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Lecturer: Timo Weigand

1 Mixed Dirichlet-Neumann boundary conditions

The derivation of the mode expansion for the open string with Neumann-Neumann NN boundary
conditions is easiest performed with the help of the so-called doubling trick: Starting from the open
string field Xµ(τ, σ) with 0 ≤ σ ≤ l, one defines the auxiliary field X̂µ(τ, σ) for −l ≤ σ ≤ l via

X̂µ(τ, σ) =

{
Xµ(τ, σ) for 0 ≤ σ ≤ l,
Xµ(τ,−σ) for − l ≤ σ ≤ 0.

(1)

a) Show that requiring that X̂µ(τ, σ) can be extended to σ ∈ R as a smooth periodic function
with period 2l is equivalent to requiring Neumann-Neumann boundary conditions for Xµ(τ, σ)
at σ ∈ {0, l}.

b) Use this to deduce the oscillator expansion for the Neumann-Neumann open string. Start with
a solution for ∂±X̂µ(τ, σ) and integrate this to a solution for Xµ(τ, σ) subject to the correct
boundary conditions.

c) Repeat this procedure for Dirichlet-Dirichlet DD boundary conditions by first finding a suitable
definition of X̂µ(τ, σ) that incorporates the DD boundary conditions for Xµ(τ, σ) and then
integrating the solution for ∂±X̂µ(τ, σ).

d) Find the open string expansion for DN boundary conditions (i.e. Dirichlet boundary conditions
at σ = 0 and Neumann boundary conditions at σ = l).

e) For each of the three types of boundary conditions - NN, DD, DN - give the centre-of-mass
position and the total momentum of the string and discuss the result.

a) Since X̂µ(τ, σ) is symmetric around σ = 0, by the chain rule, its derivative has to be antisymmetric,

X̂µ(τ, σ) = X̂µ(τ,−σ) ⇒ ∂σX̂µ(τ, σ) = −∂σX̂µ(τ,−σ). (2)

This immediately implements the Neumann boundary condition for the real string field Xµ(τ, σ)
at σ = 0,

∂σXµ(τ, 0) = ∂σX̂µ(τ, 0)
!

= −∂σX̂µ(τ, 0) = −∂σXµ(τ, 0) ⇒ ∂σXµ(τ, 0) = 0. (3)

By further taking into account periodicity of the auxiliary field, i.e. Xµ(τ, l)
!

= Xµ(τ,−l), we get
exactly the same condition at σ = l,

∂σXµ(τ, l) = ∂σX̂µ(τ, l)
!

= −∂σX̂µ(τ,−l) = −∂σXµ(τ, l) ⇒ ∂σXµ(τ, l) = 0. (4)
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b) We prefer to work with the actual string field Xµ(τ, σ) here as opposed to the auxiliary X̂µ(τ, σ).
We will have to take care to implement the boundary conditions by hand but this has the advantage
of making it clearer what is going on.

To deduce the string field’s mode expansion, we first need its equation of motion. It can be
obtained from the Polyakov action, which in flat gauge (hab = ηab) becomes

SP = − 1

4πα′

∫
Σ

dτdσ
√
−hhab∂aXµ∂bX

µ hab=ηab−→ −T
2

∫
Σ

dτdσ
√
−η︸ ︷︷ ︸
1

ηab∂aXµ∂bX
µ

=
T

2

∫
Σ

dτdσ
[
(∂τX)2 − (∂σX)2

]
= 2T

∫
Σ

dτdσ ∂+Xµ∂−X
µ,

(5)

where in the last step, we used lightcone coordinates ξ± = τ ± σ in which the partial derivatives
read ∂± = 1

2(∂τ ± ∂σ). By varying SP w.r.t. Xµ(τ, σ), we get the string field’s e.o.m.,

δSP =
T

2

∫
Σ

dτdσ
[
2∂τXµ ∂τδX

µ − 2∂σXµ ∂σδX
µ
]

= −T
∫

Σ
dτdσ

[
∂2
τXµ − ∂2

σXµ

]
δXµ

+ T

∫ l

0
dσ ∂τXµ δX

µ
∣∣∣τ=tf

ti
− T

∫ tf

ti

dτ ∂σXµ δX
µ
∣∣∣σ=l

0
.

(6)

We drop the two boundary terms in the last line because we desperately want to avoid non-local
terms in the string field’s e.o.m. Actually, this step isn’t as unfounded as we just made it sound.
As usual, our variation underlies the constraint that the initial and final string state are held fixed,
i.e. δXµ(τ = ti, σ) = δXµ(τ = tf , σ) = 0, so the τ -boundary takes care of itself in any case. At
least for the closed string, the σ-boundary is trivial as well: There simply is none. Instead we

have periodic the boundary condition Xµ(τ, σ = l)
!

= Xµ(τ, σ = 0). The part where it becomes
interesting is the σ-boundary of the open string. Since now there is no periodicity in σ, we need
∂σXµ δX

µ = 0 at σ = l and σ = 0 separately. This amounts to requiring (for each spacetime
dimension µ individually) either

∂σX
µ(τ, σ) = 0 at σ = l and/or 0 (Neumann b.c.), (7)

or δXµ(τ, σ) = 0 at σ = l and/or 0 (Dirichlet b.c.). (8)

If we do this, then by the usual arguments of δXµ(τ, σ) being an arbitrary variation but δSP

having to vanish for all of them, we obtain the as string field e.o.m. the nice and simple result of
a free wave equation (∂2

τ − ∂2
σ)Xµ(τ, σ) = 0. Expressed in lightcone coordinates, this becomes

∂+∂−X
µ(ξ+, ξ−) = 0. (9)

This is all well and good but was done mostly for completeness sake. Our task in this exercise is
actually to derive the NN open string mode expansion. Let’s start.

