
Fundamentals of Simulation Methods
Exercise Sheet 2

Daniel Rosenblüh, Janosh Riebesell

October 6th, 2015

Integration of ordinary differential equations

1 Order of an ODE integration scheme

Consider the differential equation
dy

dt
= f(y) (1)

for the function y(t) and a general right hand side f(y). This may be integrated discretely
with a Runge-Kutta scheme of the form

k1 = f(yn),

k2 = f(yn + 1
2k1∆t),

yn+1 = yn + 1
2(k1 + k2)∆t.

(2)

Show that the truncation error per step Os is of third-order in the step-size ∆t, i.e. Os(∆t3),
or in other words, that the scheme is second-order accurate for the global integration error,
OT (∆t2).
Hint : Consider a Taylor expansion of the difference yn+1 − y(tn + ∆t) and assume that at
the beginning of the step, one starts out with the exact solution yn = y(tn).

Note: Equation (2) is the second-order Runge-Kutta method. It is a modification of the
Euler method

yn+1 = yn + f(yn)∆t, (3)

which is the simplest possible integrator that yields an approximate solution to an ordinary
differential equation such as eq. (1). It is not particularly stable, nor accurate compared
to more sophisticated methods but serves the purpose of exemplifying the basic concept of
solving ODEs by discretization: We rewrite the differentials dy and dt as finite steps ∆y and
∆t. We then multiply the ODE by ∆t. This yields the algebraic formula in eq. (3) for the
change in the function yn when t is increased by one stepsize ∆t.
The Euler method is primitive in the sense that it advances the discretized solution yn through
the interval ∆t but uses only information about f(yn) at the beginning of the interval. This
is where Runga-Kutta becomes more advanced.

The Runge-Kutta method takes a trial step to the middle of the interval, samples the function
f [yn + f(yn) ·∆t] there as well, and then averages it with f(yn) to compute the change in yn.
This symmetrization precisely cancels out both the first- and second-order error terms. Since a

1

mailto:rosenblueh@stud.uni-heidelberg.de
mailto:riebesell@thphys.uni-heidelberg.de


method is called n-th order accurate if its local error introduced with every step appears with a
power no lower than n+ 1, this makes Runge-Kutta second-order accurate.

To see this, we expand k2,

k2 = f(yn + k1∆t)

= f(yn) + f ′(yn)k1∆t+
1

2
f ′′(yn)(k1∆t)

2 +Os(∆t3).
(4)

Inserting this into yn+1 as given in eq. (2) and using k1 = f(yn) yields

yn+1 = yn +
1

2
(k1 + k2)∆t

= yn + f(yn)∆t+
1

2
f ′(yn)f(yn)∆t2 +

1

4
f ′′(yn)[f(yn)]2∆t3 +Os(∆t4).

(5)

By contrast, when expanding yn+1 = y(tn+1) = y(tn + ∆t) directly, we obtain1

y(tn + ∆t) = y(tn) + ẏ(tn)∆t+
1

2
ÿ(tn)∆t2 +

1

6

...
y (tn)∆t3 +Os(∆t4)

= yn + f(yn)∆t+
1

2

[
d

dt
f(yn)

]
∆t2 +

1

6

[
d2

d2t
f(yn)

]
∆t3 +Os(∆t4)

= yn + f(yn)∆t+
1

2
f ′(yn)f(yn)∆t2

+
1

6

[
f ′′(yn)[f(yn)]2 + [f ′(yn)]2f(yn)

]
∆t3 +Os(∆t4).

(6)

In eq. (6), we used the original ODE in between the first and second line and executed the chain
rule to arrive at the third.

Now, taking the difference of yn+1 with the exact solution y(t + ∆t), we see that the terms
linear and quadratic in ∆t cancel, and the Runge-Kutta error eRK is of order three:

eRK = yn+1 − y(tn + ∆t)

=
1

12

[
f ′′(yn)[f(yn)]2 − 2[f ′(yn)]2f(yn)

]
∆t3 +Os(∆t4).

(7)

Note: We can carry this scheme even further by adding more and more evaluations of f(y)
into each step. Adding up the right combinations of higher-order terms thus obtained, we can
eliminate the error terms order by order. This is the fundamental idea of the Runga-Kutta
method. By far in most common use is the fourth-order Runge-Kutta formula, because order
n = 4 is the highest order that only requires n function evaluations. Methods of order n ≥ 5
require more than n evaluations.

