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1 The quantum Virasoro algebra

In this exercise, we will show that in the quantized bosonic string theory the normal ordered
Virasoro generators

Lm =
1

2

∞∑
n=−∞

N (αm−n ·αn) (1)

satisfy the Virasoro algebra with central chargea

[Lm, Ln] = (m− n)Lm+n +
D

12
m(m2 − 1)δm,−n. (2)

In order to become more familiar with the normal ordering prescription, we will do this by brute
force methods, i.e., by simply using the definition of the normal ordered generators Lm and then
calculating their commutators. We will proceed in several smaller steps.

a) Explain why the normal ordering in Lm only affects L0 and why the Virasoro generators Lm
can be written in the following form,

Lm =
1

2

0∑
n=−∞

αn ·αm−n +
1

2

∞∑
n=1

αm−n ·αn. (3)

b) Using [X,Y Z] = [X,Y ]Z + Y [X,Z] and [αµm, ανn] = mηµνδm,−n, prove that for all m,n ∈ Z,

[αµm, Ln] = mαµm+n. (4)

c) Decompose the sum
∞∑

n=−∞
=

0∑
n=−∞

+

∞∑
n=1

(5)

as we did in eq. (3) to “solve” the normal ordering condition. Use the result of part b) to show
that

[Lm, Ln] =
1

2

0∑
l=−∞

[(m− l)αl ·αm+n−l + lαn+l ·αm−l]

+
1

2

∞∑
l=1

[(m− l)αm+n−l ·αl + lαm−l ·αn+l].

(6)
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d) Make the substitution p = n+ l in the second and fourth term in eq. (6) and verify

[Lm, Ln] =
1

2

0∑
l=−∞

(m− l)αl ·αm+n−l +
1

2

n∑
p=−∞

(p− n)αp ·αm+n−p

+
1

2

∞∑
l=1

(m− l)αm+n−l ·αl +
1

2

∞∑
p=n+1

(p− n)αm+n−p ·αp.
(7)

e) From now on, we will restrict ourselves to the case n > 0, as the other cases n < 0 and n = 0
are completely analogous. Show, therefore, that, for n > 0, the expression eq. (7) in part d) is
equal to

[Lm, Ln] =
1

2

0∑
p=−∞

(m− n)αp ·αm+n−p +
1

2

n∑
p=1

(p− n)αp ·αm+n−p

+
1

2

∞∑
p=n+1

(m− n)αm+n−p ·αp +
1

2

n∑
p=1

(m− p)αm+n−p ·αp.
(8)

Which of these terms are already normal-ordered?

f) Prove
n∑
p=1

(p− n)αp ·αm+n−p =

n∑
p=1

(p− n)αm+n−p ·αp +

n∑
p=1

(p− n) pDδm,−n, (9)

and insert this for the second term in eq. (8) of part e).

g) Show that your result from part e) is now equivalent to

[Lm, Ln] =
1

2

∞∑
l=−∞

(m− n)N (αl ·αm+n−l) +
1

2
D

n∑
l=1

(l2 − nl)δm,−n. (10)

h) Prove, e.g. by induction, the following identities,

n∑
q=1

q2 =
n

6
(n+ 1)(2n+ 1), (11)

n∑
q=1

q =
n

2
(n+ 1), (12)

and use this to finally derive

[Lm, Ln] = (m− n)Lm+n +
D

12
m(m2 − 1)δm,−n. (13)

from the expression in part g).

aA central charge, T0, of a Lie algebra is a generator that commutes with all generators of the Lie algebra, [Ta, T0] =
0 ∀a, but appears on the right hand side of some commutators, [Ta, T b] = c T0 + . . . , for some Ta and Tb, with c
being a constant. In the above Virasoro algebra, the role of 0 is played by the term proportional to δm,−n, which
should be viewed as an extra generator in addition to the Lm.
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a) As stated in eq. (1), the quantum Virasoro generators are defined as

Lm =
1

2

∞∑
n=−∞

N (αm−n ·αn), (14)

where the normal ordering operator acts as

N (αµm α
ν
n) =

{
αµm ανn for m ≤ n,
ανn α

µ
m for n < m,

(15)

and the components of the modes αm, m ∈ Z satisfy the commutation relation

[αµm, α
ν
n] = mηµνδm,−n, (16)

i.e. the order of αµm and ανn only matters if m = −n. Looking at eq. (14), we see that this scenario
can only arise if m = 0. For m 6= 0, m− n can never equal −n. Therefore, we only need to worry
about normal ordering when treating L0.