Since partial derivatives commute, we can draw two interesting conclusions from (9):

∂+∂−X
µ(ξ+, ξ−) = 0 ⇒ ∂−X

µ(��ξ
+, ξ−) = ∂−X

µ(ξ−), (10)

∂−∂+X
µ(ξ+, ξ−) = 0 ⇒ ∂+X

µ(ξ+,��ξ
−) = ∂+X

µ(ξ+). (11)

This means that Xµ(ξ+, ξ−) is the sum of a left- and a right-moving wave along the string, i.e.

Xµ(ξ+, ξ−) = Xµ
L(ξ+) +Xµ

R(ξ−). (12)

Equation (12) is the most general ansatz admitted by the partial differential equation (9). We
specialize it to describe the NN open string by implementing the Neumann boundary conditions
at both ends. Firstly, at σ = 0, we have

∂σX
µ
NN(τ, σ)

∣∣
σ=0

=
∂Xµ

L(ξ+)

∂ξ+

∂ξ+

∂σ

∣∣∣
σ=0

+
∂Xµ

L(ξ−)

∂ξ−
∂ξ−

∂σ

∣∣∣
σ=0

= ∂+X
µ
L(τ)− ∂−Xµ

R(τ) = 0, (13)
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where ∂−X
µ
R picked up a minus sign due to the chain rule. Since their σ-derivatives are equal,

the functions Xµ
L and Xµ

R have to be identical up to an additive constant cµ.1 By replacing
Xµ
R = Xµ

L + cµ and redefining Xµ
L → Xµ

L + cµ

2 , eq. (12) becomes

Xµ
NN(ξ+, ξ−) = Xµ

L(ξ+) +Xµ
L(ξ−). (14)

Essentially, this equation states that left-moving waves are reflected into right-moving ones at the
left boundary and vice versa, so it suffices to define one type of mover and we kept Xµ

L. For the
boundary at σ = l, we get

∂σX
µ
NN(τ, σ)

∣∣
σ=l

= ∂+X
µ
L(τ + l)− ∂−Xµ

L(τ − l) = 0. (15)

Since this equation must hold for all τ , we learn that ∂±X
µ
L is periodic in its single argument

with period 2l. This intermediate result is particularly important as it means that ∂±X
µ
L fulfills

the Dirichlet conditions which determine whether or not a function f(x) can be expanded into a
Fourier series. The Dirichlet conditions are:

1. f(x) must be periodic.

2. f(x) must be single-valued and continuous, except at a finite number of finite discontinuities.

3. f(x) must have only a finite number of maxima and minima within a period.

4. The integral over one period of |f(x)| must converge.

Periodicity was the only missing piece out of the above four. We are therefore entitled to make
the following ansatz for ∂±X

µ
L(ξ±),

∂±X
µ
L(ξ±) =

π

l

√
α′

2

∑
n∈Z

αµne
− 2πi

2l
nξ± , (16)

where the αµn are the string field’s modes, 2l is one period, and the awkward prefactor π
l

√
α′/2 as

well as the sign in the exponent was introduced to follow the lecture note’s convention where the
positive frequency modes correspond to n < 0. Note that we were not required to introduce two
sets of Fourier coefficients, say (α±n )µ because we identified for the open NN string Xµ

L and Xµ
R as

one and the same function right from the start. It is trivial to see that eq. (16) fulfills the original
e.o.m. ∂∓∂±X

µ
L(ξ±) = 0.

The next step is to integrate eq. (16) w.r.t. ξ±,

Xµ
L(ξ±) =

∫
dξ± ∂±X

µ
L(ξ±) =

π

l

√
α′

2

∫
dξ±

(
αµ0 +

∑
n6=0

αµne
−πi

l
nξ±
)

=
π

l

√
α′

2

(
αµ0ξ

± − l

πi

∑
n6=0

αµn
n
e−

πi
l
nξ±
)

+
xµ0
2
.

(17)

Here,
xµ0
2 is just a suggestively named integration constant with no further meaning as yet. (It will

later turn out to be the µ-coordinate of the string’s σ = 0-end.) Inserting eq. (17) into our ansatz
(14), we finally get the NN open string field’s mode expansion

Xµ
NN(ξ+, ξ−) = Xµ

L(ξ+) +Xµ
L(ξ−)

= xµ0 +
π

l

√
α′

2 α
µ
0 (ξ+ + ξ−) + i

√
α′

2

∑
n6=0

αµn
n

(
e−

πi
l
nξ+ + e−

πi
l
nξ−
)

= xµ0 +
π

l

√
2α′αµ0τ + i

√
2α′
∑
n6=0

αµn
n
e−

πi
l
nτ cos

(
π
l nσ

)
.