2 Integration of a stiff equation

Consider an ionized plasma of hydrogen gas that radiatively cools. Its temperature evolution
is governed by the equation

dT

dt
= − 2

3kB
nHΛ(T ), (8)

where Λ(T ) describes the cooling rate as a function of temperature, kB = 1.38× 10−16 erg K−1

is Boltzmann’s constant, and nH is the number density of hydrogen atoms. The cooling rate

1As always, dots indicate derivatives w.r.t. time. Derivatives w.r.t. to y(t) are marked by primes.

2



is a strong function of temperature T , which we here approximate by

Λ(T ) =

Λ0

(
T
T0

)α
, for T ≤ T0

Λ0

(
T
T0

)β
, for T > T0

, (9)

with Λ0 = 10−22 erg cm3 s−1, T0 = 20 000 K, α = 10.0, and β = −0.5. We consider isochoric
cooling of gas at density nH = 1.0 cm−3, with an initial temperature of Ti = 107 K.

(a) Determine the temperature evolution T (t) by integrating eq. (8) with a second-order
explicit Runge-Kutta scheme and a fixed timestep of ∆t = 1010 s, until the temperature
has dropped below 6000 K. Make a plot of the time evolution of the temperature, with
a logarithmic scale for temperature and a linear scale for the time.

(b) How many steps do you roughly need in part (a) to reach the final temperature? Try to
play with the timestep size and see whether you can significantly enlarge the timestep
without becoming unstable.

(c) Now implement the second-order integration from part (a) with an adaptive step size
control, based on estimating the local truncation error by carrying out two half-steps
for every step. Use an absolute local error limit ∆Tmax

err = 50 K for every step. Overplot
your result for the temperature evolution, on the plot for part (a), using symbols or a
different color. How many steps do you now need? Confirm that your scheme is robust
to large changes of the timestep size given as input for the first step.

(a) A plot of the temperature evolution of the system described by eq. (8) is shown in fig. 1.

0 1 2 3 4 5

t[1014 s]

103

104

105

106

107

T
[K

]

T(a)(t)

Figure 1: Second-order Runge-Kutta temperature evolution

(b) Starting from an initial temperature Ti = 107 K, it took our simulation roughly 54 000
timesteps to reach the final temperature of Tf = 6000 K.

As expected, the simulation remains stable upon shrinking of the stepsize by a factor of
10 (see fig. 2a). For comparison, the original simulation is shown in fig. 2b. The output

3



also remains invariant when increasing the stepsize by factors of 2 and 4 as shown in
figs. 2c and 2d, respectively. Upon increasing ∆t by a factor of 6, we introduce the first
numerical artifacts (fig. 2e), and when going as far as a factor of 10, the simulation aborts
prematurely, i.e. before reaching the final temperature Tf = 6000 K (fig. 2f).

0 1 2 3 4 5

t[1014 s]

103

104

105

106

107

T
[K

]

T(a)(t)

(a) ∆t = 109 s

0 1 2 3 4 5

t[1014 s]

103

104

105

106

107

T
[K

]

T(a)(t)

(b) ∆t = 1010 s

0 1 2 3 4 5

t[1014 s]

103

104

105

106

107

T
[K

]

T(a)(t)

(c) ∆t = 2× 1010 s

0 1 2 3 4 5

t[1014 s]

103

104

105

106

107

T
[K

]

T(a)(t)

(d) ∆t = 4× 1010 s

0 1 2 3 4

t[1014 s]

103

104

105

106

107

T
[K

]

T(a)(t)

(e) ∆t = 6× 1010 s

0 1 2 3 4 5

t[1014 s]

104

105

106

107

T
[K

]

T(a)(t)

(f) ∆t = 1011 s

Figure 2: Temperature evolutions for different stepsizes ∆t.

(c) Step doubling is a common means for adaptive stepsize control in Runge-Kutta. Compar-
ing the result of a big step with that of two half-sized ones gives a convenient criterion for
adjusting the stepsize for the next step, or for recalculating the current step with smaller
stepsize if the mismatch was deemed too great.