For m = 0 and n > 0, the dot product in eq. (14) is already in normal order. For m = 0 and
n ≤ 0, the order is reversed. Since we just established that in all other Lm, m 6= 0, the order is
arbitrary, we can suppress the normal ordering symbol altogether by rewriting

Lm =
1

2

0∑
n=−∞

N (αm−n ·αn) +
1

2

∞∑
n=1

N (αm−n ·αn)

=
1

2

0∑
n=−∞

αn ·αm−n +
1

2

∞∑
n=1

αm−n ·αn.

(17)

b) We show by direct calculation that [αµm, Ln] = mαµm+n ∀m,n ∈ Z.

[αµm, Ln] =
1

2

0∑
l=−∞

[αµm, αl,ν α
ν
n−l] +

1

2

∞∑
l=1

[αµm, α
ν
n−l αl,ν ] (18)

=
1

2

0∑
l=−∞

(
[αµm, αl,ν ]ανn−l + αl,ν [αµm, α

ν
n−l]

)
+

1

2

∞∑
l=1

(
[αµm, α

ν
n−l]αl,ν + ανn−l[α

µ
m, αl,ν ]

)
(16)
=
m

2

0∑
l=−∞

(
ηµνδm,−lα

ν
n−l + ηµνδm,l−nαl,ν

)
+
m

2

∞∑
l=1

(
ηµνδm,l−nαl,ν + ηµνδm,−lα

ν
n−l

)
.

We now carry out the above sums over l. When doing so, we have to bear in mind, however, that
two of the four Kronecker deltas never contribute. Which ones depends on the values of m and n.
E.g. take m > n > 0, then the first δm,−l contributes at l = −m but δm,l−n = 1 ⇔ m + n = l
is always zero since m+ n > 0. In the second we sum over positive l, so this behavior is reversed.
What we end up with is

[αµm, Ln] =
m

2
αµm+n +

m

2
αµm+n = mαµm+n. (19)
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c) Next we demonstrate eq. (6) ∀m,n ∈ Z. Using [XY,Z] = X[Y,Z] + [X,Z]Y , we can write

[Lm, Ln] =
1

2

0∑
l=−∞

[αl,µ α
µ
m−l, Ln] +

1

2

∞∑
l=1

[αµm−l αl,µ, Ln]

=
1

2

0∑
l=−∞

(
αl,µ[αµm−l, Ln] + [αl,µ, Ln]αµm−l

)
+

1

2

∞∑
l=1

(
αµm−l[αl,µ, Ln] + [αµm−l, Ln]αl,µ

)
(19)
=

1

2

0∑
l=−∞

(
(m− l)αl ·αm+n−l + lαn+l ·αm−l

)
+

1

2

∞∑
l=1

(
(m− l)αm+n−l ·αl + lαm−l ·αn+l

)
.

(20)

d) Replacing p = n+ l in terms two and four of eq. (20) evidently gives

[Lm, Ln] =
1

2

0∑
l=−∞

(m− l)αl ·αm+n−l +
1

2

n∑
p=−∞

(p− n)αp ·αm+n−p

+
1

2

∞∑
l=1

(m− l)αm+n−l ·αl +
1

2

∞∑
p=n+1

(p− n)αm+n−p ·αp.
(21)

e) Restricting to n > 0 and relabeling l→ p in the first and third term, we may write [Lm, Ln] as