(18)

1If we were working with the auxiliary field X̂µ, we could have arrived at the same conclusion by exploiting σ-parity in
eq. (12), i.e. invariance of X̂µ under σ → −σ.
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c) Dirichlet boundary conditions require that the string endpoints are fixed, i.e. δXµ
DD(τ, σ) = 0

for σ ∈ {0, l}, or equivalently ∂τX
µ
DD(τ, 0) = ∂τX

µ
DD(τ, l) = 0. A suitable auxiliary field that

automatically implements Dirichlet boundary conditions would be

X̂µ(τ, σ) =

{
Xµ(τ, σ) for 0 ≤ σ ≤ l,
−Xµ(τ,−σ) for − l ≤ σ ≤ 0.

(19)

Again, we prefer to proceed with the actual string field. Everything we did in part b) for the
derivation of open NN string mode expansion carries over one-to-one up to eq. (13). Since we now
differentiate w.r.t. τ , which appears with positive sign in both ξ+ and ξ−, we don’t pick up a
minus here from the chain rule when calculating ∂τX

µ
DD(ξ±). Consequently, we get

∂τX
µ
DD(τ, σ)

∣∣
σ=0

= ∂+X
µ
L(τ) + ∂−X

µ
R(τ) = 0, (20)

which allows us to identify Xµ
R = −Xµ

L + cµ and eq. (14) becomes

Xµ
DD(ξ+, ξ−) = Xµ

L(ξ+)−Xµ
L(ξ−) + cµ. (21)

Note that this time, the additive constant cµ cannot be absorbed equally into Xµ
L(ξ+) and Xµ

L(ξ−)
because they appear with different sign. Instead, by taking the equation to the σ = 0 endpoint of
the string,

Xµ
DD(ξ+, ξ−)

∣∣
σ=0

= Xµ
L(τ)−Xµ

L(τ) + cµ = cµ ≡ xµ0 , (22)

we find cµ is now the fixed position xµ0 of one end of the string. At σ = l, we find

∂τX
µ
DD(τ, σ)

∣∣
σ=l

= ∂+X
µ
L(τ + l)− ∂−Xµ

L(τ − l) = 0, (23)

i.e. as expected, ∂±X
µ
L is again periodic and can be expanded into the same Fourier series (16) and

integrated in the same way as before. Plugging in the integrated Fourier series (17) into Xµ
DD(τ, σ)

from eq. (21) yields the mode expansion for the DD open string,

Xµ
DD(ξ+, ξ−) = xµ0 +Xµ

L(ξ+)−Xµ
L(ξ−)

= xµ0 +
π

l

√
α′

2 α
µ
0 (ξ+ − ξ−) + i

√
α′

2

∑
n6=0

αµn
n

(
e−

πi
l
nξ+ − e−

πi
l
nξ−
)

= xµ0 +
π

l

√
2α′αµ0σ +

√
2α′
∑
n6=0

αµn
n
e−

πi
l
nτ sin

(
π
l nσ

)
.

(24)

At σ = l, this mode expansion reads

Xµ
DD(τ, l) = xµ0 + π

√
2α′αµ0 , (25)

which is indeed independent of τ as it must be to respect the fixed string end. From this we can
gather that the string stretches across a distance of π

√
2α′αµ0 in the µ-direction,

Xµ
DD(τ, l)−Xµ

DD(τ, 0) = xµ0 + π
√

2α′αµ0 − x
µ
0 = π

√
2α′αµ0 ≡ x

µ
l − x

µ
0 (26)

where it makes sense to define xµl as the µ-coordinate of the other fixed point of the string in order
to write the mode expansion as

Xµ
DD(ξ+, ξ−) = xµ0 + (xµl − x

µ
0 )
σ

l
+
√

2α′
∑
n6=0

αµn
n
e−

πi
l
nτ sin

(
π
l nσ

)
. (27)

d) DN boundary conditions translate into

∂τX
µ
DN(τ, σ)

∣∣
σ=0

= 0 and ∂σX
µ
DN(τ, σ)

∣∣
σ=l

= 0. (28)
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We therefore again get eq. (21) with the string’s σ = 0-end fixed at xµ0

Xµ
DN(ξ+, ξ−) = Xµ

L(ξ+)−Xµ
L(ξ−) + xµ0 . (29)

Applying the condition Xµ
DN(τ, σ)

∣∣
σ=l

= 0 gives

∂σX
µ
DN(τ, σ)

∣∣
σ=l

= ∂+X
µ
L(τ + l) + ∂−X

µ
L(τ − l) = 0, (30)

which marks ∂+X
µ
L as an antiperiodic function of the form f

(
t− T

4

)
= −f

(
t+ T

4

)
, where the period

is now T = 4l. Doubling the period can be implemented in the Fourier expansion by making the
mode counter half-integer, i.e.

∂±X
µ
L(ξ±) =

π

l

√
α′

2

∑
n∈Z+ 1

2

αµne
−πi

l
nξ± . (31)

One immediate consequence is that there is no longer a phase-factor-free zero mode αµ0 . If we
integrate eq. (31) and plug the result into eq. (29), we get

Xµ
DN(ξ+, ξ−) = xµ0 +Xµ

L(ξ+)−Xµ
L(ξ−)

= xµ0 + i

√
α′

2

∑
n∈Z+ 1

2

αµn
n

(
e−

πi
l
nξ+ − e−

πi
l
nξ−
)

= xµ0 −
√

2α′
∑

n∈Z+ 1
2

αµn
n
e−

πi
l
nτ sin

(
π
l nσ

)
.