For the stepsize ∆t = 1010 s as used in part (a) where a second-order Runge-Kutta im-
plementation still showed ample stability, the temperature evolutions with and without
adaptive stepsize control look identical (fig. 3a). However, increasing the stepsize to the
limit of second-order stability as determined in part (b), we find in fig. 3b that the adap-
tive stepsize control upholds stability. This remains true even when increasing the initial
stepsize by four orders of magnitude, as seen in fig. 3c.

0 1 2 3 4 5

t[1014 s]

103

104

105

106

107

T
[K

]

T(a)(t)

T(c)(t)

(a) ∆t = 1010 s

0 1 2 3 4 5

t[1014 s]

103

104

105

106

107

T
[K

]

T(a)(t)

T(c)(t)

(b) ∆t = 6× 1010 s

0 1 2 3 4 5

t[1014 s]

103

104

105

106

107

T
[K

]

T(a)(t)

T(c)(t)

(c) ∆t = 1014 s

Figure 3: Temperature evolution according to Runge-Kutta with adaptive stepsize control

4



3 Double pendulum

We consider a friction-less double pendulum that
is constrained to move in one plane. The two
masses m1 and m2 are connected via massless rods
of length l1 and l2, respectively, as depicted in the
sketch.

φ1
l1

l2
m2

m1

φ2
The Lagrangian of this system is given by the expression

L =
m1

2
l21 φ̇

2
1 +

m2

2

[
l21 φ̇

2
1 + l22 φ̇

2
2 + 2 l1 l2 φ̇1 φ̇2 cos(φ1 − φ2)

]
−m1 g l1 (1− cosφ1)−m2 g

[
l1(1− cosφ1) + l2 (1− cosφ2)

] (10)

(a) Derive the Lagrangian equations of motion,

d

dt

∂L

∂φ̇i
− ∂L

∂φi
= 0, i ∈ {1, 2} (11)

for the angles φ1 and φ2.
Hint : Declare conjugate momenta qi = ∂L

∂φ̇i
and do not explicitly carry out the absolute

time derivative; it is sufficient if you give dq1
dt and dq2

dt .

(b) Cast the system of equations into first-order form, such that the dynamics is described
by the ODE

dy

dt
= f(y) (12)

where y is a four-component vector.
Hint : Use the conjugate momenta to eliminate the second derivatives, i.e. adopt y =
(φ1, φ2, q1, q2) as state vector.

(c) Write a program that integrates the system with a second-order predictor-corrector
Runge-Kutta scheme. Consider the initial conditions φ1 = 50◦, φ2 = −120◦, φ̇1 = φ̇2 =
0, and adopt m1 = 0.5, m2 = 1.0, l1 = 2.0, and l2 = 1.0. For simplicity, we shall use
units where g = 1. Use a fixed timestep of size ∆t = 0.05, and integrate for the period
T = 100.0 time units (equivalent to 2000 steps). Plot the relative energy error,

ηE =
Etot(t)− Etot(t0)

Etot(t0)
,

as a function of time.

(d) Produce a second version of your code that uses a fourth-order Runge-Kutta scheme
instead. Repeat the simulation from part (c) with the same timestep size, and again
plot the energy error. How does the size of the error at the end compare, and is this
consistent with your expectations?

(e) Let’s make a visualization of our double pendulum in order to get a feel for its interesting
and quite complex behavior. In fact, this pendulum is one of the simplest systems that
shows non-linear chaotic behaviour. We would like to end up with a movie file, so this

5



part of the exercise is also meant to guide you through the steps that are necessary for
this. But you may also hand in a sequence of still images if you prefer.

A standard method to make a digital movie is to produce a stack of images equally
spaced in time, and then to encode them into a heavily compressed digital video stream.
Suppose you have produced such images, named pic_000.jpg, pic_001.jpg, pic_002.
jpg, etc. Perhaps the simplest method to make a movie file from them is to encode
them with the ffmpeg program. A possible command for this is

ffmpeg -r 24 -qscale 1 -i pic %03d.jpg movie.mp4

which will make use of a high-quality MPEG-4 compression scheme and a frame rate of
24 images per second. Numerous alternative programs for this exist, including mencoder

and others.

To produce the images you can for example use the Python template that is provided
on Moodle and combine it with your pendulum simulation code. For a nice result, you
may want to plot besides the current position of the pendulum the track of all past
positions of the masses, as shown in the Python example.