[Lm, Ln] =
1

2

0∑
p=−∞

(m− p)αp ·αm+n−p +
1

2

n∑
p=−∞

(p− n)αp ·αm+n−p

+
1

2

∞∑
p=1

(m− p)αm+n−p ·αp +
1

2

∞∑
p=n+1

(p− n)αm+n−p ·αp.
(22)

We can now partially consolidate sums one and two and sums three and four by splitting sum two
at p = 0 and sum three at p = n (both operations are legal because n > 0) to get

[Lm, Ln] =
1

2

0∑
p=−∞

(m− n)αp ·αm+n−p +
1

2

n∑
p=1

(p− n)αp ·αm+n−p

+
1

2

∞∑
p=n+1

(m− n)αm+n−p ·αp +
1

2

n∑
p=1

(m− p)αm+n−p ·αp.
(23)

Assuming further n > m > 0, we check for normal ordering in each of the four sums:

sum p-range critical value operator product mode indices normal ordered

1 [−∞, 0] p = 0 αp ·αm+n−p 0 < m+ n X
2 [1, n] p = n αp ·αm+n−p n ≮ m ×
3 [n+ 1,∞] p = n+ 1 αm+n−p ·αp m+ 1 < n+ 1 X
4 [1, n] p = 1 αm+n−p ·αp m+ n− 1 ≮ 1 ×

f) By an application of the modes’ commutation relation, we find

n∑
p=1

(p− n)αp ·αm+n−p =
n∑
p=1

(p− n)
(
αm+n−p ·αp + [αp,µ, α

µ
m+n−p]︸ ︷︷ ︸

p ηµµδp,p−m−n = pDδm,−n

)

=

n∑
p=1

(p− n)αm+n−p ·αp +

n∑
p=1

(p− n) pDδm,−n.

(24)
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g) By inserting eq. (24) for the second term in eq. (23), we get

[Lm, Ln] =
1

2

0∑
p=−∞

(m− n)αp ·αm+n−p +
1

2

n∑
p=1

(p− n)αm+n−p ·αp +
1

2

n∑
p=1

(p− n) pDδm,−n

+
1

2

∞∑
p=n+1

(m− n)αm+n−p ·αp +
1

2

n∑
p=1

(m− p)αm+n−p ·αp

(25)

where sums two and five combine to give

[Lm, Ln] =
1

2

0∑
p=−∞

(m− n)αp ·αm+n−p +
1

2

n∑
p=1

(m− n)αm+n−p ·αp

+
1

2

n∑
p=1

(p− n) pDδm,−n +
1

2

∞∑
p=n+1

(m− n)αm+n−p ·αp.
(26)

By further joining sums two and four and reinserting the normal ordering operator, we obtain

[Lm, Ln] =
1

2

0∑
p=−∞

(m− n)αp ·αm+n−p +
1

2

∞∑
p=1

(m− n)αm+n−p ·αp +
D

2

n∑
p=1

p(p− n)δm,−n

=
1

2

∞∑
p=−∞

(m− n)N (αp ·αm+n−p) +
D

2

n∑
p=1

p(p− n) δm,−n. (27)

h) We use induction to proof the following two identities.

1.
n∑
q=1

q2 =
n

6
(n+ 1)(2n+ 1) ∀n ∈ N:

Checking n = 1:
1∑
q=1

q2 = 1 =
1

6
(1 + 1)(2 + 1). X (28)

Checking n⇒ n+ 1:

n+1∑
q=1

q2 =

n∑
q=1

q2 + (n+ 1)2 =
n

6
(n+ 1)(2n+ 1) + (n+ 1)2

=
n+ 1

6
[n(2n+ 1) + 6(n+ 1)] =

n+ 1

6
[2n2 + 7n+ 6]

=
n+ 1

6
(2n+ 3)(n+ 2) =

n+ 1

6
[2(n+ 1) + 1] [(n+ 1) + 1]. X

(29)

2.

n∑
q=1

q =
n

2
(n+ 1) ∀n ∈ N:

Checking n = 1:
1∑
q=1

q = 1 =
1

2
(1 + 1). X (30)

Checking n⇒ n+ 1:

n+1∑
q=1

q =
n∑
q=1

q + n+ 1 =
n

2
(n+ 1) + n+ 1

=
n+ 1

2
(n+ 2) =

n+ 1

2
[(n+ 1) + 1]. X

(31)
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Applying these identities to the sum in the last term in eq. (27), we can simplify,

n∑
p=1

(p2 − np) =
n

6
(n+ 1)(2n+ 1)− n n

2
(n+ 1) =

n

6
(n+ 1)

[
2n+ 1− 3n

]
= −n

6
(n+ 1)(n− 1) = −n

6
(n2 − 1).

