String Theory

Solution to Assignment 7

Janosh Riebesell

November 24th, 2015 (due December 2th, 2015)

Lecturer: Timo Weigand

1 Primary fields and radial quantization

A primary field $\phi(z, \bar{z})$ is a tensor field under conformal transformations $z \rightarrow z^{\prime}, \bar{z} \rightarrow \bar{z}^{\prime}$ in the sense that

$$
\begin{equation*}
\phi(z, \bar{z}) \rightarrow \phi^{\prime}\left(z^{\prime}, \bar{z}^{\prime}\right)=\left(\frac{\partial z^{\prime}}{\partial z}\right)^{-h}\left(\frac{\partial \bar{z}^{\prime}}{\partial \bar{z}}\right)^{-\bar{h}} \phi(z, \bar{z}) \tag{1}
\end{equation*}
$$

where z, \bar{z} denote arbitrary holomorphic functions.
a) How does a primary field with conformal weights h, \bar{h} transform under dilations $z \rightarrow e^{\lambda} z$ and rotations $z \rightarrow e^{i \theta} z$ with $\lambda, \theta \in \mathbb{R}$? Give a physical interpretation for $h+\bar{h}$ and $h-\bar{h}$.
b) Consider the infinitesimal conformal transformation

$$
\begin{equation*}
z^{\prime}(z)=z+\zeta(z), \quad \bar{z}^{\prime}(\bar{z})=\bar{z}+\bar{\zeta}(\bar{z}) . \tag{2}
\end{equation*}
$$

Show that the infinitesimal transformation of a primary field is given by

$$
\begin{equation*}
\delta_{\zeta, \bar{\zeta}} \phi(z, \bar{z})=\left[h \partial_{z} \zeta+\bar{h} \partial_{\bar{z}} \bar{\zeta}+\zeta \partial_{z}+\bar{\zeta} \partial_{\bar{z}}\right] \phi(z, \bar{z}) . \tag{3}
\end{equation*}
$$

c) On the cylinder with coordinates (τ, σ) we defined

$$
\begin{equation*}
\xi^{ \pm}=\tau \pm \sigma=-i\left(\tau^{\prime} \pm i \sigma\right), \quad \tau=-i \tau^{\prime} \tag{4}
\end{equation*}
$$

and τ^{\prime} is the time in Euclidean signature (after Wick rotation). After relabelling $\tau^{\prime} \rightarrow \tau$ we have

$$
\begin{equation*}
\xi^{+}=-i \bar{\omega}, \quad \xi^{-}=-i \omega, \quad \omega=\tau-i \sigma . \tag{5}
\end{equation*}
$$

Argue that the conformal map from the cylinder to the Riemann sphere, defined by

$$
\begin{equation*}
\omega \rightarrow z(\omega)=e^{\frac{2 \pi}{l} \omega}, \tag{6}
\end{equation*}
$$

maps left-/right-moving fields to holomorphic/antiholomorphic fields and that for a primary field $\Phi=\Phi_{L}\left(\xi^{-}\right)+\Phi_{R}\left(\xi^{+}\right)$a mode expansion

$$
\begin{equation*}
\Phi_{L}\left(\xi^{-}\right)=\left(\frac{2 \pi}{l}\right)^{h} \sum_{n} \phi_{n} e^{i \frac{2 \pi}{l} n \xi^{-}}, \quad \Phi_{R}\left(\xi^{+}\right)=\left(\frac{2 \pi}{l}\right)^{\bar{h}} \sum_{n} \tilde{\phi}_{n} e^{i \frac{2 \pi}{l} n \xi^{+}}, \tag{7}
\end{equation*}
$$

translates into $\Phi(z, \bar{z})=\Phi(z)+\bar{\Phi}(\bar{z})$,

$$
\begin{equation*}
\Phi(z)=\sum_{n} \phi_{n} z^{-n-h}, \quad \bar{\Phi}(\bar{z})=\sum_{n} \phi_{n} \bar{z}^{-n-\bar{h}} . \tag{8}
\end{equation*}
$$

d) Argue that a time-ordered product of fields on the cylinder maps to a radially ordered product

