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Theoretical Statistical Physics

Solution to Exercise Sheet 5

1 Ideal gas work (3 points)

Within the kinetic model of an ideal gas, show that the work done to the gas when changing
the volume is −p dV .

Kinetic theory traces the macroscopic phenomenon of pressure on a surface back to a constant
bombardment by microscopic particles, each of which obeys Newton’s laws of motion. Upon
impact, a tiny amount of momentum is transferred onto the surface. The resulting average
force can be calculated explicitly by considering a simple toy model, a cubic box of length L
containing N particles, each of mass m. We assume that a particle travelling with momentum
vx in the x-direction bounces off a wall perfectly elastically so that it returns with velocity −vx.
The resulting momentum transfer is ∆px = 2mvx. Since the particle is trapped in a box, it will
again hit the same wall after ∆t = 2L/vx. The force due to this single particle is thus

Fp =
∆px
∆t

=
mv2x
L

. (1)

Summing up the contributions from all N particles in the container, the total average force is

F =
N m 〈v2x〉

L
. (2)

〈v2x〉 is the square of the velocity in x-direction averaged over all particles. The x-direction is in
no way distinguished from y or z, meaning 〈v2x〉 = 〈v2〉/3. Thus the differential work required
to impress one of the container’s walls by a distance dx is

δW = −F dx = −
N m 〈v2〉

3L
dx = −

2N 〈Ekin〉

3L3
L2 dx = −

2N 〈Ekin〉

3V
dV. (3)

The sign above stems from the fact that if dV < 0, we need to exert a force to squeeze the
box, thereby increasing its energy, whereas for dV > 0, the system itself is doing the work, thus
decreasing its energy. Inserting 〈Ekin〉 =

3
2kB T and the ideal gas law p V = N kB T , we get

δW = −
N kB T

V
dV = −p dV. (4)

2 Density of states (2 points)

Consider a system of N identical, uncoupled quantum mechanical oscillators. Compute the
number of states at a given total energy of the system.

A quantum harmonic oscillator features the well-known ladder of equidistant energy states

En =
(

n+ 1
2

)

~ω, with n ∈ N0. (5)

For N identical oscillators, we can thus immediately write down the ground state energy as
Emin = N

2 ~ω. Since this energy is attained only by a single state ni = 0 ∀ i ∈ {1, . . . , N}, the
number of microstates with energy Emin is Ω(Emin) = 1.
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At the first excited level Emin + ~ω, we have one energy quantum to allocate. We could use it
to excite any of the N oscillators, so the number of states increases to

Ω(Emin + ~ω) = N. (6)

At Emin + 2~ω, we have 2 quanta to distribute. Either we give both quanta to one oscillator
for which there are again N possibilities, or to two different oscillators, resulting in N(N − 1)
possibilities. However, order doesn’t matter since first giving a quantum to oscillator i followed
by exciting oscillator j results in the same state as doing it the other way round. We therefore
have to halve the number of states resulting from the second configuration. In total, this gives

Ω(Emin + 2~ω) = N +
N

2
(N − 1) =

N

2
(N + 1). (7)

The counting problem we are dealing with is simply that of how many ways we can distribute
m identical quanta amongst N oscillators? The answer is provided by the binomial coefficient,

Ωm = Ω(Em) =

(

N +m− 1

m

)

=
(N +m− 1)!

m! (N − 1)!
, (8)

where Em = Emin + m ~ω =
(

N
2 + m

)

~ω. For m ∈ {0, 1, 2, 3, 4}, we thus get the following
numbers of states.

m 0 1 2 3 4

Ωm 1 N N
2 (N + 1) N

6 (N + 1)(N + 2) N
24(N + 1)(N + 2)(N + 3)

Now that we have the number of states at a given energy, it is a trivial matter to derive the
entropy Sm of N oscillators with total energy Em. Using Stirlings approximation for large
factorials, ln(n!) = n ln(n)− n+O(lnn), we get

Sm = kB ln(Ωm) = kB

(

ln[(N +m− 1)!]− ln(m!)− ln[(N − 1)!]
)

≈ kB

(

(N +m− 1) ln(N +m− 1)−m ln(m)− (N − 1) ln(N − 1)
)

≈ kB

(

(N +m) ln(N +m)−m ln(m)−N ln(N)
)

= kB

(

N ln
(

N+m
N

)

+m ln
(

N+m
m

)

)

.