(32)

Inserting this result into eq. (27), we arrive at the commutator of two quantum Virasoro generators,

[Lm, Ln] = (m− n)Lm+n −
D

2

n

6
(n2 − 1) δm,−n

= (m− n)Lm+n +
D

12
m(m2 − 1) δm,−n.

(33)

2 The second excited level ghost

Compute

〈φ2|φ2〉 =
2c21
25

(D − 1)(26−D) (34)

for
|φ2〉 =

(
c1α

2
−1 + c2 p ·α−2 + c3 (p ·α−1)2

)
|0, p〉. (35)

Hint: Given (L0 − 1)|φ2〉 = L1|φ2〉 = L2|φ2〉 = 0 (setting a = 1), determine the relation between
c1, c2 and c3 defining |φ2〉. Then compute 〈φ2|φ2〉.

Our goal in this exercise is to evaluate the Virasoro constraints1

(Lm − a δm,0)|φ〉 = 0 ∀m ≥ 0 and ∀ |φ〉 ∈ Hphys, (36)

to deduce that D ≤ 26 is a necessary (but not sufficient) condition for a ghost-free theory. To
arrive at this conclusion, it is enough to consider the specific state given in eq. (35).2 By assuming
|φ2〉 to constitute a physical state and setting the normal ordering constant a = 1, we get exactly
the constraints mentioned in the hint. To unravel, what implications these constraints hold for the
allowed values of D and the ci, i ∈ {1, 2, 3}, our strategy will be to commute the Virasoro generators
through all of the creation operators in |φ2〉 and let them act directly on |0, p〉.
First, using XY = Y X + [X,Y ] on Lm|φ2〉, we get

Lm|φ2〉 =
(
c1α

2
−1Lm + c1[Lm,α

2
−1] + c2 p ·α−2Lm + c2[Lm,p ·α−2]

+ c3 (p ·α−1)2Lm + c3[Lm, (p ·α−1)2]
)
|0, p〉

=
1

2
δm,0α

2
0|φ2〉+

(
c1[Lm,α

2
−1] + c2 p · [Lm,α−2] + c3[Lm, (p ·α−1)2]

)
|0, p〉.

(38)

1These constraints originated all the way back from Tab = 0, which arose as the e.o.m. of the worldsheet metric hab = 0.
Since the Virasoro generators are nothing but the Fourier modes of the energy-momentum tensor, the constraint of
having to vanish passes directly on to them.

2As opposed to the most general state |φ2〉 at second excited level which can be written i.t.o. the string field modes as

|φ2〉 =
(
ζµνα

µ
−1α

ν
−1 + ηµα

µ
−2

)
|0, p〉. (37)
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where in the last step, we used that Lm for m ≥ 0 acts on the vacuum as

Lm|0, p〉 =
1

2

∞∑
n=−∞

N (αm−n ·αn)|0, p〉

=
1

2

∑
n>dm2 e

αm−n ·αn|0, p〉︸ ︷︷ ︸
0

+
1

2

dm2 e∑
n=bm2 c

N (αm−n ·αn)|0, p〉+
1

2

∑
n<bm2 c

αn ·αm−n|0, p〉︸ ︷︷ ︸
0

=


1
2α0 ·α0|0, p〉 if m = 0,
1
2αm−m2 ·αm

2
|0, p〉 = 0 if m ∈ 2N,

1
2

(
αm−dm2 e ·αdm2 e +αbm2 c ·αm−bm2 c

)
|0, p〉 = 0 if m ∈ 2N+ 1,

=
1

2
δm,0α

2
0|0, p〉

(39)

