Fundamentals of Simulation Methods

Exercise Sheet 5

Daniel Rosenblüh, Janosh Riebesell

November 27th, 2015

Multigrid solver for linear systems

1 Galerkin coarse grid approximation

Consider the one-dimensional problem

$$
\begin{equation*}
\frac{\partial^{2} \Phi}{\partial^{2} x}=4 \pi G \rho(x), \tag{1}
\end{equation*}
$$

which we want to solve using a multigrid accelerated iterative method on a grid of size $N=8$ with spacing h. The problem can be rephrased in the form

$$
\begin{equation*}
\mathbf{A} \boldsymbol{x}=\boldsymbol{b} \tag{2}
\end{equation*}
$$

where $\boldsymbol{x} \hat{=} \Phi$ and $\boldsymbol{b} \hat{=} 4 \pi G \rho h^{2}$ are vectors of size N and \mathbf{A} is an $N \times N$-matrix. Given the operator

$$
\mathbf{A}^{(h)}=\left(\begin{array}{cccccccc}
-2 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \tag{3}\\
1 & -2 & 1 & 0 & 0 & 0 & 0 & 0 \\
\vdots & \vdots \\
0 & 0 & 0 & 0 & 0 & 1 & -2 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 & 1 & -2
\end{array}\right)
$$

on the finest grid level $(N=8)$, find the operator $\mathbf{A}^{(2 h)}$ on the next coarser grid level ($N=4$, spacing $2 h$). In order to do so, carry out the following steps:
(a) Find the prolongation and restriction operators in matrix form,

$$
\begin{align*}
& \mathbf{I}_{(2 h)}^{(h)}:\left\{\begin{array}{l}
x_{2 i}^{(h)}=x_{i}^{(2 h)}, \\
x_{2 i+1}^{(h)}=\frac{1}{2}\left(x_{i}^{(2 h)}+x_{i+1}^{(2 h)}\right),
\end{array}\right. \tag{4}\\
& \mathbf{I}_{(h)}^{(2 h)}: x_{i}^{(2 h)}=\frac{1}{4}\left(x_{2 i-1}^{(h)}+2 x_{2 i}^{(h)}+x_{2 i+1}^{(h)}\right), \tag{5}
\end{align*}
$$

where $0 \leq i<N / 2$. Hint: $\mathbf{I}_{(2 h)}^{(h)} \boldsymbol{x}^{(h)}=\boldsymbol{x}^{(2 h)}$ and vice versa.
(b) Now calculate the operator $\mathbf{A}^{(2 h)}$ on the coarse grid using the Galerkin coarse grid approximation $\mathbf{A}_{\text {Gal }}^{(2 h)}=\mathbf{I}_{(h)}^{(2 h)} \mathbf{A}^{(h)} \mathbf{I}_{(2 h)}^{(h)}$.
(c) Compare the result to an operator obtained by direct discretization on the coarse grid.
(a) The notation employed in part (a) is quite confusing. We attempt a more natural way of expressing eqs. (4) and (5) by introducing

$$
\begin{align*}
\mathbf{I}_{(2 h)}^{(h)} & \equiv \mathbf{P}^{(2 h \rightarrow h)}, \\
\mathbf{I}_{(h)}^{(2 h)} & \equiv \mathbf{R}^{(h \rightarrow 2 h)}, \tag{6}
\end{align*}
$$

and resorting to the well-known index notation:

$$
\begin{align*}
x_{i}^{(h)} & =\sum_{j=1}^{N} P_{i j}^{(2 h \rightarrow h)} x_{j}^{(2 h)}, \tag{7}\\
x_{i}^{(2 h)} & =\sum_{j=1}^{N} R_{i j}^{(h \rightarrow 2 h)} x_{j}^{(h)} . \tag{8}
\end{align*}
$$

Looking at eqs. (7) and (8), it is now clear that $\mathbf{P}^{(2 h \rightarrow h)}$ and $\mathbf{R}^{(h \rightarrow 2 h)}$ are $N \times N / 2$ - and $N / 2 \times N$-matrices, respectively.
To implement eqs. (4) and (5), $\mathbf{P}^{(2 h \rightarrow h)}$ and $\mathbf{R}^{(h \rightarrow 2 h)}$ must take the form

$$
\begin{align*}
& \mathbf{P}^{(2 h \rightarrow h)}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 / 2 & 1 / 2 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 1 / 2 & 1 / 2 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 / 2 & 1 / 2 \\
0 & 0 & 0 & 1 \\
1 / 2 & 0 & 0 & 1 / 2
\end{array}\right) \tag{9}\\
& \mathbf{R}^{(h \rightarrow 2 h)}=\left(\begin{array}{cccccccc}
1 / 2 & 1 / 4 & 0 & 0 & 0 & 0 & 0 & 1 / 4 \\
0 & 1 / 4 & 1 / 2 & 1 / 4 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 / 4 & 1 / 2 & 1 / 4 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 / 4 & 1 / 2 & 1 / 4
\end{array}\right) \tag{10}
\end{align*}
$$

