
String Theory
Solution to Assignment 2

Janosh Riebesell

October 19th, 2015 (due October 28th, 2015)

Lecturer: Timo Weigand

1 The Polyakov action

The Polyakov action is given by

SP = − 1

4πα′

∫
Σ

dτdσ
√
−hhab∂aXµ∂bX

νηµν , (1)

where hab is the world-sheet metric, hab is its inverse and −h ≡ − det(h). The quantity Gab ≡
∂aX

µ∂bX
νηµν is called the pull-back of the target space metric ηab on to the world-sheet.

a) For an arbitrary square matrix M , useful variation identities are

δ(detM) = det(M) Tr(M−1δM),

= −det(M) Tr(M δM−1),
(2)

δM−1 = −M−1δM M−1. (3)

Show this, where for simplicity you may assume that M is diagonalizable.

b) Use part a) to show that the energy momentum tensor, defined by

Tab ≡
4π√
−h

δSP

δhab
, (4)

is given by

Tab = − 1

α′

(
∂aX

µ∂bX
νηµν −

1

2
habh

cd∂cX
µ∂dX

νηµν

)
. (5)

c) The equation of motion for the world sheet metric hab implies Tab = 0. Use this to show the
equivalence of the Polyakov action and the Nambu-Goto action.

d) Neglecting boundary terms, show that the equation of motion for Xµ is given by

hab∇a(∂bXµ) = 0. (6)

Note: Take this opportunity to recall that for a vector Sa one has

∇a(
√
−det(h)Sa) = ∂a(

√
−det(h)Sa), (7)

and that ∇a(deth) = 0.
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e) Use part d) to show the conservation of energy and momentum,

∇aTab = 0. (8)

f) Use the conformal invariance of the action to show that the energy momentum tensor is trace-
less. Do not use the equation of motion for Xµ.

g) Now suppose we add to the Polyakov action (1) the 2-dimensional cosmological constant term

Scc = λcc

∫
Σ

dτdσ
√
−h. (9)

Show that consistency of the equations of motion for the metric hab requires λcc = 0.

a) Note that requiring M to be square and diagonalizable is not sufficient for the identities (2)
and (3) to be true in general, since M may have a zero eigenvalue on the diagonal, in which case
det(M) = 0 and M is not invertible. A trivial example for this is the zero matrix 0 which is
obviously square and diagonal but for which identities (2) and (3) are undefined. We proceed here
by assuming that M−1 exists.

The determinant det(M) is a function of all elements of M , i.e. if M is n× n,

det(M) = det(M)(M11,M12, . . . ,Mnn). (10)

Therefore, by the chain rule, we have

δ det(M) =
∂ det(M)

∂M11
δM11 + . . .

∂ det(M)

∂Mnn
δMnn =

n∑
i,j=1

∂ det(M)

∂Mij
δMij . (11)

The cofactor expansion (a.k.a. Laplace’s formula) for the determinant can be taken by summing
over the matrix entries Mij and their corresponding cofactors Cij of any one row i or column j,
i.e.

det(M) =
n∑
j=1

MijCij , (12)

where Cij = adj(M)ji. Inserting this into ∂ det(M)
∂Mij

from the r.h.s of eq. (11) and executing the

product rule, we get

∂ det(M)

∂Mij
=

∂

∂Mij

( n∑
k=1

MikCik

)
=

n∑
k=1

∂Mik

∂Mij
Cik +

n∑
k=1

Mik
∂Cik
∂Mij

. (13)

This expression drastically simplifies if we take into account that the cofactor Cik of Mik depends
only on elements of M not in the same row or column as Mik, i.e. ∂Cik

∂Mij
= 0 ∀j, k. Therefore

∂ det(M)

∂Mij
=

n∑
k=1

∂Mik

∂Mij︸ ︷︷ ︸
δj,k

Cik = Cij = adj(M)ji. (14)

Reinsertion of this result into eq. (11) yields

δ det(M) =

n∑
i,j=1

adj(M)ji δMij = Tr[adj(M) δM ]. (15)
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Since M is assumed to be invertible, we may write the adjoint as adj(M) = det(M)M−1 and
use linearity of the trace to arrive at

