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Theoretical Statistical Physics

Solution to Exercise Sheet 3

1 Black-body radiation (3 points)

Consider the energy U of a general thermodynamic system as a function of T and V , with
the usual differential work for reversible processes δW = −p dV .

a) Show that

p = T
∂p

∂T

∣

∣

∣

V
−

∂U

∂V

∣

∣

∣

T
. (1)

b) For black-body radiation in a cavity of volume V , the caloric equation of state is
U(T, V ) = u(T )V , and the thermal equation of state is p = 1

3u(T ), where u(T ) is a
function of T alone. Calculate p and U explicitly as functions of T and V .

a) Inserting the state functions U(T, V ) and S(T, V ) into dU = T dS − p dV yields

T dS = T
∂S

∂T

∣

∣

∣

V
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∂V

∣

∣

∣

T
dV =

∂U

∂T

∣

∣

∣

V
dT +

∂U
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∣

T
dV + p dV. (2)

(2) must hold both at constant temperature dT = 0 and constant volume dV = 0. Thus the
coefficients of dT and dV on both sides must be equal,
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T
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Partially differentiating these two relations w.r.t. V and T , respectively, we obtain
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. (4)

As a state function, S(T, V ) is twice continuously differentiable. By Schwarz’ lemma, the
partial derivatives commute, giving
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. (5)

Solving the above for the pressure, we arrive at

p = T
∂p

∂T

∣

∣
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V
−
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∂V

∣

∣

∣

T
. (6)

b) The electromagnetic field inside a cavity, also known as “Hohlraumstrahlung”, is created
from thermal radiation emitted by the cavity’s inner surface. The walls continually emit
and absorb radiation until thermal equilibrium is attained, at which point both radiation
and thermodynamic properties of the walls no longer change over time. The radiation is then
known to be homogeneous, isotropic, and unpolarized. Experiments show that the energy
density u of the cavity radiation remains constant under changes in volume of the cavity at
fixed temperature. Therefore, we may conjecture that the energy density is a function of
temperature only, yielding the caloric equation of state U = u(T )V .
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Modelling the cavity radiation as a photon gas, we must assign it a pressure p like any
ordinary gas. Thermodynamics cannot provide information about this pressure. However,
electromagnetism shows that the pressure exerted by the photon gas fulfills the equation of
state p = 1

3u(T ).

The radiation thus constitutes a thermodynamic system completely specified by its pressure,
the cavity’s volume and the temperature of the walls (assumed to be in equilibrium with
the radiation and therefore loosely called the temperature of the radiation). We can apply
our result from part a) to this case and insert U = u(T )V and p = 1

3u(T ) to obtain

1

3
u(T ) =

T

3

du(T )

dT

∣

∣

∣

V
− u(T ). (7)

Separating variables and integrating on both sides, we arrive at

∫

du

u
= 4

∫

dT

T
⇒ ln(u) = 4 ln(T ) + a, (8)

and so u = b T 4, where b = ea ∈ R is an integration constant. Thus,

U = b T 4V, p =
b

3
T 4. (9)

2 Gibbs free enthalpy (2 points)

Consider the Gibbs free enthalpy G = U − T S + p V .

a) Starting from the fact that S and V are the natural variables for U , determine what the
natural variables for G are. Write dG as a differential in terms of these natural variables
and derive the Maxwell relations that result from it.

b) Which variables need to be fixed in a reversible process for dG to be zero? How does the
free enthalpy change if the same variables remain fixed, but the process is irreversible?
Which kind of extremum does G reach in equilibrium?

a) U having natural variables S and V amounts to dU = T dS − p dV . Thus

dG = d(U − T S + p V ) =✘✘✘T dS −
❍
❍❍

p dV −✘✘✘T dS − S dT +❍
❍❍

p dV + V dp

= −S dT + V dp.
(10)

From this, we can read off the natural variables of G as T and p. Its total differential,
therefore reads

dG =
∂G

∂T

∣

∣

∣

p
dT +

∂G

∂p

∣

∣

∣

T
dp. (11)

Comparing coefficients in (10) and (11) yields

S = −
∂G

∂T

∣

∣

∣

p
, V =

∂G

∂p

∣

∣

∣

T
. (12)

In multivariate calculus, a differential H is said to be exact if it is of the form H = dF ,
for some differentiable function F . Thus, dG is an exact one-form by construction since it
was obtained by taking the exterior derivative of the zero-form state function G. Since we
know dG to have an antiderivative, it must fulfill Schwarz’s integrability condition, meaning
the second partial derivatives of G w.r.t T and p must commute. From this, we obtain the
Maxwell relation

∂S

∂p

∣

∣

∣

T
= −

∂2G

∂T∂p
= −

∂2G

∂p∂T
= −

∂V

∂T

∣

∣

∣

p
. (13)
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b) From (10), it is clear that dG = 0 if dT = dp = 0, i.e. if both pressure and temperature
are held constant. However, we may also express G i.t.o. any other two thermodynamic
variables x and y. G will then also remain unchanged for constant x and y as long as the
Jacobian

J = det

(

∂(T, p)

∂(x, y)

)

(14)

of the corresponding transformation is diffeomorphic, i.e. smooth and invertible.