$$
\mathcal{R}\left[\Phi_{1}\left(z_{1}\right) \Phi_{2}\left(z_{2}\right)\right]= \begin{cases}\Phi_{1}\left(z_{1}\right) \Phi_{2}\left(z_{2}\right) & \text { for }\left|z_{1}\right|>\left|z_{2}\right| \tag{9}\\ \Phi_{2}\left(z_{2}\right) \Phi_{1}\left(z_{1}\right) & \text { for }\left|z_{2}\right|>\left|z_{1}\right|\end{cases}
$$

a) Under dilations (rescalings) $z \rightarrow z^{\prime}=e^{\lambda} z, \lambda \in \mathbb{R}$, a primary field $\phi(z, \bar{z})$ with conformal weights h, \bar{h} transforms as

$$
\begin{equation*}
\phi(z, \bar{z}) \rightarrow \phi^{\prime}\left(z^{\prime}, \bar{z}^{\prime}\right)=\left(\frac{\partial z^{\prime}}{\partial z}\right)^{-h}\left(\frac{\partial \bar{z}^{\prime}}{\partial \bar{z}}\right)^{-\bar{h}} \phi(z, \bar{z})=e^{-h \lambda} e^{-\bar{h} \lambda} \phi(z, \bar{z})=e^{-(h+\bar{h}) \lambda} \phi(z, \bar{z}) \tag{10}
\end{equation*}
$$

Under rotations $z \rightarrow z^{\prime}=e^{i \theta} z, \theta \in \mathbb{R}, \phi(z, \bar{z})$ becomes

$$
\begin{equation*}
\phi(z, \bar{z}) \rightarrow \phi^{\prime}\left(z^{\prime}, \bar{z}^{\prime}\right)=e^{-i h \theta} e^{i \bar{h} \theta} \phi(z, \bar{z})=e^{-i(h-\bar{h}) \theta} \phi(z, \bar{z}) \tag{11}
\end{equation*}
$$

From eqs. (10) and (11), we infer that the sum of conformal weights $h+\bar{h}=\Delta$ gives the scaling dimension of a primary field $\phi(z, \bar{z})$, whereas the difference $h-\bar{h}=s$ is the field's (conformal) spin.
b) Equation (1) can equivalently be written as

$$
\begin{equation*}
\phi(z, \bar{z}) \rightarrow \phi^{\prime}(z, \bar{z})=\left(\frac{\partial z^{\prime}}{\partial z}\right)^{-h}\left(\frac{\partial \bar{z}^{\prime}}{\partial \bar{z}}\right)^{-\bar{h}} \phi\left(z^{\prime}, \bar{z}^{\prime}\right) \tag{12}
\end{equation*}
$$

For the conformal transformations $z^{\prime}(z)=z+\zeta(z), \bar{z}^{\prime}(\bar{z})=\bar{z}+\bar{\zeta}(\bar{z})$, we can expand each term in eq. (12) to first order in the infinitesimal (anti-)chiral fields $\zeta(z), \bar{\zeta}(\bar{z})$ to get

$$
\begin{align*}
& \left(\frac{\partial z^{\prime}}{\partial z}\right)^{-h}=\left(1+\frac{\partial \zeta(z)}{\partial z}\right)^{-h}=1+h \partial_{z} \zeta(z)+\mathcal{O}\left(\zeta^{2}\right) \tag{13}\\
& \left(\frac{\partial \bar{z}^{\prime}}{\partial \bar{z}}\right)^{-\bar{h}}=\left(1+\frac{\partial \bar{\zeta}(\bar{z})}{\partial \bar{z}}\right)^{-\bar{h}}=1+\bar{h} \partial_{\bar{z}} \bar{\zeta}(\bar{z})+\mathcal{O}\left(\bar{\zeta}^{2}\right) \tag{14}\\
& \phi\left(z^{\prime}, \bar{z}^{\prime}\right)=\phi(z, \bar{z})+\zeta(z) \partial_{z} \phi(z, \bar{z})+\bar{\zeta}(\bar{z}) \partial_{\bar{z}} \phi(z, \bar{z})+\mathcal{O}\left(\zeta^{2}, \bar{\zeta}^{2}\right) \tag{15}
\end{align*}
$$