(32)

e) This business of finding mode expansions is getting dull. But fear not, we can change the topic
now. Our next task is to find the centre-of-mass position qµ and the total momentum pµ of the
string for each set of boundary conditions discussed above.

1. NN:

qµNN ≡
1

l

∫ l

0
dσXµ

NN(τ, σ) =
1

l

∫ l

0
dσ

(
xµ0 +

π

l

√
2α′αµ0τ + i

√
2α′
∑
n6=0

αµn
n
e−

πi
l
nτ cos

(
π
l nσ

))

= xµ0 +
π

l

√
2α′αµ0τ + i

√
2α′
∑
n6=0

αµn
n
e−

πi
l
nτ 1

l

∫ l

0
dσ cos

(
π
l nσ

)︸ ︷︷ ︸
antisymmetric around σ= l

2

(33)

= xµ0 +
π

l

√
2α′αµ0τ,

pµNN =

∫ l

0
dσΠµ

NN(τ, σ) = T

∫ l

0
dσ ∂τX

µ
NN(τ, σ)

= T

∫ l

0
dσ

(
π

l

√
2α′αµ0 +

√
2α′
∑
n6=0

αµn
π

l
e−

πi
l
nτ cos

(
π
l nσ

))
= πT

√
2α′αµ0 + T

√
2α′
∑
n 6=0

αµn
π

l
e−

πi
l
nτ

∫ l

0
dσ cos

(
π
l nσ

)
︸ ︷︷ ︸

0, as above

= πT
√

2α′αµ0 =
αµ0√
2α′

.

(34)

Knowing that αµ0 =
√

2α′pµNN, we can also write the open NN string’s centre-of-mass position
as

qµNN = xµ0 +
2πα′

l
pµNNτ = xµ0 +

pµNN

T l
τ. (35)

This is a very nice result as it means that the string’s c.o.m. just moves in a straight line

with constant velocity
pµNN
T l . This is consistent with the fact that so far we’ve been working

entirely in a free theory (see Polyakov action, no terms above quadratic order appear).
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2. DD:

qµDD =
1

l

∫ l

0
dσXµ

DD(τ, σ) =
1

l

∫ l

0
dσ

(
xµ0 + (xµl − x

µ
0 )
σ

l
+
√

2α′
∑
n6=0

αµn
n
e−

πi
l
nτ sin

(
π
l nσ

))

= xµ0 +
1

2
(xµl − x

µ
0 ) +

√
2α′
∑
n6=0

αµn
n
e−

πi
l
nτ 1

l

∫ l

0
dσ sin

(
π
l nσ

)
=

1

2
(xµ0 + xµl ) +

√
2α′
∑
n6=0

αµn
n
e−

πi
l
nτ 1

πn

(
1− cos(πn)︸ ︷︷ ︸

(−1)n

) (36)

=
1

2
(xµ0 + xµl ) +

2

π

√
2α′

∑
n∈2Z
n6=0

αµn
n2
e−

πi
l
nτ ,

pµDD =

∫ l

0
dσΠµ

DD(τ, σ) = T

∫ l

0
dσ ∂τX

µ
DD(τ, σ)

= T

∫ l

0
dσ

(
−πi
l

√
2α′
∑
n6=0

αµne
−πi

l
nτ sin

(
π
l nσ

))

= −T πi
l

√
2α′
∑
n6=0

αµn
π

l
e−

πi
l
nτ l

πn

(
1− cos(πn)︸ ︷︷ ︸

(−1)n

)
=

√
2/α′

il

∑
n∈2Z
n6=0

αµn
n
e−

πi
l
nτ .

(37)

Interestingly, both c.o.m. position and total momentum depend on even-numbered modes
αµn with n ∈ 2Z.

3. DN:

qµDN =
1

l

∫ l

0
dσXµ

DN(τ, σ) =
1

l

∫ l

0
dσ

(
xµ0 −

√
2α′
∑

n∈Z+ 1
2

αµn
n
e−

πi
l
nτ sin

(
π
l nσ

))
(36)
= xµ0 −

√
2α′
∑

n∈Z+ 1
2

αµn
n
e−

πi
l
nτ 1

πn

(
1− cos(πn)︸ ︷︷ ︸

0

)
= xµ0 −

√
2α′

π

∑
n∈Z+ 1

2

αµn
n2
e−

πi
l
nτ ,

(38)

pµDN =

∫ l

0
dσΠµ

DN(τ, σ) = T

∫ l

0
dσ ∂τX

µ
DN(τ, σ)

(37)
= T

πi

l

√
2α′
∑

n∈Z+ 1
2

αµn
π

l
e−

πi
l
nτ l

πn

(
1− 0

)
=
i
√

2/α′

l

∑
n∈Z+ 1

2

αµn
n
e−

πi
l
nτ .