δ det(M) = Tr[det(M)M−1 δM ] = det(M) Tr[M δM−1], (16)

where in the last step, we used eq. (3) and cyclicity of the trace. Equation (3) follows directly
from the product rule:

0 = δ(M−1 M) = δM−1 M + M−1 δM ⇒ δM−1 = −M−1 δM M−1. (17)

b) By direct calculation, we get

Tab(τ, σ) =
4π√
−h

δSP

δhab(τ, σ)

=
4π√
−h

δ

δhab

(
− 1

4πα′

∫
Σ

dτ ′dσ′
√
−hhcd(τ ′, σ′)∂cXµ(τ ′, σ′)∂dX

ν(τ ′, σ′)ηµν

)
= − 1

α′
√
−h

∫
Σ

dτ ′dσ′
δ

δhab

(√
−hhcd

)
∂cX

µ∂dX
νηµν

= − 1

α′
√
−h

∫
Σ

dτ ′dσ′
(√
−h δh

cd(τ ′, σ′)

δhab(τ, σ)
− 1

2

1√
−h

δh

δhab
hcd
)
∂cX

µ∂dX
νηµν

a)
= − 1

α′
√
−h

∫
Σ

dτ ′dσ′
[√
−h δ c

a δ
d
b δ(τ − τ ′)δ(σ − σ′)

− 1

2

hcd√
−h

(
−hhef

δhef (τ ′, σ′)

δhab(τ, σ)︸ ︷︷ ︸
δ e
a δ fb δ(τ−τ ′)δ(σ−σ′)

)]
∂cX

µ∂dX
νηµν

= − 1

α′
√
−h

[√
−h ∂aXµ∂bX

νηµν −
1

2

hcd√
−h

(
−hhab

)
∂cX

µ∂dX
νηµν

]
= − 1

α′

[
∂aX

µ∂bX
νηµν −

1

2
habh

cd∂cX
µ∂dX

νηµν

]
, (18)

where we used identity (2) from part a) in the form of

δh = δ(deth) = −det(h) Tr(h δh−1) = −hhef δhef , (19)

and refrained from writing out τ and σ dependencies in many places in order to save space.

c) The Nambu-Goto action is given by

SNG = −T
∫

Σ
dτdσ

√
−det(G), (20)

where the T = 1
2πα′ is the string tension, and the components of the 2 × 2-matrix G can be

calculated via
Gab = ∂aX

µ∂bX
νηµν , a, b ∈ {τ, σ}. (21)

G is called the induced metric or the pullback of the ambient space metric ηµν onto the string
worldsheet Σ, i.e. it describes the embedding of a string in spacetime. Expressed in terms of T
and G, the Polyakov action reads

SP = − 1

4πα′

∫
Σ

dτdσ
√
−hhab∂aXµ∂bX

νηµν = −T
2

∫
Σ

dτdσ
√
−h habGab︸ ︷︷ ︸

hG

. (22)

By its very definition as given in eq. (4), the energy-momentum tensor Tab is required to vanish
by the equation of motion for hab resulting from an application of Hamilton’s principle. Going
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back to our result from part b), we see that Tab = 0 together with eq. (18) implies

Tab = − 1

α′

(
∂aX

µ∂bX
νηµν︸ ︷︷ ︸

Gab

−1

2
habh

cd ∂cX
µ∂dX

νηµν︸ ︷︷ ︸
Gcd

)
= 0

⇒ Gab =
1

2
hab h

cdGcd =
1

2
hab hG. (23)

Taking the determinant of eq. (23), we get

det(G) =
(

1
2hG

)2
det(h), (24)

where the square around 1
2hG appears because the worldsheet is two-dimensional. Inserting this

result into the Nambu-Goto action (20), we indeed arrive at the Polyakov action:

SNG = −T
∫

Σ
dτdσ

√
−
(

1
2hG

)2
det(h) = −T

2

∫
Σ

dτdσ
√
−hhG = SP. (25)

d) We calculate the string field’s equation of motion by variation of the action:

δSP

δXµ
=

δ

δXµ

(
−T

2

∫
Σ

dτ ′dσ′
√
−hhab∂aXν∂bX

ν

)
= −T

∫
Σ

dτ ′dσ′
√
−hhab∂bXν δ(∂aXν)

δXµ

= T

∫
Σ

dτ ′dσ′ ∂a

(√
−hhab∂bXν

) δXν

δXµ︸︷︷︸
δµν δ(τ−τ ′)δ(σ−σ′)

− T
√
−hhab∂aXν δXν

δXµ

∣∣∣∣
∂Σ︸ ︷︷ ︸

boundary term assumed to vanish

= T ∂a

(√
−hhab∂bXµ

)
!