Recall that modes αµm with m ≤ 0 were chosen as the creation operators whereas m > 0 corresponded
to annihilators.
We will now calculate each commutator the last line of eq. (38) in turn by reusing the identities

[αµm, α
ν
n] = mηµνδm,−n and [αµm, Ln] = mαµm+n, (40)

which have already proven useful in exercise 1.
Using [X,Y Z] = [X,Y ]Z + Y [X,Z], the first commutator becomes

[Lm,α
2
−1] = [Lm,α−1]︸ ︷︷ ︸

−(−1)α−1+m

·α−1 +α−1 · [Lm,α−1]︸ ︷︷ ︸
−(−1)α−1+m

= αm−1 ·α−1 +α−1 ·αm−1

= 2αm−1 ·α−1 + [α−1,µ, α
µ
m−1]︸ ︷︷ ︸

−ηµµδ−1,1−m

= 2αm−1 ·α−1 −Dδm,2.
(41)

The second commutator is simpler,

[Lm,α−2] = −(−2)α−2+m = 2αm−2, (42)

whereas the third commutator is again a little work,

[Lm, (p ·α−1)2] = [Lm,p ·α−1]p ·α−1 + p ·α−1 [Lm,p ·α−1]
= p · [Lm,α−1]p ·α−1 + p ·α−1 p · [Lm,α−1]
(40)
= p ·αm−1 p ·α−1 + p ·α−1 p ·αm−1
= 2p ·αm−1 p ·α−1 + [p ·α−1,p ·αm−1]︸ ︷︷ ︸

−pµpνηµνδ−1,1−m

= 2p ·αm−1 p ·α−1 − p2δm,2.

(43)

Reinserting eqs. (41) to (43) into eq. (38), we get (still with m ≥ 0),

Lm|φ2〉 =
1

2
δm,0α

2
0|φ2〉+

(
2c1αm−1 ·α−1 − c1D δm,2 + 2c2 p ·αm−2

+ 2c3 p ·αm−1 p ·α−1 − c3p2 δm,2
)
|0, p〉.

(44)

In particular, considering eq. (44) for m = 0 yields

L0|φ2〉 =
1

2
α2

0|φ2〉+
(

2c1α−1 ·α−1 + 2c2 p ·α−2 + 2c3 p ·α−1 p ·α−1
)
|0, p〉

=
(1

2
α2

0 + 2
)
|φ2〉.

(45)
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Ergo, the physical state condition (L0 − a)|φ〉 !
= 0, where a = 1, implies

(L0 − 1)|φ2〉 =
(1

2
α2

0 + 1
)
|φ2〉

!
= 0 ⇒ α2

0 = −2. (46)

For m = 1 eq. (44) reads

L1|φ2〉 =
(

2c1α0 ·α−1 + 2c2 p ·α−1 + 2c3 p ·α0 p ·α−1
)
|0, p〉. (47)

To proceed here, we need to recall an equality derived in exercise 1.e) on assignment 3, namely
α0 =

√
2α′p. We therefore get

L1|φ2〉 =
(

2c1α0 ·α−1 +
2c2√
2α′

α0 ·α−1 +
2c3
2α′

α0 ·α0︸ ︷︷ ︸
−2

α0 ·α−1
)
|0, p〉

= 2
(
c1 +

c2√
2α′
− c3
α′

)
α0 ·α−1|0, p〉

!
= 0 ⇒ c1 +

c2√
2α′
− c3
α′

= 0.

(48)

Lastly, for m = 2, eq. (44) becomes

L2|φ2〉 =
(

2c1α1 ·α−1 − c1D + 2c2 p ·α0 + 2c3 p ·α1 p ·α−1 − c3 p2
)
|0, p〉. (49)

Here, we can apply the mode’s commutation relation to let α1 act directly on the vacuum |0, p〉.