Dropping all terms beyond linear order gives the infinitesimal transformation

$$
\begin{align*}
\delta_{\zeta, \bar{\zeta}} \phi(z, \bar{z}) & \equiv \phi^{\prime}(z, \bar{z})-\phi(z, \bar{z}) \\
& =\left(1+h \partial_{z} \zeta(z)\right)\left(1+\bar{h} \partial_{\bar{z}} \bar{\zeta}(\bar{z})\right)\left(1+\zeta(z) \partial_{z}+\bar{\zeta}(\bar{z}) \partial_{\bar{z}}\right) \phi(z, \bar{z})-\phi(z, \bar{z}) \\
& =\left[1+h \partial_{z} \zeta(z)+\bar{h} \partial_{\bar{z}} \bar{\zeta}(\bar{z})+\zeta(z) \partial_{z}+\bar{\zeta}(\bar{z}) \partial_{\bar{z}}\right] \phi(z, \bar{z})-\phi(z, \bar{z}) \tag{16}\\
& =\left[h \partial_{z} \zeta(z)+\bar{h} \partial_{\bar{z}} \bar{\zeta}(\bar{z})+\zeta(z) \partial_{z}+\bar{\zeta}(\bar{z}) \partial_{\bar{z}}\right] \phi(z, \bar{z})
\end{align*}
$$

c) A Wick rotation on the cylinder with coordinates $(\tau, \sigma) \in \mathbb{R}^{2}$ sends

$$
\xi^{ \pm}=\tau \pm \sigma \quad \xrightarrow{\mathrm{W} . \mathrm{R.}} \quad-i(\tau \pm i \sigma) \equiv\left\{\begin{array}{l}
-i \bar{\omega}=\xi^{+} \tag{17}\\
-i \omega=\xi^{-}
\end{array}\right.
$$

where now $\tau \in i \mathbb{R}$ and $\omega, \bar{\omega}$ are coordinates on the cylinder.
After Wick rotating, the conformal map

$$
\begin{equation*}
i \xi^{-}=\omega \rightarrow z(\omega)=e^{\frac{2 \pi}{l} \omega}, \quad i \xi^{+}=\bar{\omega} \rightarrow \bar{z}(\bar{\omega})=e^{\frac{2 \pi}{l} \bar{\omega}} \tag{18}
\end{equation*}
$$

from the cylinder to the Riemann sphere respectively the complex plane transforms left-movers into holomorphic fields $\Phi_{L}\left(\xi^{-}\right) \rightarrow \Phi(z(\omega))$ ones and right-movers into antiholomorphic ones $\Phi_{R}\left(\xi^{+}\right) \rightarrow$ $\Phi(\bar{z}(\bar{\omega}))$.
This can be illustrated for the case of a primary field $\Phi\left(\xi^{+}, \xi^{-}\right)=\Phi_{L}\left(\xi^{-}\right)+\Phi_{R}\left(\xi^{+}\right)$with conformal weights (h, \bar{h}), where the left- and right-moving components are given by

$$
\begin{equation*}
\Phi_{L}\left(\xi^{-}\right)=\left(\frac{2 \pi}{l}\right)^{h} \sum_{n} \phi_{n} e^{i \frac{2 \pi}{l} n \xi^{-}}, \quad \Phi_{R}\left(\xi^{+}\right)=\left(\frac{2 \pi}{l}\right)^{\bar{h}} \sum_{n} \tilde{\phi}_{n} e^{i \frac{2 \pi}{l} n \xi^{+}} . \tag{19}
\end{equation*}
$$