= 0.

(26)

From exercise 2.a) on assignment 1, we know that for any tensor Sab, the determinant’s square
root

√
det(S) is a scalar density of weight w = 1. Therefore, the quantity

√
−hhab∂bXµ is a

tensor density of weight 1. We would like to compute its covariant derivative.

The covariant derivative ∇aT b1...brc1...cs of an arbitrary rank-(r, s) tensor T b1...brc1...cs is given by
its partial derivative ∂aT

b1...br
c1...cs plus an upstairs contraction with the connection for every

contravariant index, Γb1adT
d...br

c1...cs , and minus a downstairs contraction for every covariant index,

Γdac1T
b1...br

d...cs
. The covariant derivative of a tensor density of weight w is defined in exactly the

same way, except that we also add a term scaled with w where the connection is contracted with
itself, i.e. wΓdadT

b1...br
c1...cs .

Applying this prescription to
√
−hhab∂bXµ, we get

∇a(
√
−hhab∂bXµ) = ∂a(

√
−hhab∂bXµ) + Γaac

√
−hhcb∂bXµ − 1 · Γcca

√
−hhab∂bXµ. (27)

All the indices appearing in eq. (27) are summed over, so we may rename as we like. Ex-
changing a and c in the last term, we saw that it exactly cancels the second. We are left with
∇a(
√
−hhab∂bXµ) = ∂a(

√
−hhab∂bXµ). Using this result on our e.o.m. (26), we obtain

0 = ∇a(
√
−hhab∂bXµ) =

√
−hhab∇a(∂bXµ), (28)

since the metric connection satisfies ∇ahbc = 0 (by the chain rule, the same holds for
√
−h and

any other function of hab). Dividing by the uninteresting prefactor
√
−h which does not affect

dynamics, we arrive at
hab∇a(∂bXµ) = 0. (29)
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e) Conservation of energy and momentum again follows from direct computation,

∇aTab = − 1

α′
∇a
(
∂aX

µ∂bX
µ − 1

2
hab∂cXµ∂

cXµ

)
= − 1

α′

[
(∇a∂aXµ)︸ ︷︷ ︸

=0, by part d)

∂bX
µ + ∂aXµ(∇a∂bXµ)

− 1

2
hab

(
(∇a∂cXµ)∂cXµ + ∂cXµ(∇a∂cXµ)︸ ︷︷ ︸

2∂cXµ(∇a∂cXµ)

)]

= − 1

α′

[
∂aXµ(∇a∂bXµ)− ∂cXµ(∇b∂cXµ)︸ ︷︷ ︸

c→a

]
= − 1

α′
∂aXµ

[
∇a∂bXµ −∇b∂aXµ

]
= 0,

(30)

where in the last step, the two terms in brackets cancel because

∇a∂bXµ = hac∇c∂bXµ = hac(∂c∂bX
µ − Γdcb∂dx

µ)

= hac(∂b∂cX
µ − Γdbc∂dx

µ) = hac∇b∂cXµ = ∇b∂aXµ.
(31)

f) Before proceeding with the exercise, it is important in this context to understand the difference be-
tween a conformal and a Weyl transformation, especially since in the lecture these two completely
different concepts have been treated as one and the same.

Note:

1. A conformal transformation is a spacetime transformation which leaves the metric invari-
ant up to (generally spacetime-dependent) scaling. The important property here is that
angles are preserved.

