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1 A simple molecular dynamics code

In this exercise, we construct a simple molecular dynamics code, using first the microcanonical
ensemble in which the system is closed and its total energy stays constant. We want to
simulate a simple system of N = N3

1d argon atoms, interacting via a Lennard-Jones potential,

V (r) = 4ε

[(σ
r

)12
−
(σ
r

)6]
, (1)

meaning that the total potential energy is given by

Epot =
1

2

N∑
i,j

V (|ri − rj |). (2)

For argon, we will use the parameters

σ = 3.4× 10−10 m,

ε = 120 K · kB = 1.65× 10−21 J,

m = 6.69× 10−26 kg,

(3)

where σ and ε characterize the potential, and m is the mass of each atom. Write code that
integrates the equations of motion of N argon atoms, placed into a cubical box of side-length
L with periodic boundary conditions. Proceed along the following steps:

(a) In your code, express all length units in terms of σ, all energies in terms of ε, and all
masses in terms of m. In other words, introduce dimensionless distances

r′ =
r

σ
, (4)

dimensionless energies E′ = E/ε, etc., and rewrite all relevant equations in terms of
the dimensionless quantities. What is a suitable quantity to scale the velocities?

(b) Write a function that sets up N1d particles per dimension on a regular grid in a periodic
box of size L. We adopt a mean particle spacing of d̄ = 5σ (implying that L′ = N1d in
the scaled length units). For the initial velocities, assume that we prescribe a certain
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kinetic temperature T in Kelvin, from which we can compute a one-dimensional velocity
dispersion as

σ =

√
kBT

m
. (5)

Scale this velocity dispersion to internal dimensionless units, yielding σ′. Now draw
three random numbers (ṽx, ṽy, ṽz) for every atom from a Gaussian distribution with
zero mean and a dispersion of unity, and scale them with σ′ to get the initial velocities
v′ = σ′ṽ. This means your initial velocities will then correspond to a Maxwellian with
temperature T .
Note: If you only have a random number generator that produces uniform random
numbers in the interval ]0, 1[, you can produce a Gaussian distributed number g by
drawing two random numbers u1, u2 from ]0, 1[ and transforming them as

g =
√
−2 ln(u1) cos(2πu2). (6)

(c) Now write a function that calculates the acceleration a′i of each particle, in the dimen-
sionless units used by your code. For simplicity, sum over all distinct other particles
in the box and always consider the nearest periodic image for each pair. Use a (quite
large) cut-off radius for the potential equal to rcut = 10σ, i.e. set the potential to zero
for distances larger than rcut.

(d) Use the Leapfrog time integration scheme to advance the particles. To this end, prepare
a function that ’kicks’ the particles with their stored accelerations for a given time
interval ∆t. Also, produce a function that ’drifts’ the particles with constant velocity
over a given time interval ∆t. After the particles have been moved, map them back
periodically into the principal box in case they have left it.

(e) Now, write a driver routine that first initializes the particles, and then calculates the
accelerations once at the beginning. Add a loop over Nsteps that first kicks the particles
by half a step, then drifts them by the full step, followed by a new force calculation.
Finally, complete the step by again kicking the particles by half a step. To simplify the
coding work, you can use the C-template provided on the Moodle site. (Note that for
this exercise, the speed advantage of C is an asset. You may try with Python as well,
but be prepared for significant wait times.)

(f) Now, write a driver routine that first initializes the particles, and then calculates the
accelerations once at the beginning. Add a loop over Nsteps that first kicks the particles
by half a step, then drifts them by the full step, followed by a new force calculation.
Finally, complete the step by again kicking the particles by half a step. To simplify the
coding work, you can use the C-template provided on the Moodle site. (Note that for
this exercise, the speed advantage of C is an asset. You may try with Python as well,
but be prepared for significant wait times.)

(g) In the force calculation routine, add a computation of the total potential seen by each
particle due to its neighbors. Also, write a routine that computes the total kinetic
energy and total potential energy of the system, as well as the instantaneous kinetic
temperature. Call this function whenever a full timestep has been completed, and
output the mean kinetic energy per particle, mean potential energy per particle, and
kinetic temperature to a file.
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(h) Run your code with a timestep ∆t′ = 0.01 in internal units (corresponding to ∆t =√
m/εσ∆t′) for 60 000 steps using N1d = 8 (i.e. N = 512 atoms) and Tinit = 80 K.

Confirm that the total energy is conserved well.

(i) Now we want to ensure that the system maintains a temperature equal to a prescribed
temperature T , meaning that we deviate from the microcanonical ensemble and rather
seek a coarse approximation of a canonical ensemble. To this end, add a function
that scales the velocities such that the instantaneous kinetic energy corresponds to the
imposed value. Call this scaling function every 100th step in your timestep loop.

(j) Run your molecular dynamics simulations for the target temperature 80 K, and also for
a temperature 70 K. Estimate from the results for the last 10 000 steps (to reduce the
influence of the initial transient phase) the molar heat capacity at fixed volume, Cv,
at the temperature T ≈ 75 K (and the given density). Also, do a similar exercise to
estimate the heat capacity at a temperature of T ≈ 400 K. Compare both results with
the heat capacity of CV = 3

2R expected for a mono-atomic ideal gas, where R is the
gas constant. Interpret your result.

