ (x′ + ε(x′))

∂n(x′γ + εγ(x′))

∣∣∣∣∣
x′γ + εγ(x′) = x′γ

(
x′γ + εγ(x′)− x′γ

)n
= gαβ (x′) + εγ(x′)∂γ′gαβ (x′) +O[ε2(x′)].

Inserting eq. (43) and part ii) into eq. (42), we get

gµ′ν′ (x
′) = [δαµ + ∂µ′ε

α(x′)][δβν + ∂ν′ε
β(x′)]

[
gαβ (x′) + εγ(x′)∂γ′gαβ (x′) +O[ε2(x′)]

]
= δαµδ

β
νgαβ (x′) + [∂µ′ε

α(x′)]δβνgαβ (x′) + δαµ [∂ν′ε
β(x′)]gαβ (x′)

+ δαµδ
β
ν ε
γ(x′)∂γ′gαβ (x′) +O[ε2(x′)]

= gµν (x′) + gαν (x′)∂µ′ε
α(x′) + gµβ (x′)∂ν′ε

β(x′) + εγ(x′)∂γ′gµν (x′) +O[ε2(x′)].

From this we infer that

gµ′ν′ (x) = gµν (x) + gαν (x)∂µε
α(x) + gµβ (x)∂νε

β(x) + εγ(x)∂γgµν (x) +O[ε2(x)], (44)

and hence

δgµν (x) = gµ′ν′ (x)− gµν (x)

= gαν (x)∂µε
α(x) + gµβ (x)∂νε

β(x) + εγ(x)∂γgµν (x) +O[ε2(x)].
(45)
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To see that the second equality in ii) holds, we simply calculate

∇µεν +∇νεµ = ∇µ(gαν ε
α) +∇ν(gµβε

β) = gαν∇µεα + gµβ∇νεβ + εγ ∇γgµν︸ ︷︷ ︸
0

= gαν
(
∂µε

α + Γαµδε
δ
)

+ gµβ
(
∂νε

β + Γβνζε
ζ
)

+ εγ
(
∂γgµν − Γαµγgαν − Γβνγgµβ

)
= gαν∂µε

α + gµβ∂νε
β + εγ∂γgµν

+ gανΓαµδε
δ − εγΓαµγgαν + gµβΓβνζε

ζ − εγΓβνγgµβ

= gαν∂µε
α + gµβ∂νε

β + εγ∂γgµν = δgµν −O[ε2].

(46)

iii) By part a), we have√
−det[g(x)]→

√
− det[g′(x′)] = Jx→x′

√
−det[g(x)] = Jx→x′g(x), (47)

where to save on writing, we introduced the shorthand notation
√
−det[g(x)] = g(x). To

find the infinitesimal variation δ
√
−det[g(x)] = δg(x), we expand eq. (47) to first order in

ε(x),
g′(x′) = Jx→x′g(x) = det(P x→x′)g(x′ + ε(x′))

= det[1 + ∂x′ε(x
′)]︸ ︷︷ ︸

1+Tr[∂x′ε(x
′)]+O[ε2(x′)]

(
g(x′) + εγ(x′)∂γ′g(x′) +O[ε2(x′)]

)
= g(x′) + [∂µ′ε

µ(x′)]g(x′) + εµ(x′)∂µ′g(x′) +O[ε2(x′)]

= g(x′) + ∂µ′ [ε
µ(x′)g(x′)] +O[ε2(x′)],

(48)

where to get to the second line we used P x→x′ = 1 + ∂x′ε(x
′), i.e. eq. (43) in matrix form.

From eq. (48), we infer

g′(x) = g(x) + ∂µ[εµ(x)g(x)] +O[ε2(x)], (49)

from which in turn it follows that

δg(x) = g′(x)− g(x) = ∂µ[εµ(x)g(x)] +O[ε2(x)], (50)

or in unshortened notation,

δ
√
−det[g(x)] = ∂µ[εµ(x)

√
−det[g(x)]] +O[ε2(x)]. (51)

3 Action Principle

a) Consider a field ϕ(x) and an action in d spacetime dimensions with Minkowskian signature
(−1,+1, . . . ,+1) of the form

S[ϕ] =

∫
ddxL(ϕ(x), ∂µϕ(x)). (52)

The simplest example is the action for the free scalar field

S[ϕ] = −1

2

∫
ddx

(
∂µϕ∂

µϕ+m2ϕ2
)
. (53)

The variation of the general action (52) is defined as

δS[ϕ] =

∫
ddx

(
∂L
∂ϕ

δϕ+
∂L

∂(∂µϕ)
δ(∂µϕ)

)
. (54)

6



Using integration by parts and neglecting boundary terms show that the action principle
δS[ϕ] = 0 implies the Euler Lagrange equations

∂µ
∂L

∂(∂µϕ)
=
∂L
∂ϕ

. (55)

b) Use this result to derive the Klein-Gordon equation as the Euler-Lagrange equation of the free
scalar field action (53).

a) Using partial integration on the second term in the variation of the action (54), δS[ϕ] becomes

δS[ϕ] =
∂L

∂(∂µϕ)
δϕ

∣∣∣∣
∂Rd︸ ︷︷ ︸

0

+

∫
ddx

(
∂L
∂ϕ
− ∂µ

∂L
∂(∂µϕ)

)
δϕ. (56)

Since we assume we are working with localized physical systems, we take the boundary terms to
vanish at spatial and temporal infinity, i.e. the term in front can be disregarded.

At this point, we resort to Hamilton’s principle of a stationary action, δS[ϕ] = 0, which we require
to hold for all possible variations δϕ of ϕ(x). δS[ϕ] = 0 can hence only be true in general if the
integrand itself vanishes. We thus arrive at the renowned Euler-Lagrange equation

∂L
∂ϕ
− ∂µ

∂L
∂(∂µϕ)

= 0. (57)

b) Comparing eqs. (52) and (53), we see that the Lagrangian L(ϕ(x), ∂µϕ(x)) of the free scalar field
is given by

L(ϕ(x), ∂µϕ(x)) = −1

2

(
∂µϕ∂

µϕ+m2ϕ2
)
. (58)

Inserting this expression into eq. (57), we obtain as equation of motion,

−m2ϕ+ ∂µ∂
µϕ = 0, (59)

which written in a more familiar form reads

(�x −m2)ϕ(x) = 0. (60)
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