(9)

3 Stationary distribution (2 points)

Consider the Boltzmann equation with external force F (x) = −∇xV (x). Find the stationary
distribution f0(x,p).

The Boltzmann equation describes the dynamical evolution of phase space densities for systems
with a large number of constituents such as a gas. It is an integro-differential equation whose
significance derives from its ability to describe out-of-equilibrium processes. It reads1

( ∂

∂t
+

p

m
·∇x + F ·∇p

)

f(x,p, t) =

∫

d3k d3p′ d3k′ |〈p′,k′|T |p,k〉|2
[

fp′ fk′ − fpfk
]

. (10)

The above formulation already incorporates the Stosszahlansatz, also known as molecular chaos,
which assumes that the collision term results solely from two-body collisions between particles
that are uncorrelated prior to the collision.2 This was the key assumption by Boltzmann, as it

1Boltzmann assumed that the influence of the external force F on the collision rate is negligible to derive (10).
2Molecular chaos can also intuitively be interpreted as the assumption that velocity and position of a constituent
particle are uncorrelated.
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allows to write the collision term as a momentum-space integral in which the two-particle corre-
lator F (x,p,k, t) factorizes into two one-particle distribution functions f(x,p, t) f(x,k, t). The
term

[

fp′ fk′−fpfk
]

in (10) is a shorthand notation for
[

f(x,p′, t) f(x,k′, t)−f(x,p, t)f(x,k, t)
]

.

For a stationary system, the Boltzmann equation greatly simplifies in two ways. On the one
hand, the particle distribution loses its explicit time-dependence, f(x,p, ❈t). On the other hand,
stationarity implies that the Boltzmann H-function must be time-independent, since its time-
dependence derives exclusively from f(x,p, t),

H(t) =

∫

d3x

∫

d3p f(x,p, t) ln[f(x,p, t)]. (11)

A stationaryH results in a condition known as detailed balance (see lecture notes from November
22), in which the number of particles leaving a certain mode due to a given scattering process is
exactly equal to the number of particles entering that mode by the reverse process. Conceptually:

=

p′

k′

p

k

p

k

p′

k′

Under these circumstances, the loss and gain terms fpfk and fp′ fk′ in (10) exactly cancel,
meaning the r.h.s. of the Boltzmann equation vanishes. We are left with

p

m
·∇x f0(x,p) = −F (x) ·∇p f0(x,p)

= ∇x V (x) ·∇p f0(x,p).
(12)

This partial differential equation is solved by the ansatz

f0(x,p) = α exp

(

β

2m
(p− p0)

2 + γ V (x)

)

+ δ. (13)

Reinserting (13) into (12) gives

p

m
· γ∇x V (x) = ∇x V (x) ·

β

m
(p− p0), (14)

from which we infer β = γ and p0 = 0. Moreover, normalizability of the phase space density

requires δ = 0. Thus, f0(x,p) = α eβ
(

p
2

2m
+V (x)

)

. For

α =

(

m

2π kB T

)
d

2

(
∫

ddx eβ V (x)

)− d

2

, β = −
1

kB T
, (15)

this is precisely the Maxwell-Boltzmann distribution in d dimensions.