(a) The conjugate momenta are

q1 ≡
∂L

∂φ̇1
= (m1 +m2) l

2
1 φ̇1 +m2 l1 l2φ̇2 cos(φ1 − φ2) (13)

q2 ≡
∂L

∂φ̇2
= m2 l

2
2 φ̇2 +m2 l1 l2 φ̇1 cos(φ1 − φ2) (14)

By the Euler-Lagrange equations, their time derivatives have to equal

q̇1 =
∂L

∂φ1
= −m2 l1 l2 φ̇1 φ̇2 sin(φ1 − φ2)− (m1 +m2) g l1 sinφ1 (15)

q̇2 =
∂L

∂φ2
= m2 l1 l2 φ̇1 φ̇2 sin(φ1 − φ2)−m2 g l2 sinφ2 (16)

(b) By rewriting eqs. (13) and (14) for the conjugate momenta in a vector notation, we obtain(
q1
q2

)
=

(
(m1 +m2)l

2
1 m2l1l2 cos(φ1 − φ2)

m2l1l2 cos(φ1 − φ2) m2l
2
2

)(
φ̇1
φ̇2

)
≡ A

(
φ̇1
φ̇2

)
. (17)

Since,
det(A) = (m1 +m2)l

2
1 ·m2l

2
2 −m2

2l
2
1l

2
2 cos2(φ1 − φ2)

= m1m2l
2
1l

2
2 +m2

2l
2
1l

2
2 sin2(φ1 − φ2)

= m2l
2
1l

2
2

(
m1 +m2 sin2(φ1 − φ2)

)
6= 0,

(18)

A is invertible and we can easily find an expression for φ̇1, φ̇2 by multiplying eq. (17) from
the left with A−1: (

φ̇1
φ̇2

)
= A−1

(
q1
q2

)
, (19)

where the inverse of A is given by

A−1 =
1

det(A)
adj(A) =

1

det(A)

(
m2l

2
2 −m2l1l2 cos(φ1 − φ2)

−m2l1l2 cos(φ1 − φ2) (m1 +m2)l
2
1

)
. (20)

6



By inserting eq. (20) into eq. (19), we can read off the canonical coordinates,

φ̇1 = A−111 q1 +A−112 q2, (21)

φ̇2 = A−121 q1 +A−122 q2. (22)

Defining y = (φ1, φ2, q1, q2)
T , we obtain the ordinary differential equation

dy

dt
= f(y) (23)

where the right-hand side is given by

f(y) =
(
φ̇1, φ̇2, q̇1, q̇2

)T
=

(
A−111 q1 +A−112 , A

−1
21 q1 +A−122 q2,

∂L

∂φ1
,
∂L

∂φ2

)T
=

A−111 q1 +A−112 q2
A−121 q1 +A−122 q2

−m2l1l2(A
−1
11 q1 +A−112 q2)(A

−1
21 q1 +A−122 q2) sin(φ1 − φ2)− (m1 +m2)gl1 sinφ1

m2l1l2(A
−1
11 q1 +A−112 q2)(A

−1
21 q1 +A−122 q2) sin(φ1 − φ2)−m2gl2 sinφ2

 (24)

where we inserted eqs. (21) and (22) for φ̇1 and φ̇2. Notably, A−1 depends only on φ1 and
φ2.

(c) The relative energy error’s time-evolution under a second-order Runge-Kutta integration
scheme for the specified initial conditions is shown in fig. 4a.

0 20 40 60 80 100

t [a.u.]

0.06

0.05

0.04

0.03

0.02

0.01

0.00

η E
(t

)

ηE (t)

(a) Second-order accuracy

0 20 40 60 80 100

t [a.u.]

0.0040

0.0035

0.0030

0.0025

0.0020

0.0015

0.0010

0.0005

0.0000

0.0005

η E
(t

)

ηE (t)

(b) Fourth-order accuracy

Figure 4: Time evolution of the Runge-Kutta relative energy error

(d) Figure 4b displays the relative energy error of a calculation with matching initial conditions
but performed at fourth-order accuracy. As expected, the absolute error still increases over
time, but much slower than compared to that of second-order Runge-Kutta.

(e) See double-pendulum.mp4.

7


	Order of an ODE integration scheme
	Integration of a stiff equation
	Double pendulum