α1 ·α−1|0, p〉 = α−1 ·α1|0, p〉︸ ︷︷ ︸
0

+ [α1,µ, α
µ
−1]︸ ︷︷ ︸

ηµµδ1,−(−1)

|0, p〉 = D|0, p〉, (50)

p ·α1 p ·α−1|0, p〉 = pµpνα
µ
−1 α

ν
1 |0, p〉︸ ︷︷ ︸

0

+pµpν [αν1 , α
µ
−1]︸ ︷︷ ︸

ηµνδ1,−(−1)

|0, p〉 = p2|0, p〉. (51)

Reinserting eqs. (50) and (51) into eq. (49) and using p2 =
α2

0
2α′ = − 1

α′ gives

L2|φ2〉 =
(

2c1D − c1D + 2
√

2α′ c2 p
2 + 2c3p

2 − c3 p2
)
|0, p〉 !

= 0

⇒ Dc1 − 2
√

2/α′ c2 −
c3
α′

= 0.
(52)

We now have two equations for the three state coefficients ci, i ∈ {1, 2, 3}. We can use them to express
c2 and c3 i.t.o. c1. By Inserting eq. (48) into eq. (52), we find

Dc1 −
4c2√
2α′
− c1 −

c2√
2α′

= c1(D − 1)− 5c2√
2α′

= 0 ⇒ c2 =

√
2α′

5
(D − 1) c1. (53)

Plugging this back into eq. (48) gives

c1 +
1

5
(D − 1) c1 −

c3
α′

=
1

5
(D + 4) c1 −

c3
α′

= 0 ⇒ c3 =
D + 4

5
α′ c1. (54)

We are finally in a position to calculate 〈φ2|φ2〉 and see what constraints on D we must impose in
order to avoid a negative norm of |φ2〉. Note that when expanding the ensuing product of modes, we
do not need to consider mixed terms in which α±2 appears since it freely commutes with α±1 and
can thus always act directly on the vacuum. This already reduces the total number of resulting terms
from nine to five.

〈φ2|φ2〉 = 〈0, p|
(
c1α

2
1 + c2 p ·α2 + c3 (p ·α1)

2
)(
c1α

2
−1 + c2 p ·α−2 + c3 (p ·α−1)2

)
|0, p〉

= c21〈0, p|α2
1α

2
−1|0, p〉+ c1c3〈0, p|α2

1 (p ·α−1)2|0, p〉+ c22〈0, p|p ·α2 p ·α−2|0, p〉
+ c3c1〈0, p|(p ·α1)

2α2
−1|0, p〉+ c23〈0, p|(p ·α1)

2 (p ·α−1)2|0, p〉.

(55)
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We’ll calculate each of the five contributions in turn.

〈0, p|α2
1α

2
−1|0, p〉 = 〈0, p|α1,µ(αν−1α

µ
1 + ηµν)α−1,ν |0, p〉

= 〈0, p|α1,µα
ν
−1(α−1,να

µ
1 + ηµν )|0, p〉+ 〈0, p|α1 ·α−1|0, p〉

= 〈0, p|α1,µα
ν
−1α−1,ν α

µ
1 |0, p〉︸ ︷︷ ︸

0

+2〈0, p|α1 ·α−1|0, p〉
(50)
= 2D,

(56)

〈0, p|α2
1 (p ·α−1)2|0, p〉 = pνpρ〈0, p|α1,µ(αν−1α

µ
1 + ηµν)αρ−1|0, p〉

= pνpρ〈0, p|α1,µα
ν
−1(α

ρ
−1α

µ
1 + ηµρ)|0, p〉+ 〈0, p|p ·α1p ·α−1|0, p〉

= pνpρ〈0, p|α1,µα
ν
−1α

ρ
−1 α

µ
1 |0, p〉︸ ︷︷ ︸

0

+2〈0, p|p ·α1p ·α−1|0, p〉
(51)
= 2p2,

(57)

〈0, p|p ·α2 p ·α−2|0, p〉 = pµpν〈0, p|(αν−2α
µ
2 + 2ηµν)|0, p〉 = 2p2, (58)