(b) Multiplying the operator $\mathbf{A}^{(h)}$ from the left with a restriction and from the right with a prolongation, we find

$$
\mathbf{A}_{\mathrm{Gal}}^{(2 h)}=\mathbf{R}^{(h \rightarrow 2 h)} \mathbf{A}^{(h)} \mathbf{P}^{(2 h \rightarrow h)}=\left(\begin{array}{cccc}
-1 / 2 & 1 / 4 & 0 & 1 / 4 \tag{11}\\
1 / 4 & -1 / 2 & 1 / 4 & 0 \\
0 & 1 / 4 & -1 / 2 & 1 / 4 \\
1 / 4 & 0 & 1 / 4 & -1 / 2
\end{array}\right)=\frac{1}{4}\left(\begin{array}{cccc}
-2 & 1 & 0 & 1 \\
1 & -2 & 1 & 0 \\
0 & 1 & -2 & 1 \\
1 & 0 & 1 & -2
\end{array}\right)
$$

(c) Setting out from the coarse grid instead with only $N / 2$ points per dimension spaced $2 h$ apart, the discretized Poisson equation would be given by

$$
\begin{equation*}
\frac{\Phi_{i+1}-2 \Phi_{i}+\Phi_{i-1}}{(2 h)^{2}}=4 \pi G \rho_{i} \tag{12}
\end{equation*}
$$

where the index i now runs from $i \in\left\{0,1,2, \ldots, \frac{N}{2}-1\right\}$ if N is still taken to be the number of points on the fine grid. If we then write this Poisson equation in the form of eq. (2), i.e. as a system of linear equations with the components of \boldsymbol{b} now given by

$$
\begin{equation*}
b_{i}=4 \pi G\left(2 h^{2}\right) \rho_{i} \tag{13}
\end{equation*}
$$

we see that $\mathbf{A}^{(2 h)}$ has to be

$$
\mathbf{A}^{(2 h)}=\left(\begin{array}{cccc}
-2 & 1 & 0 & 1 \tag{14}\\
1 & -2 & 1 & 0 \\
0 & 1 & -2 & 1 \\
1 & 0 & 1 & -2
\end{array}\right)=4 \mathbf{A}_{\mathrm{Gal}}^{(2 h)} .
$$

This $\mathbf{A}^{(2 h)}$ is larger by a factor of 4 than the one we found in part (b), as it should be since its corresponding \boldsymbol{b} is also four times larger.

2 Iteratively solving Poisson's equation

(a) Suppose we want to solve for the gravitational potential Φ on a periodic mesh with square-shaped domain $[0, L] \times[0, L]$ (with $L=1$ for definiteness) containing $N \times N$ cells and housing the mass density distribution

$$
\begin{equation*}
\rho(\boldsymbol{r})=\rho_{0} \exp \left(-\frac{\boldsymbol{r}^{2}}{2 \eta^{2}}\right), \tag{15}
\end{equation*}
$$

where $\eta=\frac{L}{10}$ is the spread of the mass spike, and $\rho_{0}=10$. Discretization of the Poisson equation gives an iteration rule where the left-hand side gives the updated values in terms of the old values on the right-hand side, in the form

$$
\begin{equation*}
x_{i, j}^{(n+1)}=\frac{1}{4}\left(x_{i-1, j}^{(n)}+x_{i+1, j}^{(n)}+x_{i, j-1}^{(n)}+x_{i, j+1}^{(n)}-b_{i, j}\right), \tag{16}
\end{equation*}
$$

where $x_{i, j}=\Phi_{i, j}$ and $b_{i, j}=4 \pi G h^{2} \rho_{i, j}-\bar{b}$. This can be readily used for Jacobi or GaussSeidel iteration schemes. Write a function jacobi_step(x[], b[], N) that replaces the input array x[] with a correspondingly updated array after one iteration step.
(b) To characterize the current error in the solution, write a function that calculates the residual

$$
\begin{equation*}
r_{i, j}=b_{i, j}-(\mathbf{A} \boldsymbol{x})_{i, j} . \tag{17}
\end{equation*}
$$

Also, write a function that computes the norm

$$
\begin{equation*}
S=\left(\sum_{i, j} r_{i, j}^{2}\right)^{1 / 2} \tag{18}
\end{equation*}
$$