2. A Weyl transformation actively scales the metric.

Formally, the difference can be expressed by considering two manifolds M and N with inner
products, i.e. metrics, g and h, and coordinates xi and yi, respectively. A map f : M → N
from one manifold to another is called conformal if there exists a function Ω ∈ C∞(M) so that
the pullback Ωg fulfills

f ∗ h = Ωg, (32)

which in coordinate notation reads

∂yi

∂xr
∂yj

∂xs
hij(y) = Ω(x) grs(x). (33)

In case of conformal transformations, we have M = N and thus equal metrics g = h so that
eq. (32) becomes

f ∗ g = Ωg, (34)

or written in terms of the coordinates,

∂yi

∂xr
∂yj

∂xs
gij(y) = Ω(x)grs(x), (35)

which is just a coordinate transformation x→ y.
In case of Weyl transformations, we are simply scaling the metric, so here we also have M = N .
However, since we are not changing coordinates this time around, the map f will simply be
given by f = idM , yielding

h(x) = Ω(x)g(x), (36)

or in coordinates,
hij(x) = Ω(x)gij(x). (37)
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After this short interlude, we note that even though the exercise mentions conformal invariance,
we think it actually means what we have just distinguished to be Weyl invariance. From section
2.2.3 of the lecture notes, We know that the Polyakov action (1) features a local Weyl invariance.
The metric on the other hand explicitly changes under a Weyl transformation1. The same holds
for its inverse and its determinant. They transform as

hab → e2Λ(τ,σ)hab, hab → e−2Λ(τ,σ)hab, det(h)→ e2dΛ(τ,σ) det(h), (38)

respectively, where d is the dimensionality of the space in which the determinant is taken, i.e.
d = 2 on the worldsheet.

Going back to eq. (4), we see that under Weyl transformations, the energy-momentum tensor
remains invariant,

Tab → T ′ab =
4π√
−h′

δS′P
δh′ab

=
4π√
−e4Λh

δSP

e−2Λδhab
=

4π√
−h

δSP

δhab
= Tab. (39)

Next, we check the trace T aa ,

T aa = habTab → T ′aa = h′abT′ab = e−2ΛhabTab = e−2Λ T aa . (40)

A priori, it seems like T aa may be variant under Weyl rescalings. But if Tab as a whole remains
invariant, the same must apply to the trace T aa . This presents a contradiction unless the energy-
momentum tensor is in fact traceless, T aa = 0.

g) Adding the cosmological constant term (9) to the Polyakov action (1), we get

SP+cc = SP + Scc = − 1

4πα′

∫
Σ

dτdσ
√
−hhab∂aXµ∂bX

νηµν + λcc

∫
Σ

dτdσ
√
−h. (41)

The metric’s equation of motion for this action is

δSP+cc

δhab
=
δSP

δhab
+
δScc

δhab
=

√
−h

4π
Tab + λcc

∫
Σ

dτ ′dσ′
(
−1

2

1√
−h

δh

δhab

)
(2)
=

√
−h

4π
Tab −

λcc

2

∫
Σ

dτ ′dσ′
(
−h√
−h

hef
δhef (τ ′, σ′)

δhab(τ, σ)︸ ︷︷ ︸
δ e
a δ fb δ(τ−τ ′)δ(σ−σ′)

)
=

√
−h

4π
Tab −

λcc

2

√
−hhab

!
= 0,

(42)

where we again used the variational identity (2) to calculate the term δh
δhab

and obtain the second

line. In the above, Tab is the energy-momentum tensor of the unmodified Polyakov action SP.
Equation (42) implies

Tab = 2πλcchab. (43)

Taking the trace of this expression and using our result from part f), we get

0 = T aa = 2πλcc h
a
a︸︷︷︸

2

= 4πλcc ⇒ λcc
!

= 0. (44)

2 Gravity in two dimensions is trivial

a) Using the symmetries of its indices, convince yourself that in two dimensions, the Riemann
tensor has only one independent degree of freedom.

1In fact, the change in the metric is the root cause for all changes that may occur under a Weyl transformation in other
quantities if they depend on the metric
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b) Verify that the ansatz
Rabcd = λ(hachbd − hadhbc) (45)

with hab the two-dimensional metric is consistent with the symmetries of the Riemann tensor.
Show that λ = 1

2R in terms of the Ricci scalar R.

c) Compute the Einstein tensor defined in terms of the Ricci tensor Rab as

Gab = Rab −
1

2
habR (46)

for a two-dimensional metric. Discuss the result.

d) Show that in two dimensions under the Weyl rescaling hab → e2ω(τ,σ)hab the product√
−det(h)R transforms as√

−det(h)R →
√
−det(h′)R′ =

√
−det(h)[R− 2∇2ω]. (47)

e) Argue from the above result that the 2-dimensional Einstein-Hilbert term is indeed conformally
invariant for a closed string worldsheet.