Under (18), these transform into

$$
\begin{align*}
\Phi_{L}\left(\xi^{-}\right) \rightarrow \Phi_{L}(z) & =\left(\frac{\partial z}{\partial \omega}\right)^{-h} \Phi_{L}\left(\xi^{-}\right)=\left(\frac{2 \pi}{l} e^{\frac{2 \pi}{l} \omega}\right)^{-h}\left(\frac{2 \pi}{l}\right)^{h} \sum_{n} \phi_{n} e^{-\frac{2 \pi}{l} n \omega} \tag{20}\\
& =\sum_{n} \phi_{n} e^{\left(\frac{2 \pi}{l} \omega\right)^{-n-h}}=\sum_{n} \phi_{n} z^{-n-h}, \\
\Phi_{R}\left(\xi^{+}\right) \rightarrow \Phi_{R}(\bar{z}) & =\left(\frac{\partial \bar{z}}{\partial \bar{\omega}}\right)^{-\bar{h}} \Phi_{R}\left(\xi^{+}\right)=\left(\frac{2 \pi}{l} e^{\left.\frac{2 \pi \bar{\omega}}{l}\right)^{-\bar{h}}\left(\frac{2 \pi}{l}\right)^{\bar{h}} \sum_{n} \tilde{\phi}_{n} e^{-\frac{2 \pi}{l} n \bar{\omega}}}\right. \tag{21}\\
& =\sum_{n} \tilde{\phi}_{n} e^{\left(\frac{2 \pi}{l} \bar{\omega}\right)^{-n-\bar{h}}}=\sum_{n} \tilde{\phi}_{n} z^{-n-\bar{h}} .
\end{align*}
$$

d) To see that time ordering on the cylinder corresponds to radial ordering on the complex plane, we choose any two points $\omega_{1}=\tau_{1}-i \sigma_{1}, \omega_{2}=\tau_{2}-i \sigma_{2}$ such that $\tau_{1} \leq \tau_{2}$, i.e. in a time-ordered operator product containing τ_{1} and τ_{2}, the operator evaluated at τ_{1} would act first. For the corresponding points z_{1}, z_{2} on the plane, we have the relation

$$
\begin{align*}
\tau_{1} \leq \tau_{2} \quad \Longleftrightarrow \quad\left|z_{1}\right| & =\left|e^{\frac{2 \pi}{l} \omega_{1}}\right|=\left|e^{\frac{2 \pi}{l}\left(\tau_{1}-i \sigma_{1}\right)}\right|=e^{\frac{2 \pi}{l} \tau_{1}} \tag{22}\\
& \leq e^{\frac{2 \pi}{l} \tau_{2}}=\left|e^{\frac{2 \pi}{l}\left(\tau_{2}-i \sigma_{2}\right)}\right|=\left|z_{2}\right| .
\end{align*}
$$

Thus in a radially ordered product, an operator evaluated on the plane at z_{1} would also act first. The following graphic visualizes how different times on the cylinder correspond to different times on the plane.

2 The OPE of the energy momentum tensor

In the complex plane, the Virasoro generators $L_{n}, n \in \mathbb{Z}$ are given by

$$
\begin{equation*}
L_{n}=\oint_{C_{0}} \frac{\mathrm{~d} z}{2 \pi i} z^{n+1} T(z) . \tag{23}
\end{equation*}
$$

a) Show that

$$
\begin{equation*}
\left[L_{m}, L_{n}\right]=\oint_{C_{0}} \frac{\mathrm{~d} w}{2 \pi i} \oint_{C_{w}} \frac{\mathrm{~d} z}{2 \pi i} z^{m+1} w^{n+1} \mathcal{R}[T(z) T(w)] \tag{24}
\end{equation*}
$$

where C_{0} denotes a contour about $z=0$ and C_{w} is a contour about $z=w$. As usual the product $\mathcal{R}[T(z) T(w)]$ is meant to be the radially ordered product.
Hint: Write the commutator as a difference of two double contour integrals and use a contour deformation of the $\mathrm{d} z$ integration for fixed w.
b) Use eq. (24) and the (radially ordered) operator product

$$
\begin{equation*}
\mathcal{R}[T(z) T(w)]=\frac{c / 2}{(z-w)^{4}}+\frac{2 T(w)}{(z-w)^{2}}+\frac{\partial_{w} T(w)}{z-w}+\underbrace{\mathcal{O}\left[(z-w)^{0}\right]}_{\text {finite terms }}, \tag{25}
\end{equation*}
$$

