
Fundamentals of Simulation Methods
Exercise Sheet 5

Daniel Rosenblüh, Janosh Riebesell

November 27th, 2015

Multigrid solver for linear systems

1 Galerkin coarse grid approximation

Consider the one-dimensional problem

∂2Φ

∂2x
= 4πGρ(x), (1)

which we want to solve using a multigrid accelerated iterative method on a grid of size N = 8
with spacing h. The problem can be rephrased in the form

Ax = b, (2)

where x =̂ Φ and b =̂ 4πGρh2 are vectors of size N and A is an N ×N -matrix. Given the
operator

A(h) =


-2 1 0 0 0 0 0 1
1 -2 1 0 0 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 0 1 -2 1
1 0 0 0 0 0 1 -2

 (3)

on the finest grid level (N = 8), find the operator A(2h) on the next coarser grid level (N = 4,
spacing 2h). In order to do so, carry out the following steps:

(a) Find the prolongation and restriction operators in matrix form,

I
(h)
(2h) :

{
x
(h)
2i = x

(2h)
i ,

x
(h)
2i+1 = 1

2

(
x
(2h)
i + x

(2h)
i+1

)
,

(4)

I
(2h)
(h) : x

(2h)
i =

1

4

(
x
(h)
2i−1 + 2x

(h)
2i + x

(h)
2i+1

)
, (5)

where 0 ≤ i < N/2. Hint: I
(h)
(2h)x

(h) = x(2h) and vice versa.

(b) Now calculate the operator A(2h) on the coarse grid using the Galerkin coarse grid

approximation A
(2h)
Gal = I

(2h)
(h) A(h)I

(h)
(2h).

(c) Compare the result to an operator obtained by direct discretization on the coarse grid.

1

mailto:rosenblueh@stud.uni-heidelberg.de
mailto:riebesell@thphys.uni-heidelberg.de


(a) The notation employed in part (a) is quite confusing. We attempt a more natural way of
expressing eqs. (4) and (5) by introducing

I
(h)
(2h) ≡ P(2h→h),

I
(2h)
(h) ≡ R(h→2h),

(6)

and resorting to the well-known index notation:

x
(h)
i =

N∑
j=1

P
(2h→h)
ij x

(2h)
j , (7)

x
(2h)
i =

N∑
j=1

R
(h→2h)
ij x

(h)
j . (8)

Looking at eqs. (7) and (8), it is now clear that P(2h→h) and R(h→2h) are N ×N/2- and
N/2×N -matrices, respectively.

To implement eqs. (4) and (5), P(2h→h) and R(h→2h) must take the form

P(2h→h) =



1 0 0 0
1/2 1/2 0 0
0 1 0 0
0 1/2 1/2 0
0 0 1 0
0 0 1/2 1/2
0 0 0 1

1/2 0 0 1/2


(9)

R(h→2h) =


1/2 1/4 0 0 0 0 0 1/4
0 1/4 1/2 1/4 0 0 0 0
0 0 0 1/4 1/2 1/4 0 0
0 0 0 0 0 1/4 1/2 1/4

 (10)

(b) Multiplying the operator A(h) from the left with a restriction and from the right with a
prolongation, we find

A
(2h)
Gal = R(h→2h)A(h)P(2h→h) =


-1/2 1/4 0 1/4
1/4 -1/2 1/4 0
0 1/4 -1/2 1/4

1/4 0 1/4 -1/2

 =
1

4


-2 1 0 1
1 -2 1 0
0 1 -2 1
1 0 1 -2

 . (11)

(c) Setting out from the coarse grid instead with only N/2 points per dimension spaced 2h
apart, the discretized Poisson equation would be given by

Φi+1 − 2Φi + Φi−1
(2h)2

= 4πGρi, (12)

where the index i now runs from i ∈ {0, 1, 2, . . . , N2 −1} if N is still taken to be the number
of points on the fine grid. If we then write this Poisson equation in the form of eq. (2), i.e.
as a system of linear equations with the components of b now given by

bi = 4πG(2h2)ρi, (13)

2



we see that A(2h) has to be

A(2h) =


-2 1 0 1
1 -2 1 0
0 1 -2 1
1 0 1 -2

 = 4A
(2h)
Gal . (14)

This A(2h) is larger by a factor of 4 than the one we found in part (b), as it should be
since its corresponding b is also four times larger.