〈0, p|(p ·α1)
2α2
−1|0, p〉 =

(
〈0, p|α2

1 (p ·α−1)2|0, p〉
)† (57)

= (2p2)† = 2p2, (59)

〈0, p|(p ·α1)
2 (p ·α−1)2|0, p〉 = 2p4. (60)

With eqs. (56) to (60) inserted, eq. (55) reads

〈φ2|φ2〉 = 2Dc21 + 2p2c1c3 + 2p2c22 + 2p2c3c1 + 2p4c23

(53)
= 2c21

[
D + 2p2

D + 4

5
α′ + p2

(√2α′

5
(D − 1)

)2
+ p4

(D + 4

5
α′
)2]

= 2c21

[
D − 2D + 8

5
− 2

25
(D − 1)2 +

(D + 4)2

25

]
=

2c21
25

[
25D − 10D − 40− 2D2 + 4D − 2 +D2 + 8D + 16

]
=

2c21
25

[
27D − 26−D2

]
=

2c21
25

(D − 1)(26−D) < 0 if D > 26.

(61)

Thus we find that a theory operating in more than 26 dimensions would suffers from negative norm
states, so-called ghosts.

3 Some classical lightcone gauge identities

Show that in target-space lightcone gauge the constraint Tab = 0 implies

∂±X
− =

l

2πα′p+
(∂±X⊥)2. (62)

Show that for the open string with NN boundary conditions the X− oscillators can be solved for
in terms of the transverse oscillators as

α−n =
1√

2α′p+
1

2

∞∑
m=−∞

D−2∑
i=1

αin−m α
i
m. (63)

Note that the sum over oscillators includes αi0 =
√

2α′pi.

In exercise 1.b) on assignment 2, we varied the Polyakov action w.r.t. the worldsheet metric hab

to obtain the classical equation of motion Tab = 0. Moving to lightcone gauge, we found that the
constraints T+− = T−+ = 0 were automatically satisfied due to the requirement of tracelessness
imposed on the energy momentum tensor Tab as a direct consequence of Weyl invariance.3 The

3The exact argument here was that 0
!
= T aa = habT

ab = h+−T
+− + h−+T

−+ = 2h+−T
+− = 2(− 1

2
)T+− = −T+−,

where we used that h++ = h−− = 0, and that hab and Tab are both symmetric tensors.
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components T+− , T−+ were a priori non-vanishing and given by

Tab = − 1

α′

[
∂aX · ∂bX −

1

2
habh

cd∂cX · ∂dX
] h±±=0

=⇒ T±± = − 1

α′
∂±X · ∂±X. (64)

However, we cannot gauge away dynamical information such as Tab = 0 (only redundancies in our
physical description are affected by gauge transformations). So if it was true in the original worldsheet
coordinates (τ, σ), it must remain true in lightcone coordinates (ξ+, ξ−). Thus when working in
lightcone gauge, we have to implement as constraints

T++ = T−− = 0. (65)

Inserting ∂± = 1
2(∂τ ± ∂σ) into eq. (64) and enforcing eq. (65) gives

(∂τX ± ∂σX)2 = 0. (66)

This expression becomes useful when we recall that the (flat) ambient space metric ηµν in lightcone
gauge is given by

η+− ≡ η0,D−1 = −1 = ηD−1,0 ≡ η−+,

ηij = δij , i, j ∈ {1, . . . , D − 2},

}
i.e. η =


0 −1

1
. . .