Note: By contrast, for an open string worldsheet Σ with boundary ∂Σ only the combination

χ =
1

4π

∫
Σ

d2ξ
√
−hR+

1

2π

∫
dsK (48)

is conformally invariant. Here the extrinsic curvature K is defined as

K = ±tanb∇atb, (49)

with ta a unit vector tangent to the boundary and na an outward unit vector orthogonal to ta.
The upper/lower sign refer to timelike/spacelike boundaries. Indeed this object is the Euler
characteristic of a worldsheet with boundary.

f) Use the result from part d) to show that locally every metric of signature (−1, 1) can be brought
into the form diag(η) = (−1, 1) by Weyl rescalings and diffeomorphism invariance.

a) The components of the Riemann tensor can be conveniently calculated with the formula

Rabcd = ∂cΓ
a
bd − ∂dΓabc + ΓebdΓ

a
ce − ΓebcΓ

a
de. (50)

As discussed in exercise 1 on assignment 1, in d dimensions the Riemann tensor has n = d4

components which makes for a total of n = 16 if d = 2. To see how many of those components
are actually independent degrees of freedom we need to consider the Riemann tensor’s plentiful
symmetries.

Note: Not all of them are present in the above mixture of co- and contravariant indices,
however. For a tensor, say the energy momentum tensor Tab , to be e.g. symmetric under
the exchange of two indices, Tab = Tba , both indices obviously need to be of the same vari-
ance. T b

a = T a
b is strictly impossible since a tensor covariant in a can never be equal to one

contravariant in a. They have completely different transformation properties.
So in order to make all symmetries manifest, we lower the first index by contraction with the
metric hab:

Rabcd = haeR
e
bcd = hae

(
∂cΓ

e
bd − ∂dΓebc + ΓfbdΓ

e
cf − ΓfbcΓ

e
df

)
. (51)

The Riemann tensor is a field, i.e. it depends on the point in space we are looking at. To

7



simplify the derivation of its symmetry properties, we go about inspecting it from a locally
inertial frame (LIF). An LIF has the special property that at its origin all metric derivatives
vanish. It is common known ledge that, for a smooth metric, we can define a coordinate system
at any given point so that locally the metric expressed in this coordinate system is the flat
spacetime metric ηab. What is less well known is that this operation does not exhaust the
transformational degrees of freedom of the metric. It can be shown with some work that the
remaining freedom suffices to impose all derivatives of the metric to vanish at a particular point
in space.
From the definition

Γabc =
1

2
had (∂chbd + ∂bhcd − ∂dhbc) , (52)

it is clear that vanishing metric derivatives result in all of the Christoffel symbols being zero
as well. However, second derivatives of the metric need not vanish at the origin of an LIF.
Hence, derivatives of the Christoffel symbols are also unequal to zero in general. Bearing that
in mind, the Riemann tensor at the origin of an LIF takes the form

Rabcd = hae

(
∂cΓ

e
bd − ∂dΓebc

)
. (53)

Explicit calculation of the derivative of the Christoffel symbol yields

∂aΓ
b
cd =

1

2
∂ah

be︸ ︷︷ ︸
0

(
∂dhce + ∂chde − ∂ehcd

)
+

1

2
hbe
(
∂a∂dhce + ∂a∂chde − ∂a∂ehcd

)
. (54)

By contraction with the metric hbf and using hbfh
be = δef , we get

hfb∂aΓ
b
cd =

1

2
hbfh

be
(
∂a∂dhce + ∂a∂chde − ∂a∂ehcd

)
=

1

2

(
∂a∂dhcf + ∂a∂chdf − ∂a∂fhcd

)
.