(39)

2 Conformal transformations and their algebra

The conformal Killing equation is defined as

(P · ε)ab ≡ ∇aεb +∇bεa − hab∇cεc = 0. (40)

a) Recall the significance of a vector field ε(ξ) satisfying the conformal Killing equation (40).

b) Show that a conformal Killing vector leads to a conserved current Ja = T abεb. Which properties
of T ab are needed for this?

c) Now go to lightcone gauge and show from the definition in part a) that the conformal Killing
vectors are precisely the ones generating transformations

ξ± → ξ̃±(ξ±) = ξ± + ε±(ξ±). (41)

Recall from the lecture that these were the residual gauge symmetries in flat gauge.
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d) Using T±± = − 1
α′∂±X · ∂±X and the equal-time Poisson brackets

{Xµ(τ, σ), Xν(τ, σ′)}PB = {Ẋµ(τ, σ), Ẋν(τ, σ′)}PB = 0, (42)

{Xµ(τ, σ), Ẋν(τ, σ′)}PB =
1

T
ηµνδ(σ − σ′), (43)

calculate the Poisson brackets

{T±± (τ, σ), Xµ(τ, σ′)}PB. (44)

Hint: It is useful to first work out, from the definition of the Poisson bracket as given in the
lecture, how to express quantities such as {AB,C} in terms of elementary Poisson brackets
involving only two fields.

e) Use the definition (for the closed string)

Lε± ≡ −
l

4π2

∫ l

0
dσ ε±(ξ±)T±± (ξ±), (45)

and the result of part d) to calculate the Poisson brackets

{Lε± , Xµ(τ, σ)}PB. (46)

Use this to argue that the Lε± generate infinitesimal conformal transformations via the Poisson
bracket.

f) One can decompose the functions ε±(ξ±) into a discrete sum of Fourier components ei
2π
l
mξ± ,

m ∈ Z. The resulting generators

L−m = − l

4π2

∫ l

0
dσ T−−e

i 2π
l
m(τ−σ), L+

m = − l

4π2

∫ l

0
dσ T++e

i 2π
l
m(τ+σ), (47)

then form two copies of the Witt algebra with respect to the Poisson bracket, i.e.

{L±m, L±n } = −i(m− n)L±m+n. (48)

Verify explicitly that the above commutation relations satisfy the Jacobi identity, i.e. form a
Lie algebra.

g) Show that the generators L0, L1 and L−1 form a Lie subalgebra.

h) Show that the combination (L+
0 − L

−
0 ) generates rigid σ-translations along the closed string.

How about (L+
0 + L−0 )?

a) A long list could be compiled of all the important properties of conformal Killing vector fields.
We will mention only three.

1. Vector fields that satisfy the conformal Killing equation are exactly those whose flow preserves
the conformal structure of a manifold. Expressed in the language of conformal geometry: The
conformal Killing equation on a manifold M with metric tensor h applies to those vector fields
ε(ξ) which preserve h up to a scaling, i.e.

Lε h = λ(ξ)h (49)

where Lε is the Lie derivative and λ(ξ) some function of position on M . It is easy to see,
that eq. (49) is completely equivalent to eq. (40). Inserting Lεhab = ∇aεb+∇bεa into eq. (40)
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and bringing hab∇cεc to the other side, we have

Lεhab = ∇aεb +∇bεa = (∇cεc)hab. (50)

Hence λ(ξ) is given by ∇cεc.
2. In particular, property 1 results in the fact that for diffeomorphisms of the form (41), i.e.

ξa → ξ̃a(ξ) = ξa + εa(ξ), ξa ∈ {τ, σ}, (51)

where εa(ξ) is a conformal Killing vector field, the effect on the metric can be undone by a
Weyl rescaling.

3. Even after gauge fixing to the flat metric, hab = ηab, the Polyakov action retains a large
residual gauge symmetry, of which the conformal Killing vectors are the generators.

A fourth very important property will be demonstrated in part b).

b) Every conformal Killing vector field εa(ξ) yields an associated conserved current Jaε = T abεb with
∇aJaε = 0. There exist infinitely many such εa(ξ).

Proof: By Noether’s theorem, Tab is the conserved current resulting from local diffeomorphism
invariance on the worldsheet. In math: ∇aTab = 0 for an on-shell string field X(τ, σ) since the
action remains invariant under the following change in coordinates ξa ∈ {τ, σ} and metric hab,

ξa → ξ̃a(ξ) = ξa + εa(ξ), (52)

hab → h′ab = hab + δhab = hab +∇aεb +∇bεa. (53)

To make this statement explicit, we recall the definition of the energy-momentum i.t.o. the
Polyakov action,

Tab =
4π√
−h

δSP

δhab
, (54)

followed by considering the total variation of SP = SP[X,h],

0 = δSP =

∫
dτdσ

δSP

δXµ︸ ︷︷ ︸
0

δXµ +

∫
dτdσ

δSP

δhab
δhab

(54)
=

1

4π

∫
dτdσ

√
−hTab hab (55)

where the very first equality holds because the action is invariant under the transformations (52)
and (53), and the variation of SP w.r.t. Xµ vanishes on-shell, i.e. upon use of the string field’s
e.o.m. Inserting δhab as given in eq. (53) and using T ab = T ba, we get

0 =
1

4π

∫
dτdσ

√
−hTab hab =

1

2π

∫
dτdσ

√
−hTab∇aεb

=
1

2π

∫
dτdσ

[
∇a
(√
−hTab εb

)
−∇a

(√
−hTab

)
εb
]

= − 1

2π

∫
dτdσ∇a

(√
−hTab

)
εb,

(56)

where the first term in the second line is a volume integral over a total derivative. Using Stokes
theorem, it can be converted to a surface integral sans derivative, which by the usual argument
of exclusively treating localized systems that do not extend outwards to infinity, can be taken to
vanish. The remaining term in the third line has to vanish for all and every εb(ξ) since the action
is invariant under general diffeomorphisms. The only way for the integral to be zero regardless of
which εb(ξ) we plug in, is for ∇a(

