Theoretical Statistical Physics Solution to Exercise Sheet 5

1 Ideal gas work

Within the kinetic model of an ideal gas, show that the work done to the gas when changing the volume is $-p \mathrm{~d} V$.

Kinetic theory traces the macroscopic phenomenon of pressure on a surface back to a constant bombardment by microscopic particles, each of which obeys Newton's laws of motion. Upon impact, a tiny amount of momentum is transferred onto the surface. The resulting average force can be calculated explicitly by considering a simple toy model, a cubic box of length L containing N particles, each of mass m. We assume that a particle travelling with momentum v_{x} in the x-direction bounces off a wall perfectly elastically so that it returns with velocity $-v_{x}$. The resulting momentum transfer is $\Delta p_{x}=2 m v_{x}$. Since the particle is trapped in a box, it will again hit the same wall after $\Delta t=2 L / v_{x}$. The force due to this single particle is thus

$$
\begin{equation*}
F_{p}=\frac{\Delta p_{x}}{\Delta t}=\frac{m v_{x}^{2}}{L} \tag{1}
\end{equation*}
$$

Summing up the contributions from all N particles in the container, the total average force is

$$
\begin{equation*}
F=\frac{N m\left\langle v_{x}^{2}\right\rangle}{L} \tag{2}
\end{equation*}
$$

$\left\langle v_{x}^{2}\right\rangle$ is the square of the velocity in x-direction averaged over all particles. The x-direction is in no way distinguished from y or z, meaning $\left\langle v_{x}^{2}\right\rangle=\left\langle v^{2}\right\rangle / 3$. Thus the differential work required to impress one of the container's walls by a distance $d x$ is

$$
\begin{equation*}
\delta W=-F \mathrm{~d} x=-\frac{N m\left\langle v^{2}\right\rangle}{3 L} \mathrm{~d} x=-\frac{2 N\left\langle E_{\text {kin }}\right\rangle}{3 L^{3}} L^{2} \mathrm{~d} x=-\frac{2 N\left\langle E_{\text {kin }}\right\rangle}{3 V} \mathrm{~d} V \tag{3}
\end{equation*}
$$

The sign above stems from the fact that if $\mathrm{d} V<0$, we need to exert a force to squeeze the box, thereby increasing its energy, whereas for $\mathrm{d} V>0$, the system itself is doing the work, thus decreasing its energy. Inserting $\left\langle E_{\text {kin }}\right\rangle=\frac{3}{2} k_{\mathrm{B}} T$ and the ideal gas law $p V=N k_{\mathrm{B}} T$, we get

$$
\begin{equation*}
\delta W=-\frac{N k_{\mathrm{B}} T}{V} \mathrm{~d} V=-p \mathrm{~d} V \tag{4}
\end{equation*}
$$

2 Density of states

Consider a system of N identical, uncoupled quantum mechanical oscillators. Compute the number of states at a given total energy of the system.

A quantum harmonic oscillator features the well-known ladder of equidistant energy states

$$
\begin{equation*}
E_{n}=\left(n+\frac{1}{2}\right) \hbar \omega, \quad \text { with } n \in \mathbb{N}_{0} \tag{5}
\end{equation*}
$$

For N identical oscillators, we can thus immediately write down the ground state energy as $E_{\min }=\frac{N}{2} \hbar \omega$. Since this energy is attained only by a single state $n_{i}=0 \forall i \in\{1, \ldots, N\}$, the number of microstates with energy $E_{\min }$ is $\Omega\left(E_{\min }\right)=1$.

At the first excited level $E_{\min }+\hbar \omega$, we have one energy quantum to allocate. We could use it to excite any of the N oscillators, so the number of states increases to

$$
\begin{equation*}
\Omega\left(E_{\min }+\hbar \omega\right)=N \tag{6}
\end{equation*}
$$

At $E_{\text {min }}+2 \hbar \omega$, we have 2 quanta to distribute. Either we give both quanta to one oscillator for which there are again N possibilities, or to two different oscillators, resulting in $N(N-1)$ possibilities. However, order doesn't matter since first giving a quantum to oscillator i followed by exciting oscillator j results in the same state as doing it the other way round. We therefore have to halve the number of states resulting from the second configuration. In total, this gives

$$
\begin{equation*}
\Omega\left(E_{\min }+2 \hbar \omega\right)=N+\frac{N}{2}(N-1)=\frac{N}{2}(N+1) . \tag{7}
\end{equation*}
$$

The counting problem we are dealing with is simply that of how many ways we can distribute m identical quanta amongst N oscillators? The answer is provided by the binomial coefficient,

$$
\begin{equation*}
\Omega_{m}=\Omega\left(E_{m}\right)=\binom{N+m-1}{m}=\frac{(N+m-1)!}{m!(N-1)!}, \tag{8}
\end{equation*}
$$

where $E_{m}=E_{\min }+m \hbar \omega=\left(\frac{N}{2}+m\right) \hbar \omega$. For $m \in\{0,1,2,3,4\}$, we thus get the following numbers of states.