(55)

Adjusting index naming, we can insert this expression for both terms on the r.h.s. of eq. (53)
to obtain

Rabcd =
1

2

[
∂c∂dhba + ∂c∂bhda − ∂c∂ahbd −

(
∂d∂chba + ∂d∂bhca − ∂d∂ahbc

)]
. (56)

Since partial derivatives commute, the first and fourth term cancel, and we are left with

Rabcd =
1

2

[
∂c∂bhda − ∂c∂ahbd − ∂d∂bhca + ∂d∂ahbc

]
=

1

2

[
∂a∂dhbc − ∂b∂dhac + ∂b∂chad − ∂a∂chbd

]
,

(57)

where in the second step all we did was some housekeeping. Remember that this equation is
valid only at the origin of an LIF. You might then rightfully ask what good it is. The answer
to that is simple: The origin of a LIF defines one particular point in spacetime. Since all
symmetries were expressed i.t.o. tensor equations, they must be true at that point, regardless
of which coordinate system we’re using. Further, one can show that we could define an LIF
with its origin at any point in spacetime, provided that point is locally flat (i.e. there is no
singularity at that point). So the symmetries are in fact true for all non-singular points in
spacetime2.

2It might be confusing that we say that the symmetries in eq. (57) are universally valid at all points in all coordinate
systems just because they are tensor equations, while at the same time maintain that eq. (57) is valid only at the
origin of an LIF. The difference is that eq. (57) is written explicitly in terms of a particular metric hab which is defined
precisely so that all its first derivatives are zero at the origin of the LIF. If we wanted an equation for Rabcd at some
other point in spacetime, we could write it in the same form, but we’d need to find a different metric hab

′ whose first
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Taking a closer look at the index structure in eq. (57), we see that the Riemann tensor is anti-
symmetric both under exchange of the first and last two indices, i.e.

Rabcd = −Rbacd, Rabcd = −Rabdc. (58)

That means of the original d2 = 4 degrees of freedom that the first and last two indices con-
tain separately, antisymmetry leaves us with only d

2(d − 1) = 1 independent degree of freedom.
Consequently, the Riemann tensor as a whole also only has 1 · 1 = 1 degree of freedom if d = 2.

b) The Riemann tensor, irrespective of the dimensionality of space, has four symmetries, two of which
we just exploited, i.e. antisymmetry under exchange of the first and last two indices. The other
two are symmetry under exchange of both pairs as a whole and the Bianchi identity. We will check
each of these in turn for the ansatz (45):

1. Rabcd = −Rbacd?

Rabcd = λ(hachbd − hadhbc) = −λ(hbchad − hbdhac) = −Rbacd. X (59)

2. Rabcd = −Rabdc?

Rabcd = λ(hachbd − hadhbc) = −λ(hadhbc − hachbd) = −Rabdc. X (60)

3. Rabcd = Rcdab? This follows directly from symmetry of the metric:

Rabcd = λ(hachbd − hadhbc) = λ(hcahdb − hdahcd) = Rcdab. X (61)

4. Bianchi identity: Ra[bcd] = 0?

Ra[bcd] = Rabcd +Racdb +Radbc

= λ(hachbd − hadhbc + habhdc − hachdb + hadhcb − habhcd) = 0. X
(62)

Contraction of all indices yields

R = Rabab = λ( haa︸︷︷︸
2

hbb︸︷︷︸
2

− habhba︸ ︷︷ ︸
haa

) = λ(4− 2) = 2λ ⇒ λ =
1

2
R. (63)

c) The components of the Ricci tensor can be computed from those of the Riemann tensor by con-
tracting the first and third index,

Rab = Rcacb = λ(hcchab − hcbhac) = λ(2hab − hab) = λhab. (64)

Insertion into eq. (46) gives a vanishing Einstein tensor,

Gab = Rab −
1

2
habR = λhab −

1

2
hab 2λ = 0. (65)

This is the reason why gravity in two dimension is said to be trivial: The Einstein field equations
Gab = 8πGTab reduce to Tab = 0.

d) Deriving the transformation law (47) is tedious work. One has to go through the usual procedure
in general relativity to investigate the affect from a change to the metric on the curvature:

1. Identify the new metric.

2. Calculate the corresponding Christoffel symbols.

derivatives are zero at this other point. If we wanted to use the original metric, then since this other point is not at
the origin of the original LIF, the Christoffel symbols would not be zero at this point, and the expression for Rabcd
would be much more complicated.

9



3. Derive the new Riemann tensor.

4. Finally, contract fully to get the transformed Ricci scalar.

Step 1 is a given as the new metric hab
′(τ, σ) = e2ω(τ,σ)hab(τ, σ) was already written in the exercise.