√
−hTab ) to be zero. From ∇ahbc = 0, it follows by the chain

rule that also ∇a
√
−h = 0. Hence we are left with our initial statement,

∇aTab = 0. (57)
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Due to eq. (57), we have

∇aJaε = ∇a(T abεb) = T ab∇aεb =
1

2
T ab(∇aεb +∇bεa), (58)

where in the last step, we again exploited the energy-momentum tensor’s symmetry T ab = T ba.
Inserting the conformal Killing equation, we get

∇aJaε =
1

2
T abhab︸ ︷︷ ︸

0

∇cεc = 0, (59)

where we used our result from exercise 1.f) on assignment sheet 2 that the energy-momentum is
traceless in any system with an action invariant under Weyl rescalings.

c) The term lightcone gauge can be confusing if one assumes the word lightcone to describe the gauge.
A more fitting name for this modus operandi might be flat gauge in lightcone coordinates. What is

actually happening is that we partially fix the gauge by flattening the metric, hab
!

= ηab, followed
by a transformation into lightcone coordinates ξ± = τ ± σ, where now the metric components a, b
are no longer ∈ {τ, σ} but ∈ {+,−}. Its components can be inferred from the line element ds2:

ds2 = −dτ2 + dσ2 = −dξ+dξ− = ηabdξ
adξb

ηab=ηba⇒ η =

(
0 −1

2
−1

2 0

)
. (60)

Since in flat space ∇a = ∂a, the conformal Killing equation in lightcone gauge reads

∂aεb + ∂bεa = ηab∂cε
c. (61)

From this, we get three equations, namely

∂+ε− + ∂−ε+ = −1

2
(∂+ε

+ + ∂−ε
−), ∂+ε+ = 0, ∂−ε− = 0. (62)

The first one is uninteresting, but inserting ε± = η±∓ε
∓ = −1

2ε
∓ into the second and third,

respectively, we get
∂+ε

− = 0, ∂−ε
+ = 0. (63)

From eq. (63), we learn that ε± are functions of ξ± only, i.e. ε+ = ε+(ξ+) and ε− = ε−(ξ−). We
have thus reproduced the coordinate dependencies in eq. (41).

Again we note that a transformation of the form

ξ± → ξ̃±(ξ±) = ξ± + ε±(ξ±). (64)

is not prohibited even after partially fixing the gauge freedom by setting hab
!

= ηab. This remaining
invariance thus constitutes the residual gauge symmetry in flat gauge.

d) The part of Noether’s theorem stating that continuous symmetries give rise to conserved currents
and associated charges is well known. What is sometimes overlooked is the fact, that Noether’s
theorem works both ways. In this part, we will demonstrate the converse, namely that conserved
charges also generate symmetries. More precisely, we show that the stress energy tensor generates
conformal transformations.

To do so, we will make heavy use of the (equal-time) Poisson bracket defined for two fields F (τ, σ),
G(τ, σ′) as

{F (τ, σ), G(τ, σ′)}PB ≡
∫

dσ̃

(
∂F (τ, σ)

∂Xµ(τ, σ̃)

∂G(τ, σ′)

∂Πµ(τ, σ̃)
− ∂G(τ, σ′)

∂Xµ(τ, σ̃)

∂F (τ, σ)

∂Πµ(τ, σ̃)

)
. (65)

9



To proceed, we employ the identity {FG,H}PB = F {G,H}PB + {F,H}PB G, where F , G, and
H are each fields. Using the product rule, its validity is easy to see,

{F (τ, σ)G(τ, σ′), H(τ, σ′′)}PB

=

∫
dσ̃

(
∂[F (τ, σ)G(τ, σ′)]

∂Xµ(τ, σ̃)

∂H(τ, σ′′)

∂Πµ(τ, σ̃)
− ∂H(τ, σ′′)

∂Xµ(τ, σ̃)

∂[F (τ, σ)G(τ, σ′)]

∂Πµ(τ, σ̃)

)
= F (τ, σ)

∫
dσ̃

(
∂G(τ, σ′)

∂Xµ(τ, σ̃)

∂H(τ, σ′′)

∂Πµ(τ, σ̃)
− ∂H(τ, σ′′)

∂Xµ(τ, σ̃)

∂G(τ, σ′)

∂Πµ(τ, σ̃)

)
+

∫
dσ̃

(
∂F (τ, σ)

∂Xµ(τ, σ̃)

∂H(τ, σ′′)

∂Πµ(τ, σ̃)
− ∂H(τ, σ′′)

∂Xµ(τ, σ̃)

∂F (τ, σ)

∂Πµ(τ, σ̃)

)
G(τ, σ′)

= F (τ, σ) {G(τ, σ′), H(τ, σ′′)}PB + {F (τ, σ), H(τ, σ′′)}PBG(τ, σ′).