m	0	1	2	3	4
Ω_{m}	1	N	$\frac{N}{2}(N+1)$	$\frac{N}{6}(N+1)(N+2)$	$\frac{N}{24}(N+1)(N+2)(N+3)$

Now that we have the number of states at a given energy, it is a trivial matter to derive the entropy S_{m} of N oscillators with total energy E_{m}. Using Stirlings approximation for large factorials, $\ln (n!)=n \ln (n)-n+\mathcal{O}(\ln n)$, we get

$$
\begin{align*}
S_{m} & =k_{\mathrm{B}} \ln \left(\Omega_{m}\right)=k_{\mathrm{B}}(\ln [(N+m-1)!]-\ln (m!)-\ln [(N-1)!]) \\
& \approx k_{\mathrm{B}}((N+m-1) \ln (N+m-1)-m \ln (m)-(N-1) \ln (N-1)) \\
& \approx k_{\mathrm{B}}((N+m) \ln (N+m)-m \ln (m)-N \ln (N)) \tag{9}\\
& =k_{\mathrm{B}}\left(N \ln \left(\frac{N+m}{N}\right)+m \ln \left(\frac{N+m}{m}\right)\right) .
\end{align*}
$$

3 Stationary distribution

Consider the Boltzmann equation with external force $\boldsymbol{F}(\boldsymbol{x})=-\boldsymbol{\nabla}_{x} V(\boldsymbol{x})$. Find the stationary distribution $f_{0}(\boldsymbol{x}, \boldsymbol{p})$.

The Boltzmann equation describes the dynamical evolution of phase space densities for systems with a large number of constituents such as a gas. It is an integro-differential equation whose significance derives from its ability to describe out-of-equilibrium processes. It reads ${ }^{1}$

$$
\begin{equation*}
\left.\left(\frac{\partial}{\partial t}+\frac{\boldsymbol{p}}{m} \cdot \boldsymbol{\nabla}_{x}+\boldsymbol{F} \cdot \nabla_{p}\right) f(\boldsymbol{x}, \boldsymbol{p}, t)=\int \mathrm{d}^{3} k \mathrm{~d}^{3} p^{\prime} \mathrm{d}^{3} k^{\prime}\left|\left\langle\boldsymbol{p}^{\prime}, \boldsymbol{k}^{\prime}\right| T\right| \boldsymbol{p}, \boldsymbol{k}\right\rangle\left.\right|^{2}\left[f_{p^{\prime}} f_{k^{\prime}}-f_{p} f_{k}\right] . \tag{10}
\end{equation*}
$$

The above formulation already incorporates the Stosszahlansatz, also known as molecular chaos, which assumes that the collision term results solely from two-body collisions between particles that are uncorrelated prior to the collision. ${ }^{2}$ This was the key assumption by Boltzmann, as it

[^0]allows to write the collision term as a momentum-space integral in which the two-particle correlator $F(\boldsymbol{x}, \boldsymbol{p}, \boldsymbol{k}, t)$ factorizes into two one-particle distribution functions $f(\boldsymbol{x}, \boldsymbol{p}, t) f(\boldsymbol{x}, \boldsymbol{k}, t)$. The term $\left[f_{p^{\prime}} f_{k^{\prime}}-f_{p} f_{k}\right]$ in (10) is a shorthand notation for $\left[f\left(\boldsymbol{x}, \boldsymbol{p}^{\prime}, t\right) f\left(\boldsymbol{x}, \boldsymbol{k}^{\prime}, t\right)-f(\boldsymbol{x}, \boldsymbol{p}, t) f(\boldsymbol{x}, \boldsymbol{k}, t)\right]$. For a stationary system, the Boltzmann equation greatly simplifies in two ways. On the one hand, the particle distribution loses its explicit time-dependence, $f(\boldsymbol{x}, \boldsymbol{p}, \notin)$. On the other hand, stationarity implies that the Boltzmann H-function must be time-independent, since its timedependence derives exclusively from $f(\boldsymbol{x}, \boldsymbol{p}, t)$,
\[

$$
\begin{equation*}
H(t)=\int \mathrm{d}^{3} x \int \mathrm{~d}^{3} p f(\boldsymbol{x}, \boldsymbol{p}, t) \ln [f(\boldsymbol{x}, \boldsymbol{p}, t)] . \tag{11}
\end{equation*}
$$

\]