4 Pressure on a wall (3 points)

Compute the pressure of an ideal gas in three dimensions upon a wall at x = 0 that attracts
molecules at large distance and repels them at smaller distance. Let the force be given by
the potential

U(x) = −Ae−αx +B e−2αx, (16)

with A,B > 0. Consider separately the cases where the range of the force is

a) small compared to the mean free path ℓ, and

b) comparable to it.
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x

U(x)

1
α
≈ ℓ

1
α
≪ ℓ

The energy of a particle in the vicinity of the wall where U(x) 6= 0 is

E(x, ẋ) =
m

2
ẋ2 + U(x). (17)

Energy must be conserved during collisions with the wall. Since the potential depends only on x
(rather than x), the transverse energy Et =

m
2 (ẏ

2+ ż2) is separately conserved from the normal
contribution

En = E − Et =
m

2
ẋ2 + U(x). (18)

We can solve the latter for the velocity in x-direction,

ẋ(x) = ±
√

2
m

[

En − U(x)
]

. (19)

The pressure on the wall is determined by the total momentum transfer from all particle colli-
sions. If a single particle encounters the wall at time t0, its change in momentum is

∆px = px(t0 + τ)− px(t0 − τ)

= m
[

ẋ(t0 + τ)− ẋ(t0 − τ)
]

,
(20)

where τ = ℓ/v̄x is the characteristic scattering time inversely proportional to the average velocity
in x-direction v̄x =

√

2En/m.

a) In the weak scattering case where the range of the force 1/α is much smaller than the mean
free path ℓ, the velocity ẋ(t0 ± τ) ≈ ẋ(ℓ) in (20) will be evaluated at a distance ℓ from the
wall. This is because x(t0) = 0 and the particle moves towards/away from the wall with v̄x
carrying it to a distance of approximately v̄xτ = ℓ within the scattering time τ . At x ≈ ℓ,
the potential becomes negligible. Inserting (19) into (20) for U(ℓ) ≈ 0 gives

∆px,a = 2
√

2mEn (21)

b) In the strong scattering case, the scattering time τ = ℓ/v̄x is much shorter and the mean
free path decreases, becoming of the order of the range of the force 1

α
≈ ℓ. To compute the

momentum transfer, the velocity will now be evaluated at a shorter distance ℓ from the wall
where the potential still exerts a significant attraction on the particle, Fx = −∂xU(ℓ) < 0.
This increases the momentum transfer onto the wall and thus the pressure,

∆px,b = 2
√

2m
[

En − U(x)
]

assuming B 6≫A


y

≈ 2
√

2m
(

En +Ae−αx
)

> 2
√

2mEn = ∆px,a. (22)

To get a more quantitative result, rather than this rough approximation, we can separate
variables in (19) to get

dx

±
√

2
m

[

En − U(x)
]

= dt. (23)
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The solution to this differential equation is

x(t) =
1

α
ln

[

ξ cosh[αv̄x(t− t0)]−
A

2En

]

, where ξ =

(

B

En
+

A2

4E2
n

)
1

2

. (24)

Differentiating (24) w.r.t. time results in the velocity

ẋ(t) =
sinh[αv̄x(t− t0)]

cosh[αv̄x(t− t0)]−
A

2Enξ

v̄x, (25)

and the momentum transfer

∆px,b = m
[

ẋ(t0 + τ)− ẋ(t0 − τ)
]

= mv̄x

[

sinh[αv̄xτ ]

cosh[αv̄xτ ]−
A

2Enξ

−
sinh[−αv̄xτ ]

cosh[−αv̄xτ ]−
A

2Enξ

]

= ∆px,a
sinh[αv̄xτ ]

cosh[αv̄xτ ]−
A

2Enξ

,

(26)

where we used sinh(−x) = − sinh(x) and cosh(−x) = cosh(x). Since αv̄xτ = αℓ ≈ 1, we can
approximate this as

∆px,b = ∆px,a

(

1 +
A

Enξ
e−αv̄xτ

)

. (27)

Again, this is larger than the momentum transfer we obtained in the weak scattering case,
resulting in an increased pressure on the wall.
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