
Fundamentals of Simulation Methods
Exercise Sheet 4

Daniel Rosenblüh, Janosh Riebesell

November 20th, 2015

FFT-based methods and the particle mesh approach

1 FFT-based convolution

As a warm-up for applying FFT methods in the particle mesh force calculation, let’s try to
convolve a two-dimensional image with a kernel of the form:

W (r) = k


1− 6

(
r
h

)2
+ 6

(
r
h

)3
for 0 ≤ r

h <
1
2 ,

2 (1− r
h)3 for 1

2 ≤
r
h < 1,

0 otherwise.

(1)

(a) Calculate the normalization factor k in W (r) such that the kernel is normalized to
unity, i.e. that we have

∫
W (|r|) d2r = 1.

(b) Now use either the supplied C-code template smooth_image.c or the Python template
smooth_image.py to smooth the color image aq-original.ppm from the Moodle lec-
ture page. For the smoothing length, we shall adopt h = 10 pixel. The image has 512
pixel on a side and uses 3 color channels for red, green and blue (we chose the ppm-file
format for its simplicity in reading and writing). Modify the code template such that
the kernel is properly set up in real space. Also, add code that multiplies the Fourier
transformed kernel and the Fourier transforms of the different color channels in Fourier
space. The code will write the smoothed image to a file aq-smoothed.ppm.

(c) To check your results, determine the sum of all red, green and blue pixel values (carried
out in double precision) both before the smoothing and after the smoothing is complete.
Report these values as part of your solution (if there is any difference – how could this
be avoided?). Provide the smoothed image.

Technical hints: The provided C-template uses the popular FFTW library for the Fourier
transforms. If this is not available on your computer, you can download the library and
compile it with the following steps:
First do a tar -zxvf fftw-3.3.4.tar.gz to unpack the downloaded source package. Change
into the fftw-3.3.4 directory. Configure the code with a command of the form ./configure

--prefix=/my/install/dir where the path given after the prefix-option is your desired in-
stallation path. Then do a make followed by make install to compile and install the library.
The files you need are then found in /my/install/dir/include and /my/install/dir/lib.
If you’re getting the error fftw3.h: No such file or directory when compiling your image
code, the default search path of the compiler does not know about the installation directory of

1

mailto:rosenblueh@stud.uni-heidelberg.de
mailto:riebesell@thphys.uni-heidelberg.de
http://www.fftw.org

the fftw3 library. In this case, you can add an explicit search path to the compile command,
for example: cc -I/my/install/dir/include smooth_image.c -o smooth_image.
Similarly, if you get undefined symbol: fftw plan dft 2d, then the fftw3 library can not
be found or is not specified on the compile/link command. You can fix this with some-
thing like: cc -I/my/install/dir/include -L/my/install/dir/lib -lfftw3 smooth_image.c

-o smooth_image.
If you are using Python instead, you can use the numpy.fft package instead for the Fourier
transforms, which is more convenient to use but not quite as fast as FFTW. Note that it also
uses a slightly different normalization convention as FFTW.

(a) Since W (r) depends only on the magnitude of r, the normalization factor k is easily
calculated by transforming into polar coordinates:∫

R2

W (|r|)d2r =

∫ ∞

0

∫ 2π

0
W (|r|) r dφdr

= 2πk

∫ h/2

0

(
1− 6r2

h2
+

6r3

h3

)
r dr + 4πk

∫ h

h/2

(
1− r

h

)3
r dr

=
11

80
πh2k +

3

80
πh2k

!
= 1.

(2)

Thus we find that a normalized smoothing kernel requires

k =
40

7πh2
. (3)

(b) See fftconvol.c.

(c) The original image and the result after performing our smoothing algorithm are shown in
figs. 1a and 1b, respectively.

(a) Original image (b) Smoothed image

Figure 1: A dark matter distribution before and after processing by our FFT-based convolution

2

Summing the red, green, and blue values of all pixels before smoothing we obtain

rtot = 25 182 443,

gtot = 12 287 845,

btot = 24 795 222.