Step 2 requires actual work:

Γ′abc =
1

2
h′ad

(
∂chbd

′ + ∂bhcd
′ − ∂dhbc′

)
=

1

2
e−2ωhad

(
∂c(e

2ωhbd) + ∂b(e
2ωhcd)− ∂d(e2ωhbc)

)
=

1

2
e−2ωhade2ω

(
∂chbd + ∂bhcd − ∂dhbc + hbd∂c2ω + hcd∂b2ω − hbc∂d2ω

)
=

1

2
had
(
∂chbd + ∂bhcd − ∂dhbc

)
+ had

(
hbd∂cω + hcd∂bω − hbc∂dω

)
= Γabc +

(
δ a
b ∂c + δ a

c ∂b − hbc∂a
)
ω ≡ Γabc + Cabc , (66)

where for the purpose of preserving readability in the sequel, we defined the object

Cabc =
(
δ a
b ∂c + δ a

c ∂b − hbc∂a
)
ω. (67)

Step 3, obtaining the new Riemann tensor, requires the bulk of the calculations,

R′abcd = ∂cΓ
′a
bd − ∂dΓ′abc + Γ′ebdΓ

′a
ce − Γ′ebcΓ

′a
de

= ∂c(Γ
a
bd + Cabd )− ∂d(Γabc + Cabc )

+ (Γebd + Cebd )(Γace + Cace )− (Γebc + Cebc )(Γ
a
de + Cade )

= Rabcd + ∂cC
a
bd − ∂dCabc

+ ΓebdC
a
ce + ΓaceC

e
bd + CebdC

a
ce − ΓebcC

a
de − ΓadeC

e
bc − CebcCade

≡ Rabcd + Uabcd ,

(68)

or rather it would, if we didn’t cheat by again defining a new object Uabcd to contain the entire
change of the Riemann tensor under Weyl transformations. With eq. (68), we can move on to
step 4 and derive the Weyl transformed Ricci scalar by contracting all indices, i.e.

R′ = R′abab = h′bcR′acab = e−2ωhbc(Racab + Uacab ) = e−2ω(R+ hbcUacab ). (69)

Equation (69) shows that the Ricci scalar is not only rescaled but also receives an offset under
Weyl transformations. All that remains is to calculate this offset which is where the little cheat
we took above will cost us since we need to simplify

hbcUacab = hbc
(
∂aC

a
cb − ∂bCaca + ΓecbC

a
ae + ΓaaeC

e
cb

+ CecbC
a
ae − ΓecaC

a
be − ΓabeC

e
ca − CecaCabe

)
.

(70)

Again in the interest of avoiding long blocks of calculation, we handle each of the above terms
separately. Our work will be greatly accelerated by noting that Cabc is symmetric under exchange
of the two lower indices3 and contraction of the upper index with either yields

Caab = Caba =
(
δ a
a ∂b + δ a

b ∂a − hab∂a
)
ω =

(
2∂b + ∂b − ∂b

)
ω = 2∂bω. (71)

Another useful identity is Cabc contracted with the metric hbc as this simply gives zero,

hbcCabc = hbc
(
δ a
b ∂c + δ a

c ∂b − hbc∂a
)
ω =

(
∂a + ∂a − 2∂a

)
ω = 0. (72)

3As it has to be in order for the Weyl transformed Christoffel symbols to uphold this symmetry.
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With these shortcuts, we proceed:

hbc∂aC
a
cb = hbc∂a

(
δ a
b ∂c + δ a

c ∂b − hbc∂a
)
ω =

(
∂b∂

b + ∂c∂
c − 2∂a∂

a
)
ω = 0, (73)

hbc∂bC
a
ca

(71)
= ∂c(2∂cω) = 2∂2ω, (74)

hbcΓecbC
a
ae

(71)
= 2hbcΓecb∂eω, (75)

hbcΓaaeC
e
cb

(72)
= 0, (76)

hbcCecbC
a
ae

(72)
= 0, (77)

hbcΓecaC
a
be = hbcΓeca

(
δ a
b ∂e + δ a

e ∂b − hbe∂a
)
ω =

(
hacΓeca∂e + hbcΓaca∂b − δ c

e Γeca∂
a
)
ω

=
(
hacΓeca∂e + Γaca∂

c − Γcca∂
a︸ ︷︷ ︸

0

)
ω = hacΓeca∂eω,

(78)