(66)

With this and the relations given in the exercise, which we restate here for convenience,

T±± = − 1

α′
∂±X

µ∂±Xµ, (67)

{Xµ(τ, σ), Xν(τ, σ′)}PB = {Ẋµ(τ, σ), Ẋν(τ, σ′)}PB = 0, (68)

{Xµ(τ, σ), Ẋν(τ, σ′)}PB =
1

T
ηµνδ(σ − σ′). (69)

we can simplify the Poisson bracket in eq. (44),

{T±± (τ, σ), Xµ(τ, σ′)}PB
(67)
= − 1

α′
{∂±Xν(τ, σ)∂±X

ν(τ, σ), Xµ(τ, σ′)}PB

(66)
= − 2

α′
∂±Xν(τ, σ){∂±Xν(τ, σ), Xµ(τ, σ′)}PB

= − 1

α′
∂±Xν(τ, σ)

[
{∂τXν(τ, σ), Xµ(τ, σ′)}PB

± {∂σXν(τ, σ), Xµ(τ, σ′)}PB

]
,

(70)

where in the last step we used ∂± = 1
2(∂τ ± ∂σ). In the last term of eq. (70), ∂σ does not act upon

Xµ(τ, σ′), so we may as well pull it out of the bracket and use eq. (68) to obtain

{∂σXν(τ, σ), Xµ(τ, σ′)}PB = ∂σ{Xν(τ, σ), Xµ(τ, σ′)}PB
(68)
= 0. (71)

For the term {∂τXν(τ, σ), Xµ(τ, σ′)}PB, we can insert eq. (69) to arrive at

{T±± (τ, σ), Xµ(τ, σ′)}PB =
1

α′T
∂±Xν(τ, σ)ηµνδ(σ − σ′) = 2π∂±X

µ(τ, σ)δ(σ − σ′). (72)

e) With eq. (72) in our toolbox, it is trivial to calculate the Poisson bracket of the string field Xµ(τ, σ)
and the conserved charges Lε± associated with invariance under conformal Killing transformation.
The Lε± are given by

Lε± = − l

4π2

∫ l

0
dσ ε±(ξ±)T±± (ξ±). (73)

Therefore,

{Lε± , Xµ(τ, σ)}PB = − l

4π2

∫ l

0
dσ′ ε±(ξ±′) {T±± (τ, σ′), Xµ(τ, σ)}PB

(72)
= − l

4π2

∫ l

0
dσ′ ε±(ξ±′) 2π∂±X

µ(τ, σ′)δ(σ − σ′)

= − l

2π
ε±(ξ±)∂±X

µ(τ, σ).

(74)

Since this is precisely the Lie derivative acting on the string field, i.e.

− 2π

l
{Lε± , Xµ(τ, σ)}PB = ε±(ξ±)∂±X

µ(τ, σ) = Lε±Xµ(τ, σ), (75)

we have shown that the Lε± generate conformal transformations.
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f) By decomposing a Killing vector field ε±(ξ±) into its Fourier components, i.e.

ε±(ξ±) =
∑
m∈Z

ε±m e
i 2π
l
mξ± , (76)

and inserting this sum into the conserved charges Lε± , we get a series representation for the charges
themselves,

Lε± = − l

4π2

∑
m∈Z

∫ l

0
dσ ε±m T±± (ξ±) ei

2π
l
mξ± ≡

∑
m∈Z

ε±m L
±
m. (77)

In eq. (77), the L±m are the generators of the conformal Killing transformations. This assertion
will be demonstrated in part h). The L±m are called Virasoro generators and will turn out to be
of vital importance as a tool in the full quantum theory to ensure that our description is free of
unitarity-spoiling ghosts. Note that eq. (77) establishes the Virasoro generators as the Fourier
modes of the energy-momentum tensor Tab . As stated in eq. (47), they are given by2

L±m = − l

4π2

∫ l

0
dσ T±± e

i 2π
l
mξ± . (78)

Although we were not tasked to do so by the exercise, we will verify that the set of L±m, m ∈ Z
do indeed satisfy the classical Witt algebra (48). To that end, we calculate the Poisson bracket of
the energy-momentum tensor in lightcone coordinates with itself,{
T±± (τ, σ), T±± (τ, σ′)

}
PB

=
1

α′2

{
∂±Xµ(τ, σ)∂±X

µ(τ, σ), ∂±Xν(τ, σ′)∂±X
ν(τ, σ′)

}
PB

(66)
=

4

α′2
∂±Xµ(τ, σ)∂±Xν(τ, σ′)

{
∂±X

µ(τ, σ), ∂±X
ν(τ, σ′)

}
PB

[∂± =
1

2
(∂τ ± ∂σ)]

=
1

α′2
∂±Xµ(τ, σ)∂±Xν(τ, σ′)

[
{∂τXµ(τ, σ), ∂τX

ν(τ, σ′)}PB︸ ︷︷ ︸
0, by eq. (68)

±{∂τXµ(τ, σ), ∂σ′X
ν(τ, σ′)}PB︸ ︷︷ ︸

−∂σ′{Xν(τ,σ′),∂τXµ(τ,σ)}PB

± {∂σXµ(τ, σ), ∂τX
ν(τ, σ′)}PB︸ ︷︷ ︸

∂σ{Xµ(τ,σ),∂τXν(τ,σ′)}PB

+ {∂σXµ(τ, σ), ∂σ′X
ν(τ, σ′)}PB︸ ︷︷ ︸

0, by eq. (68)

]
(69)
=

1

α′2
∂±Xµ(τ, σ)∂±Xν(τ, σ′)

[
∓∂σ′

1

T
ηµνδ(σ − σ′)± ∂σ

1

T
ηµνδ(σ − σ′)