After smoothing, we find

rtot = 25 182 442.999 999 3,

gtot = 12 287 845.000 000 06,

btot = 24 795 222.000 000 7.

The values are virtually the same, barring a minimal rounding error. We did, however,
execute this code on different machines, some of which produced errors up to the order of
10−6. To avoid this, higher precision variables such as long double could be used.

2 The particle mesh force law

Based on the code template from above, develop a new code that carries out a gravitational
force computation in a two-dimensional periodic space using the particle mesh method with
clouds-in-cell (CIC) charge/mass assignment. We would like to measure the effective force
law the method delivers, i.e. determine experimentally the force of a particle of unit mass
as a function of distance. Because the particle mesh method is linear, the force field for an
N -body system will consist of a linear superposition of the effective one-particle force law, so
the measurement of the latter is sufficient to characterize the expected force accuracy. Carry
out the following steps:

(a) Implement code that constructs a density field for a single particle of unit mass that is
randomly placed into a box of unit length, L = 1. Take care of periodic wrap-around
where needed.

(b) Now implement code that Fourier transforms the density field, multiplies it with the
Fourier transform of the Green’s function of the Poisson equation, −4π/k2 (assuming
a periodic space and G = 1, also set φ̂k = 0 for k = 0), and transform back to obtain
the gravitational potential on the grid. Adopt Ngrid = 256 for the grid resolution.

(c) Add code that produces force fields in the x- and y-direction from the potential by
finite differencing.

(d) Now write code that selects 100 randomly chosen positions in a sphere of radius equal
to half the box size around the point you placed in part (a). We would like the distances
r to be uniformly distributed in the log between rmin = 0.3L/Ngrid and rmax = L/2.
You can achieve this by calculating displacements

∆x = rmin

(
rmax

rmin

)p
cos(2πq), (4)

∆y = rmin

(
rmax

rmin

)p
sin(2πq), (5)

relative to the coordinates of the point placed in part (a), where p and q are uniformly
distributed random numbers in the interval [0, 1). Determine the force a = (ax, ay)

3

and its magnitude a =
√
a2x + a2y at the resulting positions by CIC-interpolating from

the force fields obtained in part (c). Note that the position may have to be mapped by
periodic wrapping into the primary domain in order to allow reading out of the force.

(e) Repeat the whole procedure for 10 different random locations of the point chosen in
part (a) such that you obtain 1000 pairs of distances r and corresponding forces a. Plot
these points in a scatter plot of a versus r using logarithmic axes for both. Overplot
the a ∝ 2/r power law expected for Newtonian gravity, and a vertical line at the grid
scale L/Ngrid. Why do we not expect a ∝ 1/r2? Interpret the differences at small and
large separations, if any.

For parts (a) to (d), see pmesh.c.

(e) Figure 2 shows a scatter plot of the forces at the 10× 100 randomly generated points
throughout our two-dimensional periodic space. The points arrange to form a distinct
picture of how the force falls of as a function of the distance from our 10 reference points,
each of which bears a massive particle that acts as the origin of gravitational force within
the system.

10-2 10-1

r

10-1

100

101

102

103

104

a
(r

)

a(r) =2/r

L/Ngrid

adata(r)

Figure 2: Acceleration a(r) as a function of distance r

We do not expect an inverse square law, i.e. a ∝ 1/r2, because our simulation took place in
two dimensions, where the surface of a sphere Asph = 2πr grows linearly with the radius.

We see a deviation from the expected 1/r behavior of the force both when r approaches the
grid scale L/Ngrid = 1

256 and for large distances converging on rmax = L/2. We attribute
the former to the fact that the PM method forces the particles to have a lower spatial
resolution during the force calculation, thereby introducing a significant error for force
calculations of nearby particles, where exact relative positions are important. The strange
fall-off of the force approaching rmax is due to the periodicity of our box. In the extreme
case of a point being placed exactly at a distance of rmax from the particle, it would feel

4

the “next” particle in the neighbouring box equally strongly and thus not be subject to
any net force, a(rmax) = 0.

5

	FFT-based convolution
	The particle mesh force law