hbcΓabeC
e
ca

(78)
= hacΓeca∂eω, (79)

hbcCecaC
a
be = hbc

(
δ e
c ∂a + δ e

a ∂c − hca∂e
)
ω
(
δ a
b ∂e + δ a

e ∂b − hbe∂a
)
ω

= hbc
(
∂bω∂cω + ∂bω∂cω − hbc∂aω∂aω + ∂bω∂cω + 2∂bω∂cω − ∂cω∂bω
− hcb∂eω∂e − ∂cω∂bω + ∂bω∂cω

)
= 4∂bω∂

bω − 2∂aω∂
aω − 2∂eω∂eω = 0.

(80)

Reinserting eqs. (73) to (80) back into eq. (70), we get an offset of

hbcUacab = −2∂2ω + 2hbcΓecb∂eω − hacΓeca∂eω − hacΓeca∂eω
= −2hbc(∂b∂cω − Γecb∂eω) = −2hbc∇b∂cω = −2hbc∇b∇cω = −2∇2ω,

(81)

where in the last step ∂cω = ∇cω because ω is just a scalar function for which partial and covariant
derivative are identical.

Plugging our hard-earned result into eq. (69), we get exactly the transformation behavior as given
in the exercise, i.e.√

−det(h)R →
√
−det(h′)R′ = e2ω

√
−det(h)e−2ω[R− 2∇2ω]

=
√
−det(h)[R− 2∇2ω].

(82)

e) The Einstein-Hilbert term reads

SEH[h] =
λEH

4π

∫
Σ

dτdσ
√
−det(h)R. (83)

Hence under Weyl transformations, the action changes as

SEH[h]→ SEH[h]′ =
λEH

4π

∫
Σ

dτdσ
√
−det(h)[R− 2∇2ω] = SEH[h] + ∆SEH[h]. (84)

Since the Ricci scalar changes only by a total derivative, it is easy to show that ∆SEH[h] vanishes
for a closed string:

∆SEH[h] = −λEH

2π

∫
Σ

dτdσ
√
−det(h)∇2ω = −λEH

2π

∫
Σ

d∗2 dω

= −λEH

2π

∫
∂Σ
∗2dω = 0,

(85)

where ∗2 is the Hodge-Stern operator known from differential geometry, and we used that the
worldsheet of a closed string has no boundary, i.e. ∂Σ = 0.
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Note: For an open string, ∆SEH[h] also vanishes but only after incorporating the extrinsic
curvature term as mentioned around eq. (48) into the full action.

f) By solving
R′(τ, σ) = R(τ, σ)− 2∇2ω(τ, σ) = 0, (86)

for ω(τ, σ), we can find a special ω0(τ, σ) for every point (τ, σ) on the worldsheet, so that locally,
R(τ, σ) and −2∇2ω(τ, σ) exactly cancel and we have R′(τ, σ) = 0.

In part a), we demonstrated that the Riemann tensor in two dimensions only has one degree of
freedom. In part b), we showed that this degree of freedom is directly proportional to the Ricci
scalar. Bearing that in mind, it is clear that R′(τ, σ) = 0 implies

R′abcd(τ, σ) = 0 at the point (τ, σ) ∀ a, b, c, d ∈ {τ, σ}. (87)

In words: For a two-dimensional space, we can always use a spacetime dependent rescaling ω(τ, σ)
of distances to locally remove any curvature and obtain flat space.

Using the remaining diffeomorphism invariance, i.e. invariance of the action under coordinate
transformations, we can reshape the metric. Note that diffeomorphisms do not enable us to change
the metric’s signature. The eigenvalues of a matrix are a fundamental property that are shared
among all representations of a matrix connected via coordinate transformations. However, if we
already start from a Lorentzian metric h with signature (−1, 1), we can always find a coordinate
transformation P ,

xa → x′a = P ab x
b, x ∈ {τ, σ}. (88)

whose rows, or equivalently columns, are given by the eigenvectors of the metric h. This matrix
P then fulfills the famous identity

h = P hD P−1, (89)

where hD is the metric in diagonal shape, i.e.

hD ∝
(
−1 0
0 1

)
. (90)
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