]
= ±2π

α′
∂±Xµ(τ, σ)∂±X

µ(τ, σ′)
[
∂σ − ∂σ′

]
δ(σ − σ′). (79)

For the Poisson bracket of the Virasoro generators themselves, we have

{
L±m, L

±
n

}
PB

(78)
=

l2

(4π2)2

∫ l

0
dσ

∫ l

0
dσ′

{
T±± (τ, σ), T±± (τ, σ′)

}
PB
ei

2π
l
mξ±ei

2π
l
nξ±′

(79)
=

l2

(2π)4

∫ l

0
dσ

∫ l

0
dσ′

(
±2π

α′
∂±Xµ(τ, σ)∂±X

µ(τ, σ′)δ(σ − σ′)
[
∂σ − ∂σ′

])
ei

2π
l
mξ±ei

2π
l
nξ±′

= ± l2

(2π)3

∫ l

0
dσ

1

α′
∂±Xµ(τ, σ)∂±X

µ(τ, σ′)δ(σ − σ′)
[
±i2π

l m∓ i
2π
l n
]
ei

2π
l
mξ±ei

2π
l
nξ±′

= i2π
l (m− n)

l2

(2π)3

∫ l

0
dσ

1

α′
∂±Xµ(τ, σ)∂±X

µ(τ, σ)︸ ︷︷ ︸
−T±± (τ,σ)

ei
2π
l

(m+n)ξ±

= −i(m− n)
l

4π2

∫ l

0
dσ T±± (τ, σ)ei

2π
l

(m+n)ξ± = −i(m− n)L±m+n. (80)

2Note that the lecture notes use a different notation here: L+
m ≡ L̃m and L−m ≡ Lm.
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Using eq. (80), it is easy to show that the Virasoro generators together with the Poisson bracket
as binary operation fulfill the Jacobi identity.{

{L±l , L
±
m}PB, L

±
n

}
PB

+
{
{L±m, L±n }PB, L

±
l

}
PB

+
{
{L±n , L±l }PB, L

±
m

}
PB

(80)
= −i(l −m){L±l+m, L

±
n }PB − i(m− n){L±m+n, L

±
l }PB − i(n− l){L±n+l, L

±
m}PB

(80)
= −i[−i(l −m)(l +m− n)− i(m− n)(m+ n− l)− i(n− l)(n+ l −m)]L±l+m+n

= −[l2 −m2 − n(l −m) +m2 − n2
::
− l(m− n) + n2

::
− l2 −m(n+ l)]L±l+m+n

= [nl − nm+ lm
::
− ln+mn+ml

::
]L±l+m+n = 0.

(81)

Since the Poisson bracket is further by bilinear and antisymmetric under exchange of its arguments,
it together with the Virasoro generators forms a Lie algebra, i.e. the Witt algebra is a Lie algebra.

g) If a set of generators form a Lie algebra, then a subset of those generators is called a Lie subalgebra,
if the subset is closed under the Lie bracket. The subset K = {L±0 , L

±
k , L

±
−k} of all Virasoro

generators forms a Lie subalgebra of the Witt algebra since

{L±0 , L
±
k }PB = −i(−k)L±k ∈ K,

{L±0 , L
±
−k}PB = −ikL±−k ∈ K,

{L±k , L
±
−k}PB = −i2kL±0 ∈ K.

(82)

In particular, this holds for k = 1.

h) To compute the effect of (L+
0 − L

−
0 ) and (L+

0 + L−0 ) on the string field Xµ(τ, σ), we first need to
calculate the Poisson bracket of a Virasoro generator with Xµ(τ, σ).

{
L±m, X

µ(τ, σ)
}

PB

(78)
= − l

4π2

∫ l

0
dσ′

{
T±± (τ, σ′), Xµ(τ, σ)

}
PB
ei

2π
l
mξ±

(72)
= − l

4π2

∫ l

0
dσ′ 2π∂±X

µ(τ, σ′)δ(σ − σ′)ei
2π
l
mξ±

= − l

2π
ei

2π
l
mξ±∂±X

µ(τ, σ).

(83)

With this identity, it is a simple matter to compute the Poisson brackets of (L+
0 − L−0 ) and

(L+
0 + L−0 ) with Xµ(τ, σ).{

(L+
0 − L

−
0 ), Xµ(τ, σ)

}
PB

=
{
L+

0 , X
µ(τ, σ)

}
PB
−
{
L−0 , X

µ(τ, σ)
}

PB

(83)
= − l

2π
∂+X

µ(τ, σ) +
l

2π
∂−X

µ(τ, σ) = − l

2π
∂σX

µ(τ, σ),
(84)

{
(L+

0 + L−0 ), Xµ(τ, σ)
}

PB

(83)
= − l

2π
∂+X

µ(τ, σ)− l

2π
∂−X

µ(τ, σ) = − l

2π
∂τX

µ(τ, σ), (85)

where we used ∂+−∂− = 1
2(∂τ +∂σ)− 1

2(∂τ−∂σ) = ∂σ and ∂+ +∂− = 1
2(∂τ +∂σ)+ 1

2(∂τ−∂σ) = ∂τ .
We have thus shown that (L+

0 − L
−
0 ) and (L+

0 + L−0 ) generate infinitesimal σ- and τ -translations,
respectively.
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