of this vector and returns it. We can use S as a simple measure of the overall error.
(c) Now specialize to the case of $N=256$ and write a routine that suitably initializes the density field, with the density peak placed in the center of the box. Set the initial guess for the potential to $\boldsymbol{x}=\mathbf{0}$. Carefully think about how to initialize the array \boldsymbol{b} (for a periodic system, eq. (2) is only solvable for $\langle\boldsymbol{b}\rangle=\mathbf{0}$ because the matrix \mathbf{A} is singular, therefore \bar{b} has to be chosen appropriately). Now add a loop that calls the Jacobi iteration $N_{\text {steps }}=2000$ times, and after each step, determines the norm of the residual. You may use the C or Python template on the Moodle site and fill in the missing parts in order to reduce the coding work, or write everything from scratch if you prefer. Make a plot of the decay of the \log of this residual as a function of step number. What do you expect to get for $\sum_{i, j} \Phi_{i, j}$?
(d) Now produce a second version of your program in which the Jacobi iteration is replaced by Gauss-Seidel iteration where new values for elements of \boldsymbol{x} are used as soon as they become available, replacing any old value in the array.
(e) Change the Gauss-Seidel scheme to a red-black Gauss-Seidel iteration, i.e. you first update the red cells in a chess-board pattern overlaid over the mesh, then the black cells in a second pass. Produce a common plot of the decay rates of the residual for $N_{\text {steps }}$ steps with the three iteration variants considered thus far. Interpret the results. The red-black scheme result will perhaps disappoint you at first - what's going on?
(f) We now solve the problem with multigrid acceleration. First, write a function that carries out a restriction step of a mesh with dimension $N \times N$ (where N is a power of 2) onto a coarser mesh with dimension $N / 2 \times N / 2$. Make each point in the coarser mesh a weighted average of neighboring points, according to the stencil

$$
\mathbf{T}=\left[\begin{array}{ccc}
1 / 16 & 1 / 8 & 1 / 16 \tag{19}\\
1 / 8 & 1 / 4 & 1 / 8 \\
1 / 16 & 1 / 8 & 1 / 16
\end{array}\right]
$$

Give this function a calling signature do_restrict(N, fine[], NN, coarse[]) (only NN $=\mathrm{N} / 2$ is allowed when calling this function).
(g) Next, write a function that carries out a prolongation step of a mesh of dimension $N \times N$ onto a finer mesh of dimension $2 N \times 2 N$. Each point in the coarser mesh is additively injected into the finer mesh with weights

$$
\left.\mathbf{U}=] \begin{array}{ccc}
1 / 4 & 1 / 2 & 1 / 4 \tag{20}\\
1 / 2 & 1 & 1 / 2 \\
1 / 4 & 1 / 2 & 1 / 4
\end{array}\right]
$$

Note that points of the fine mesh that see a coarse point with weight $1 / 4$ will get contributions from 4 coarse points in total, similarly for the points with weight $1 / 2$, while the fine-mesh point with weight 1 simply inherits the value of one of the coarse mesh points. Give this function a calling signature do_prolong(NN, coarse[], N, fine []) (again, only $N N=N / 2$ is allowed when calling this function).
(h) Now write a function do_v_cycle(x[], b[], N) that carries out a V-cycle multigrid iteration on the current solution vector. The steps of the function should be

1. Do a Gauss-Seidel step.
2. Calculate the residuum.
3. Restrict the residuum to a coarser mesh $N^{\prime}=N / 2$, and scale it by a factor of 4 to effectively take care of the $1 / h \leftarrow 1 /(2 h)$ scaling of the differential operator (whose explicit form we leave invariant, for simplicity).
4. Call do_v_cycle recursively for the coarser mesh, with a zero error vector as starting guess for x , and the coarsened residual for b .
5. Now prolong the returned error vector to the fine mesh N.
6. Add this to the current solution vector on the fine mesh.
7. Do another Gauss-Seidel step.

Steps 2 to 6 are only done provided $N>4$. To simplify the coding, you may use one of the code templates provided on the Moodle site.
(i) Finally, solve the original problem by repeatedly calling your V-cycle iteration. Again, plot the residual as a function of the number of steps taken, and compare with the results obtained earlier for plain Jacobi and Gauss-Seidel iteration.

For parts (a) and (b), see jacobi.c.
(c) A half-logarithmic plot of the decay rate of the norm S of the residual is shown in fig. 1 .

Figure 1: Decay of Jacobian residual norm S
(d) See gausseidel.c.
(e) Figure 2 displays the decay rates of the residual norm as produced by the Jacobi method and the Gauss-Seidel method with and without chessboard scheme.

Figure 2: Gauss-Seidel residual decay rates compared to to that of the Jacobi method

As expected, we see that Gauss-Seidel's superior utilization of available information leads to the norm of its residual S_{GS} decaying considerably faster than that of Jacobi. The same improvement is not observed by further implementing a chessboard-like update scheme for the potential. The decay rate appears largely unchanged except for a spike during the very first step suggesting an ill-suited initial density distribution for this method.

For parts (f) to (h), see multigrid.c.

Figure 3: Residual decay of the multigrid method compared to Jacobi and Gauss-Seidel
(i) Figure 3 compares the decay rate produced by the multigrid method to those of the Jacobi and Gauss-Seidel methods. We indeed find a dramatic increase in the convergence rate.

Note: A surface plot of the initial density distribution $\rho_{\mathrm{i}}(\boldsymbol{r})$ over the entire simulation domain is shown in fig. 4a. Figures 4 b to 4 d display the noticeably differing corresponding potentials according to the Jacobi, Gauss-Seidel and multigrid methods, respectively. Since each method convergences at a different rate, plotting the potential after a constant number of 2000 sweeps is akin to plotting it at different times.

(a) Initial density

(b) Jacobi potential

(c) Gauss-Seidel potential

(d) Multigrid potential

Figure 4: Surface plots of the initial density and calculated potentials