(k) Finally, carry out an MD simulation where you set the imposed temperature to T =
30 K. Make a plot that shows the mean kinetic and mean potential energies per particle
as a function of time, as well as the total mean energy. Interpret your result.

(a) w =
√
ε/m defines a suitable scale for in-system velocities.

For parts (b) to (g), see molecular_dynamics.c.

(h) As can be seen from fig. 1, the total energy at T = 80 K is stable.
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Figure 1: Total energy Etot as a function of time t

For part (i), see molecular_dynamics.c.
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(j) For the isochoric heat capacity CV (T ), we find

CV (T ≈ 75 K) = 1.7333R,

CV (T ≈ 400 K) = 1.5233R.
(7)

These values suggest that our numerical value approaches the analytic one of 3
2 with in-

creasing temperature. This is expected since with increasing temperature, kinetic energies
of individual particles increase relative to their potential energies. At very high tempera-
tures, the Lennard-Jones potential is effectively rendered irrelevant and the system behaves
like an ideal gas.

(k) Figure 2 displays the kinetic, potential, and total energy over time at T = 30 K.
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Figure 2: Kinetic, potential and total energy as a function of time t

Since we now rescale the velocities in regular intervals such that the average kinetic energy
of each particle produces a constant temperature, the system is effectively coupled to a heat
bath. This apparently causes the total energy to decrease over time, from which we can
infer that the system gives of heat to its environment. In fact, looking closely at individual
particle positions, we see that groups of argon atoms coalesce into lumps all throughout
our simulation domain. We therefore interpret our results as a phase transition, i.e. the
condensation of argon gas into argon fog.

2 Entropy evolution of an ideal gas

Consider the entropic function

A ≡ P

ργ
= (γ − 1)

u

ργ−1
(8)

for an ideal gas with adiabatic index γ (while A is not identical to the specific thermodynamic
entropy, it is a direct function of it and thus can be used in lieu of it).

4

https://www.youtube.com/watch?v=p28cAWb5_EE


(a) Show from the differential form of the Euler equations that A remains constant along
the path of a fluid element, or in other words, that

DA

Dt
= 0. (9)

(b) You may have been told that entropy increases at shock waves. How can we reconcile
this statement with the above result?

(a) The Lagrangian (or convective) derivative is defined in terms of the flow velocity v as

D

Dt
=

∂

∂t
+ v ·∇. (10)

By the first Euler equation (representing mass conservation), we have

0 =
∂ρ

∂t
+ ∇ · (ρv) =

(
∂ρ

∂t
+ v ·∇ρ

)
+ ρ∇ · v, (11)

which is equivalent to
Dρ

Dt
= −ρ∇ · v. (12)

Note: Physically, Dρ/Dt = 0 just means that the density ρ while moving with the fluid
remains constant. This explains why an incompressible fluid has to fulfill ∇ · v = 0.

Next, we consider the second Euler equation (momentum conservation).

0 =
∂

∂t
(ρv) + ∇(ρv2 + P ) = v

(
∂ρ

∂t
+ ∇ · (ρv)

)
+ ρ

(
∂v

∂t
+ v ·∇v

)
+ ∇P. (13)

In the above sum, the first term vanishes due to the first Euler equation. The second
contains the Lagrangian derivative of the fluid velocity v. We thus obtain

Dv

Dt
= −∇P

ρ
. (14)

Finally, the third Euler equation (energy conservation) gives

0 =
∂

∂t
(ρe) + ∇ · [(ρe+ P )v] = e

(
∂ρ

∂t
+ ∇ · (ρv)

)
+ ρ

(
∂e

∂t
+ v ·∇e

)
+ ∇ · Pv. (15)

The first term on the r.h.s. again vanishes by the first Euler equation and the second is
the Lagrangian derivative of the total energy per unit mass e. We thus obtain

De

Dt
= −P

ρ
∇ · v − v

ρ
·∇P. (16)

Taking eqs. (12), (14) and (16), we are fully armed to tackle the problem. Using the
definition of the entropic function given in eq. (8), we can write its Lagrangian derivative
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as
DA

Dt
=

γ − 1

ργ−1

[
Du

Dt
− (γ − 1)u

ρ

Dρ

Dt

]
(12)
=

γ − 1

ργ−1

[
De

Dt
− 1

2

Dv2

Dt
+

(γ − 1)u

ρ
ρ∇ · v

]
(16)
=

γ − 1

ργ−1

[
−P
ρ
∇ · v − v

ρ
·∇P − v

Dv

Dt
+
P

ρ
∇ · v

]
(14)
=

γ − 1

ργ−1

[
−v

ρ
·∇P +

v

ρ
·∇P

]
= 0,

(17)

where we used in the second step, that the thermal energy per unit mass u can be expressed
as u = e− v2

2 i.t.o. the total energy p.u.m. e and the fluid velocity v.

(b) In the presence of shock waves, thermodynamic quantities such as density, temperature,
and entropy exhibit discontinuities. Hence, the starting point of our discussion in part (a),
i.e. the Euler equations in differential form, would break down. Consequently, the result
of part (a) is not valid for shock waves and entropy is free to increase.

6


	A simple molecular dynamics code
	Entropy evolution of an ideal gas