For irreversible processes, we have dS > δQ
T
. Insertion into dU = δQ+ δW yields

dU < TdS − pdV. (15)

Following the same steps as in (10) and using that T and p are still constant gives

dG < −SdT + V dp = 0. (16)

Thus, the Gibbs free enthalpy must strictly decrease during an irreversible process occurring
at constant temperature and pressure. This implies that G reaches a minimum once the
system is equilibrated and its thermodynamic properties no longer change over time.

3 Real gas (3 points)

Let the thermodynamics of a gas be described by

T
∂p(T, V )

∂T
(V − n b) = nRT. (17)

a) Derive the corresponding equation of state p(T, V ). (Pay attention to integration con-
stants).

b) Compute the free energy F .

c) How does the heat capacity CV depend on volume?

a) Integrating (17) w.r.t. T gives

p(T, V ) =

∫

nR

V − n b
dT =

nRT

V − n b
+ p0(V ), (18)

where the integration constant p0(V ) determines the pressure at T = 0.

b) The (Helmholtz) free energy is defined as F = U − T S. Using dU = T dS − p dV , its
differential is

dF = dU − T dS − S dT = −S dT − p dV. (19)

At constant temperature, we have
∂F

∂V

∣

∣

∣

T
= −p. (20)

Inserting the equation of state (18) and integrating w.r.t. V yields

F = −

∫

( nRT

V − n b
+ p0(V )

)

dV = −nRT ln(V − n b)−

∫

p0(V ) dV + F0(T ). (21)

c) At constant volume, dU = T dS − p dV reduces to

T dS = dU =
∂U

∂T

∣

∣

∣

V
dT = CV dT. (22)
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The heat capacity at constant volume is thus

CV = T
∂S

∂T

∣

∣

∣

V
. (23)

Since dF = −S dT − p dV , we have

S = −
∂F

∂T

∣

∣

∣

V
, (24)

and so

CV = −T
∂2F (T, V )

∂2T

∣

∣

∣

V

(21)
= −T

∂2F0(T )

∂2T

∣

∣

∣

V
. (25)

Thus, the heat capacity is independent of the volume.

Another way to see this is to differentiate (23) w.r.t. V at constant T and insert the Maxwell
relation

∂S

∂V

∣

∣

∣

T
=

∂p

∂T

∣

∣

∣

V
(26)

that derives from dF = −S dT − p dV . This yields

∂CV

∂V

∣

∣

∣

T
= T

∂2S

∂T∂V
= T

∂2p

∂2T

∣

∣

∣

V
= 0. (27)

4 Ideal gas (3 points)

Consider 1mol of an ideal gas. Under the assumption that the specific heat is independent of
temperature, determine the caloric equation of state U = U(T, V ) from the thermal equation
of state. Then also determine the Helmholtz free energy F in terms of its natural variables.
Determine whether F is a convex or concave function of either of its natural variables, when
the other one is kept fixed.
Hint: You may use the result from exercise 1a).

Inserting the ideal gas law p V = nRT , where n = 1mol, into (6) yields

∂U

∂V

∣

∣

∣

T
= p− T

∂p

∂T

∣

∣

∣

V
= 0. (28)

Thus, the internal energy is a function of temperature only, U = U(T ). Consequently, its total
differential is simply

dU =
∂U

∂T
dT = C dT. (29)

Since the heat capacity is temperature-independent, integrating (29) is trivial and yields the
caloric equation of state1

U(T ) = C T. (30)

The Helmholtz free energy is defined as F = U − T S. The entropy dS = δQ
T

for an ideal gas
can be derived from the first law δQ = dU − δW = C dT + p dV ,

dS =
δQ

T
=

C

T
dT +

p

T
dV =

C

T
dT +

R

V
dV. (31)

Integrating both sides yields

S(T, V ) = S0 + C ln(T/T0) +R ln(V/V0), (32)

1We could have added an integration constant here, but preferred to keep U(0) = 0.
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where S0 = S(T0, V0). By inserting this result into F , we obtain

F = C T − T
[

S0 + C ln(T/T0) +R ln(V/V0)
]

. (33)

To investigate the free energy’s properties as a function of its natural variables T and V , we
calculate the second partial derivatives,

∂2F

∂2T

∣

∣

∣

V
= −C

∂2

∂2T
T ln

(

T

T0

)

= −C
∂

∂T

[

ln

(

T

T0

)

+ 1

]

= −
C

T
< 0, (34)

∂2F

∂2V

∣

∣

∣

T
= −RT

∂2

∂2V
ln

(

V

V0

)

= −RT
∂

∂V

1

V
=

RT

V 2
> 0. (35)

From this, we can infer that F (T, V ) is a concave function of temperature and a convex function
of volume. Hence its graph is shaped like a saddle.

V
T

F
(T

,V
)
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