2 Iteratively solving Poisson’s equation

(a) Suppose we want to solve for the gravitational potential Φ on a periodic mesh with
square-shaped domain [0, L] × [0, L] (with L = 1 for definiteness) containing N × N
cells and housing the mass density distribution

ρ(r) = ρ0 exp

(
− r2

2η2

)
, (15)

where η = L
10 is the spread of the mass spike, and ρ0 = 10. Discretization of the Poisson

equation gives an iteration rule where the left-hand side gives the updated values in
terms of the old values on the right-hand side, in the form

x
(n+1)
i,j =

1

4

(
x
(n)
i−1,j + x

(n)
i+1,j + x

(n)
i,j−1 + x

(n)
i,j+1 − bi,j

)
, (16)

where xi,j = Φi,j and bi,j = 4πGh2ρi,j−b. This can be readily used for Jacobi or Gauss-
Seidel iteration schemes. Write a function jacobi_step(x[], b[], N) that replaces the
input array x[] with a correspondingly updated array after one iteration step.

(b) To characterize the current error in the solution, write a function that calculates the
residual

ri,j = bi,j − (Ax)i,j . (17)

Also, write a function that computes the norm

S =
(∑

i,j

r2i,j

)1/2
(18)

of this vector and returns it. We can use S as a simple measure of the overall error.

(c) Now specialize to the case of N = 256 and write a routine that suitably initializes the
density field, with the density peak placed in the center of the box. Set the initial
guess for the potential to x = 0. Carefully think about how to initialize the array b
(for a periodic system, eq. (2) is only solvable for 〈b〉 = 0 because the matrix A is
singular, therefore b has to be chosen appropriately). Now add a loop that calls the
Jacobi iteration Nsteps = 2000 times, and after each step, determines the norm of the
residual. You may use the C or Python template on the Moodle site and fill in the
missing parts in order to reduce the coding work, or write everything from scratch if
you prefer. Make a plot of the decay of the log of this residual as a function of step
number. What do you expect to get for

∑
i,j Φi,j?

(d) Now produce a second version of your program in which the Jacobi iteration is replaced
by Gauss-Seidel iteration where new values for elements of x are used as soon as they
become available, replacing any old value in the array.

3



(e) Change the Gauss-Seidel scheme to a red-black Gauss-Seidel iteration, i.e. you first
update the red cells in a chess-board pattern overlaid over the mesh, then the black
cells in a second pass. Produce a common plot of the decay rates of the residual for
Nsteps steps with the three iteration variants considered thus far. Interpret the results.
The red-black scheme result will perhaps disappoint you at first – what’s going on?

(f) We now solve the problem with multigrid acceleration. First, write a function that
carries out a restriction step of a mesh with dimension N × N (where N is a power
of 2) onto a coarser mesh with dimension N/2×N/2. Make each point in the coarser
mesh a weighted average of neighboring points, according to the stencil

T =

1/16 1/8 1/16
1/8 1/4 1/8
1/16 1/8 1/16

 . (19)

Give this function a calling signature do_restrict(N, fine[], NN, coarse[]) (only NN

= N/2 is allowed when calling this function).

(g) Next, write a function that carries out a prolongation step of a mesh of dimension
N × N onto a finer mesh of dimension 2N × 2N . Each point in the coarser mesh is
additively injected into the finer mesh with weights

U =

1/4 1/2 1/4
1/2 1 1/2
1/4 1/2 1/4

 . (20)

Note that points of the fine mesh that see a coarse point with weight 1/4 will get
contributions from 4 coarse points in total, similarly for the points with weight 1/2,
while the fine-mesh point with weight 1 simply inherits the value of one of the coarse
mesh points. Give this function a calling signature do_prolong(NN, coarse[], N, fine

[]) (again, only NN = N/2 is allowed when calling this function).