1
−1 0

 , (67)

so that the Minkowski product of the string field

X2 = ηµνX
µXν = −2X+X− +

D−2∑
i=1

(Xi)2 ≡ −2X+X− +X2
⊥, (68)

where X± = 1√
2
(X0 ±XD−1). Applying this scheme to eq. (66) yields

− 2(∂τX ± ∂σX)+(∂τX ± ∂σX)− + (∂τX ± ∂σX)2⊥ = 0. (69)

The next step is where working in lightcone gauge pays off. Lightcone gauge implies that we are already
dealing with a flat worldsheet, i.e. hab = ηab. However, there is still left a residual reparametrization
invariance4 generated by the conformal Killing vector fields εa which fulfill ∇aεb + ∇bεa = hab∇cεc.
We can fix this remaining invariance by transforming into a set of coordinates in which we identify
the ambient space dimension X+ with the worldsheet’s time dimension τ :5

X+ =
2πα′

l
p+τ + x+. (70)

This transformation leaves us with

∂τX
+ =

2πα′

l
p+ and ∂σX

− = 0, (71)

which we can insert into eq. (69) to get

− 2
2πα′

l
p+ (∂τX ± ∂σX)−︸ ︷︷ ︸

2∂±X−

+ (∂τX ± ∂σX)2⊥︸ ︷︷ ︸
4(∂±X⊥)2

= 0 ⇒ ∂±X
− =

l

2πα′p+
(∂±X⊥)2. (72)

This is the first identity we were asked to derive.

4In the lecture notes, this is often referred to as residual conformal symmetry.
5This has several advantages unrelated to our line of thought: By fixing the residual reparametrization invariance,

all ghosts and unphysical degrees of freedom are eliminated. The disadvantage is that Lorentz covariance becomes
non-manifest, i.e. hard to prove.
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For the second one, we recall the open string mode expansion for Neumann boundary conditions at
both ends as derived in great detail in exercise 1.b) on assignment 3,

Xµ(τ, σ) = xµ0 +
2πα′

l
pµτ + i

√
2α′
∑
n6=0

αµn
n
e−

πi
l
nτ cos

(
π
l nσ

)
. (73)

Differentiation w.r.t. ξ± yields

∂±X
µ(τ, σ) =

1

2
(∂τX

µ ± ∂σXµ)

=
πα′

l
pµ +

π

l

√
α′

2

∑
n6=0

αµne
−πi

l
nτ cos

(
π
l nσ

)
∓ iπ

l

√
α′

2

∑
n6=0

αµne
−πi

l
nτ sin

(
π
l nσ

)
=
πα′

l
pµ +

π

l

√
α′

2

∑
n6=0

αµne
−πi

l
nτe∓

πi
l
nσ

=
π

l

√
α′

2

∑
n∈Z

αµne
−πi

l
nξ± ,

(74)

where we used αµ0 =
√

2α′ pµ in the last step to consolidate the n = 0 -term back into the sum. This
is indeed the original Fourier series we started with in exercise 1.b) when deriving the string field’s
mode expansion and thus a good check for consistency.
Inserting this series into relation (72) between Xµ’s lightcone and orthogonal components, we get

∂±X
− =

π

l

√
α′

2

∑
m∈Z

α−me
−πi

l
mξ±

!
=

l

2πα′p+
π2

l2
α′

2

D−2∑
i=1

∑
m∈Z

αime
−πi

l
mξ±

∑
k∈Z

αike
−πi

l
kξ± =

l

2πα′p+
(∂±X⊥)2.

(75)

By multiplying both sides of the above equation with e−
πi
l
nξ± and integrating ξ± from −l to l, this

simplifies to

∑
m∈Z

α−m

∫ l

−l
dξ± e

πi
l
(n−m)ξ±︸ ︷︷ ︸

2l δn,m

=
l

2πα′p+
π

l

√
α′

2

D−2∑
i=1

∑
k,m∈Z

αikα
i
m

∫ l

−l
dξ± e

πi
l
(n−m−k)ξ±︸ ︷︷ ︸

2l δn−m,k

⇒ α−n =
1√

2α′p+
1

2

D−2∑
i=1

∑
m∈Z

αin−mα
i
m.

(76)

Thus for the open string with Neumann boundary conditions, all those lightcone modes α−n that
were not gauged into oblivion by (70) can be expressed in terms of the transverse modes αin, i ∈
{1, . . . , D − 2}. From this fact, we can infer that the lightcone dimensions don’t actually contain any
physical degrees of freedom but are pure gauge material.
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