A stationary H results in a condition known as detailed balance (see lecture notes from November 22), in which the number of particles leaving a certain mode due to a given scattering process is exactly equal to the number of particles entering that mode by the reverse process. Conceptually:

Under these circumstances, the loss and gain terms $f_{p} f_{k}$ and $f_{p^{\prime}} f_{k^{\prime}}$ in (10) exactly cancel, meaning the r.h.s. of the Boltzmann equation vanishes. We are left with

$$
\begin{align*}
\frac{\boldsymbol{p}}{m} \cdot \boldsymbol{\nabla}_{x} f_{0}(\boldsymbol{x}, \boldsymbol{p}) & =-\boldsymbol{F}(\boldsymbol{x}) \cdot \boldsymbol{\nabla}_{p} f_{0}(\boldsymbol{x}, \boldsymbol{p}) \tag{12}\\
& =\boldsymbol{\nabla}_{x} V(\boldsymbol{x}) \cdot \boldsymbol{\nabla}_{p} f_{0}(\boldsymbol{x}, \boldsymbol{p}) .
\end{align*}
$$

This partial differential equation is solved by the ansatz

$$
\begin{equation*}
f_{0}(\boldsymbol{x}, \boldsymbol{p})=\alpha \exp \left(\frac{\beta}{2 m}\left(\boldsymbol{p}-\boldsymbol{p}_{0}\right)^{2}+\gamma V(\boldsymbol{x})\right)+\delta . \tag{13}
\end{equation*}
$$

Reinserting (13) into (12) gives

$$
\begin{equation*}
\frac{\boldsymbol{p}}{m} \cdot \gamma \boldsymbol{\nabla}_{x} V(\boldsymbol{x})=\boldsymbol{\nabla}_{x} V(\boldsymbol{x}) \cdot \frac{\beta}{m}\left(\boldsymbol{p}-\boldsymbol{p}_{0}\right), \tag{14}
\end{equation*}
$$

from which we infer $\beta=\gamma$ and $\boldsymbol{p}_{0}=0$. Moreover, normalizability of the phase space density requires $\delta=0$. Thus, $f_{0}(\boldsymbol{x}, \boldsymbol{p})=\alpha e^{\beta\left(\frac{p^{2}}{2 m}+V(\boldsymbol{x})\right)}$. For

$$
\begin{equation*}
\alpha=\left(\frac{m}{2 \pi k_{\mathrm{B}} T}\right)^{\frac{d}{2}}\left(\int \mathrm{~d}^{d} x e^{\beta V(\boldsymbol{x})}\right)^{-\frac{d}{2}}, \quad \beta=-\frac{1}{k_{\mathrm{B}} T}, \tag{15}
\end{equation*}
$$

this is precisely the Maxwell-Boltzmann distribution in d dimensions.

4 Pressure on a wall

Compute the pressure of an ideal gas in three dimensions upon a wall at $x=0$ that attracts molecules at large distance and repels them at smaller distance. Let the force be given by the potential

$$
\begin{equation*}
U(x)=-A e^{-\alpha x}+B e^{-2 \alpha x}, \tag{16}
\end{equation*}
$$

with $A, B>0$. Consider separately the cases where the range of the force is
a) small compared to the mean free path ℓ, and
b) comparable to it.

The energy of a particle in the vicinity of the wall where $U(x) \neq 0$ is

$$
\begin{equation*}
E(x, \dot{\boldsymbol{x}})=\frac{m}{2} \dot{\boldsymbol{x}}^{2}+U(x) \tag{17}
\end{equation*}
$$

Energy must be conserved during collisions with the wall. Since the potential depends only on x (rather than $\boldsymbol{x})$, the transverse energy $E_{t}=\frac{m}{2}\left(\dot{y}^{2}+\dot{z}^{2}\right)$ is separately conserved from the normal contribution

$$
\begin{equation*}
E_{n}=E-E_{t}=\frac{m}{2} \dot{x}^{2}+U(x) \tag{18}
\end{equation*}
$$

We can solve the latter for the velocity in x-direction,

$$
\begin{equation*}
\dot{x}(x)= \pm \sqrt{\frac{2}{m}\left[E_{n}-U(x)\right]} \tag{19}
\end{equation*}
$$