(h) Now write a function do_v_cycle(x[], b[], N) that carries out a V-cycle multigrid
iteration on the current solution vector. The steps of the function should be

1. Do a Gauss-Seidel step.

2. Calculate the residuum.

3. Restrict the residuum to a coarser mesh N ′ = N/2, and scale it by a factor of
4 to effectively take care of the 1/h ← 1/(2h) scaling of the differential operator
(whose explicit form we leave invariant, for simplicity).

4. Call do_v_cycle recursively for the coarser mesh, with a zero error vector as start-
ing guess for x, and the coarsened residual for b.

5. Now prolong the returned error vector to the fine mesh N .

6. Add this to the current solution vector on the fine mesh.

7. Do another Gauss-Seidel step.

Steps 2 to 6 are only done provided N > 4. To simplify the coding, you may use one
of the code templates provided on the Moodle site.

(i) Finally, solve the original problem by repeatedly calling your V-cycle iteration. Again,
plot the residual as a function of the number of steps taken, and compare with the
results obtained earlier for plain Jacobi and Gauss-Seidel iteration.

4



For parts (a) and (b), see jacobi.c.

(c) A half-logarithmic plot of the decay rate of the norm S of the residual is shown in fig. 1.

0 500 1000 1500 2000
Step N

0.06

0.07

0.08

0.09

R
e
si

d
u

a
l 
S

SJac

Figure 1: Decay of Jacobian residual norm S

(d) See gausseidel.c.

(e) Figure 2 displays the decay rates of the residual norm as produced by the Jacobi method
and the Gauss-Seidel method with and without chessboard scheme.

0 500 1000 1500 2000
Step N

0.10

0.05

0.06

0.07

0.08

0.09

R
e
si

d
u

a
l 
S

SJac

SGS

ScbGS

Figure 2: Gauss-Seidel residual decay rates compared to to that of the Jacobi method

As expected, we see that Gauss-Seidel’s superior utilization of available information leads
to the norm of its residual SGS decaying considerably faster than that of Jacobi. The same
improvement is not observed by further implementing a chessboard-like update scheme
for the potential. The decay rate appears largely unchanged except for a spike during the
very first step suggesting an ill-suited initial density distribution for this method.

For parts (f) to (h), see multigrid.c.

5



0 500 1000 1500 2000
Step N

0.00

0.00

0.00

0.00

0.00

0.01

1.00

100.00

0.00

0.00

0.00

0.00

0.00

0.01

1.00

100.00

R
e
si

d
u

a
l 
S

SJac

SGS

Smult

Figure 3: Residual decay of the multigrid method compared to Jacobi and Gauss-Seidel

(i) Figure 3 compares the decay rate produced by the multigrid method to those of the Jacobi
and Gauss-Seidel methods. We indeed find a dramatic increase in the convergence rate.

Note: A surface plot of the initial density distribution ρi(r) over the entire simulation domain
is shown in fig. 4a. Figures 4b to 4d display the noticeably differing corresponding potentials
according to the Jacobi, Gauss-Seidel and multigrid methods, respectively. Since each method
convergences at a different rate, plotting the potential after a constant number of 2000 sweeps
is akin to plotting it at different times.

x

0.0
0.2

0.4
0.6

0.8
1.0

y

0.0

0.2

0.4

0.6
0.8

1.0

ρ
(r

)

0

2

4

6

8

10

(a) Initial density

x

0.0
0.2

0.4
0.6

0.8
1.0

y

0.0

0.2

0.4

0.6
0.8

1.0

φ
(r

)

0.6

0.5

0.4

0.3

0.2

0.1

0.0

(b) Jacobi potential

x

0.0
0.2

0.4
0.6

0.8
1.0

y

0.0

0.2

0.4

0.6
0.8

1.0

φ
(r

)

0.9
0.8
0.7
0.6

0.5

0.4

0.3

0.2

0.1

0.0

(c) Gauss-Seidel poten-
tial

x

0.0
0.2

0.4
0.6

0.8
1.0

y

0.0

0.2

0.4

0.6
0.8

1.0

φ
(r

)

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

(d) Multigrid potential

Figure 4: Surface plots of the initial density and calculated potentials

6


	Galerkin coarse grid approximation
	Iteratively solving Poisson’s equation

