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Theoretical Statistical Physics

Solution to Exercise Sheet 2

1 Paramagnet (3 points)

We describe magnetic substances by the following thermodynamic variables: the temperature
T , the magnetic field H, and the magnetization M . Show that for paramagnetic substances,
for which1

M =
C

T
H, (1)

the internal energy U depends only on T .

The change in internal energy for a paramagnet is

dU = T dS +H dM. (2)

As a function U(T,M), the internal energy’s total differential is

dU =
∂U

∂T

∣
∣
∣
M

︸ ︷︷ ︸
CM

dT +
∂U

∂M

∣
∣
∣
T
dM. (3)

Equating (2) and (3) and solving for dS yields

dS =
CM

T
dT +

1

T

(
∂U

∂M

∣
∣
∣
T
−H

)

dM. (4)

Since dS is exact,
∂

∂M

CM

T

∣
∣
∣
T
=

∂

∂T

1

T

(
∂U

∂M

∣
∣
∣
T
−H

)∣
∣
∣
M
. (5)

Performing the T -derivative on the r.h.s.,
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∣
∣
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1

T 2
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∂U

∂M
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∣
∣
T
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)

+
✟
✟
✟
✟
✟1

T

∂2U

∂T∂M
−

1

T

∂H

∂T

∣
∣
∣
M
, (6)

and canceling terms leaves us with

∂U

∂M

∣
∣
∣
T
= H − T

∂H

∂T

∣
∣
∣
M
. (7)

Inserting (1) in the form H = T
C
M results in

∂U

∂M

∣
∣
∣
T
= 0, (8)

from which we infer U(T,M) = U(T ).

1(1) is known as Curie’s law, where C is a material-specific constant (not to be confused with the heat capacity).
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2 Heating water (3 points)

One kilogram of water at 0 ◦C is put into thermal contact with a heat bath at 100 ◦C. What
is the change in entropy of water, heat bath, and total system by the time the temperature of
the water has reached 100 ◦C? How can one heat up the water to that temperature without
changing the entropy of the total system? Use cp = 4180 J

kgK
.

We start with a short discussion of heat capacities. C determines the amount of energy needed
to bring about a certain change in temperature.

For a gas, CV is determined by the change in internal energy U concurrent with a change in
temperature at fixed volume, i.e. CV = ∂U

∂T

∣
∣
V
, whereas Cp is the change in enthalpy H at fixed

pressure, i.e Cp = ∂H
∂T

∣
∣
p
. Since dH = dU + p dV (+V dp, but dp = 0 at constant pressure) Cp

is greater than CV since the volume must increase, i.e. dV > 0 during a heating process if the
pressure is to be kept constant. Thus heating at constant pressure requires more energy than
at constant volume as some of the energy is expended towards driving the expansion.

For liquids and solids which can, to a good approximation, be assumed incompressible, CV and
Cp are practically identical.

Coming back to the exercise, the entropy is the integral over heat transfer divided by tem-
perature. As long as it does not start to boil, heating a liquid involves no work. Thus,
dU = δQ+ δW

︸︷︷︸

0

= δQ, and

∆SH2O =

∫
δQ

T
=

∫
dU

T
= CV

∫ T2

T1

dT

T
= CV ln

(
T2

T1

)

≈ Cp ln

(
T2

T1

)

= cpmH2O ln

(
T2

T1

)

≈ 1305
J

K
,

(9)

where cp = 4180 J
kgK

is the specific heat, i.e. heat capacity per unit mass, mH2O = 1kg is the
total mass of water, T1 = 273K, and T2 = 373K. In the case of the heat bath with constant
temperature, the integral simplifies to

∆SHB =

∫
δQ

T
=

∆QHB

THB

= −
∆QH2O

THB

= −
cpmH2O∆TH2O

THB

≈ −1121
J

K
. (10)

By the time the heat bath and water reach thermal equilibrium, the combined system’s entropy
will have increased by ∆Stot ≈ 184 J

K
.

Equilibrating water and heat bath without producing entropy would require an idealized Carnot
engine capable of reversibly transferring heat from the bath to the water. Since such a Carnot
engine cannot exist under real circumstances, this is just another way of saying that reaching
equilibrium without producing entropy is impossible.

3 Power station (2 points)

A 1000MW power plant is run at a river, the water of which is used as a coolant. The heat
source in the power plant is at a temperature of 600K, the water taken from the river is at
290K. By how many degrees is the river heated up by the power plant if the efficiency of the
plant is 50% of the maximally possible efficiency? (Data: cross-sectional area of the river
A = 75m2, flow velocity v = 1 m

s
, specific heat of the water cp = 4180 J

kgK
, density of water

ρ = 1000 kg

m3 .)

The change in temperature resulting from adding the heat Q to a body of mass m and heat
capacity cp is

∆T =
Q

cpm
=

P

cp ṁ
. (11)
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The rate at which water flows past the power station is ṁ = ρAv = 75 000 kg
s
. To derive the

power P , i.e. the amount of heat dumped into the water by the power station per second, we
need to know its efficiency. The maximal possible efficiency is that of the idealized Carnot cycle,
ηc = 1 − T1

T2
, which reversibly transfers energy from a warm region T2 to a cool region T1 < T2

and, in the process, converts some of that energy to mechanical work. Thus

ηps =
1

2
ηc =

1

2

(

1−
290K

600K

)

≈ 25.83%. (12)

Solving Pout = ηps Ptot and Ptot = Pout + P for P , we find the energy released into the water
per second to be

P =
ηps

1− ηps
Pout ≈ 2870

MJ

s
. (13)

Inserting ṁ and P into (11), we find a temperature increase for water flowing past the power
station of

∆T ≈ 9.16K. (14)

4 Carnot engine (2 points)

The internal energy of two bodies consisting of the same substance is given by

U = C T, (15)

where C is a constant. Their initial temperatures are T1 and T2, respectively. We let a
Carnot engine work between the two bodies until both reach the final temperature Tf . What
is Tf , and how much work has been produced when it is reached?

Since a Carnot engine works reversibly, it produces no change in entropy, ∆S = 0. Moreover,
due to reversibility, the second law of thermodynamics (for closed systems) δQ ≤ TdS holds as
an equality. Together with δQ = C dT , this gives

0 =

∫

dS =

∫

dS1 +

∫

dS2 = C

∫ Tf

T1

dT

T
+ C

∫ Tf

T2

dT

T
= C ln

(
T 2
f

T1 T2

)

, (16)

from which we infer Tf =
√
T1 T2. To calculate the work performed during equilibration, note

that the two bodies form a closed system and thus ∆U = ∆Q+∆W = 0. Using ∆Q = C
∫
dT =

C∆T , we find the individual heats to be

∆Q1 = C (Tf − T1), ∆Q2 = C (Tf − T2). (17)

Thus the total work performed is

∆W = −(∆Q1 +∆Q2) = −C (2Tf − T1 − T2) = C
(
T1 + T2 − 2

√

T1 T2

)

= C
(√

T1 −
√

T2

)2
.

(18)
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