The pressure on the wall is determined by the total momentum transfer from all particle collisions. If a single particle encounters the wall at time t_{0}, its change in momentum is

$$
\begin{align*}
\Delta p_{x} & =p_{x}\left(t_{0}+\tau\right)-p_{x}\left(t_{0}-\tau\right) \\
& =m\left[\dot{x}\left(t_{0}+\tau\right)-\dot{x}\left(t_{0}-\tau\right)\right] \tag{20}
\end{align*}
$$

where $\tau=\ell / \bar{v}_{x}$ is the characteristic scattering time inversely proportional to the average velocity in x-direction $\bar{v}_{x}=\sqrt{2 E_{n} / m}$.
a) In the weak scattering case where the range of the force $1 / \alpha$ is much smaller than the mean free path ℓ, the velocity $\dot{x}\left(t_{0} \pm \tau\right) \approx \dot{x}(\ell)$ in (20) will be evaluated at a distance ℓ from the wall. This is because $x\left(t_{0}\right)=0$ and the particle moves towards/away from the wall with \bar{v}_{x} carrying it to a distance of approximately $\bar{v}_{x} \tau=\ell$ within the scattering time τ. At $x \approx \ell$, the potential becomes negligible. Inserting (19) into (20) for $U(\ell) \approx 0$ gives

$$
\begin{equation*}
\Delta p_{x, a}=2 \sqrt{2 m E_{n}} \tag{21}
\end{equation*}
$$

b) In the strong scattering case, the scattering time $\tau=\ell / \bar{v}_{x}$ is much shorter and the mean free path decreases, becoming of the order of the range of the force $\frac{1}{\alpha} \approx \ell$. To compute the momentum transfer, the velocity will now be evaluated at a shorter distance ℓ from the wall where the potential still exerts a significant attraction on the particle, $F_{x}=-\partial_{x} U(\ell)<0$. This increases the momentum transfer onto the wall and thus the pressure,

$$
\begin{equation*}
\Delta p_{x, b}=2 \sqrt{2 m\left[E_{n}-U(x)\right]} \stackrel{\downarrow}{\approx} 2 \sqrt{2 m\left(E_{n}+A e^{-\alpha x}\right)}>2 \sqrt{2 m E_{n}}=\Delta p_{x, a} \tag{22}
\end{equation*}
$$

To get a more quantitative result, rather than this rough approximation, we can separate variables in (19) to get

$$
\begin{equation*}
\frac{\mathrm{d} x}{ \pm \sqrt{\frac{2}{m}\left[E_{n}-U(x)\right]}}=\mathrm{d} t \tag{23}
\end{equation*}
$$

The solution to this differential equation is

$$
\begin{equation*}
x(t)=\frac{1}{\alpha} \ln \left[\xi \cosh \left[\alpha \bar{v}_{x}\left(t-t_{0}\right)\right]-\frac{A}{2 E_{n}}\right], \quad \text { where } \xi=\left(\frac{B}{E_{n}}+\frac{A^{2}}{4 E_{n}^{2}}\right)^{\frac{1}{2}} . \tag{24}
\end{equation*}
$$

Differentiating (24) w.r.t. time results in the velocity

$$
\begin{equation*}
\dot{x}(t)=\frac{\sinh \left[\alpha \bar{v}_{x}\left(t-t_{0}\right)\right]}{\cosh \left[\alpha \bar{v}_{x}\left(t-t_{0}\right)\right]-\frac{A}{2 E_{n} \xi}} \bar{v}_{x} \tag{25}
\end{equation*}
$$

and the momentum transfer

$$
\begin{align*}
\Delta p_{x, b} & =m\left[\dot{x}\left(t_{0}+\tau\right)-\dot{x}\left(t_{0}-\tau\right)\right] \\
& =m \bar{v}_{x}\left[\frac{\sinh \left[\alpha \bar{v}_{x} \tau\right]}{\cosh \left[\alpha \bar{v}_{x} \tau\right]-\frac{A}{2 E_{n} \xi}}-\frac{\sinh \left[-\alpha \bar{v}_{x} \tau\right]}{\cosh \left[-\alpha \bar{v}_{x} \tau\right]-\frac{A}{2 E_{n} \xi}}\right] \tag{26}\\
& =\Delta p_{x, a} \frac{\sinh \left[\alpha \bar{v}_{x} \tau\right]}{\cosh \left[\alpha \bar{v}_{x} \tau\right]-\frac{A}{2 E_{n} \xi}},
\end{align*}
$$

where we used $\sinh (-x)=-\sinh (x)$ and $\cosh (-x)=\cosh (x)$. Since $\alpha \bar{v}_{x} \tau=\alpha \ell \approx 1$, we can approximate this as

$$
\begin{equation*}
\Delta p_{x, b}=\Delta p_{x, a}\left(1+\frac{A}{E_{n} \xi} e^{-\alpha \bar{v}_{x} \tau}\right) \tag{27}
\end{equation*}
$$

Again, this is larger than the momentum transfer we obtained in the weak scattering case, resulting in an increased pressure on the wall.

[^0]: ${ }^{1}$ Boltzmann assumed that the influence of the external force \boldsymbol{F} on the collision rate is negligible to derive (10).
 ${ }^{2}$ Molecular chaos can also intuitively be interpreted as the assumption that velocity and position of a constituent particle are uncorrelated.