as well as the Cauchy-Riemann formula,

$$
\begin{equation*}
\oint_{C_{w}} \frac{\mathrm{~d} z^{\prime}}{2 \pi i} \frac{f\left(z^{\prime}\right)}{\left(z^{\prime}-z\right)^{n}}=\frac{1}{(n-1)!} f^{(n-1)}(z) \tag{26}
\end{equation*}
$$

to rederive the quantum Virasoro algebra

$$
\begin{equation*}
\left[L_{m}, L_{n}\right]=(m-n) L_{m+n}+\frac{c}{12} m\left(m^{2}-1\right) \delta_{m,-n} . \tag{27}
\end{equation*}
$$

c) The Schwarzian derivative is defined as

$$
\begin{equation*}
S(\tilde{z}, z)=\frac{\partial^{3} \tilde{z}}{\partial^{3} z}\left(\frac{\partial \tilde{z}}{\partial z}\right)^{-1}-\frac{3}{2}\left(\frac{\partial^{2} \tilde{z}}{\partial^{2} z}\right)^{2}\left(\frac{\partial \tilde{z}}{\partial z}\right)^{-2} \tag{28}
\end{equation*}
$$

Show that the transformation

$$
\begin{equation*}
T(z) \rightarrow \tilde{T}(\tilde{z})=\left(\frac{\partial \tilde{z}}{\partial z}\right)^{-2}\left[T(z)-\frac{c}{12} S(\tilde{z}, z)\right] \tag{29}
\end{equation*}
$$

gives at the infinitesimal level for $\tilde{z}=z+\epsilon(z)$,

$$
\begin{equation*}
\delta T(z)=\epsilon(z) \partial T(z)+2\left[\partial_{z} \epsilon(z)\right] T(z)+\frac{c}{12} \partial_{z}^{3} \epsilon(z) . \tag{30}
\end{equation*}
$$

d) Apply this to the map from the cylinder to the plane, given by

$$
\begin{equation*}
\tau-i \sigma \equiv \omega \rightarrow z(\omega)=e^{\frac{2 \pi}{T} \omega} \tag{31}
\end{equation*}
$$

to show that

$$
\begin{equation*}
T_{\mathrm{cyl} 1}(\omega)=\left(\frac{2 \pi}{l}\right)^{2}\left(z^{2} T_{\mathrm{pln}}(z)-\frac{c}{24}\right) . \tag{32}
\end{equation*}
$$

Which are the various physical interpretations for c ?
a) Expanding the commutator of Virasoro generators gives

$$
\begin{align*}
{\left[L_{m}, L_{n}\right] } & =\oint_{C_{0}} \frac{\mathrm{~d} z}{2 \pi i} z^{m+1} T(z) \oint_{C_{0}} \frac{\mathrm{~d} w}{2 \pi i} w^{n+1} T(w)-\oint_{C_{0}} \frac{\mathrm{~d} w}{2 \pi i} w^{n+1} T(w) \oint_{C_{0}} \frac{\mathrm{~d} z}{2 \pi i} z^{m+1} T(z) \\
& =\oint_{C_{0}} \frac{\mathrm{~d} w}{2 \pi i}\left(\oint_{C_{0}} \frac{\mathrm{~d} z}{2 \pi i} z^{m+1} w^{n+1} T(z) T(w)-\oint_{C_{0}} \frac{\mathrm{~d} z}{2 \pi i} z^{m+1} w^{n+1} T(w) T(z)\right) \tag{33}
\end{align*}
$$

We use the following contour deformation for the two integrals in parenthesis so that after the deformation, we have $|w| \leq|z| \forall z$ in the first integral and $|w| \geq|z| \forall z$ in the second.

Then eq. (33) simplifies to

$$
\begin{equation*}
\left[L_{m}, L_{n}\right]=\oint_{C_{0}} \frac{\mathrm{~d} w}{2 \pi i} \oint_{C_{w}} \frac{\mathrm{~d} z}{2 \pi i} z^{m+1} w^{n+1} \mathcal{R}[T(z) T(w)] \tag{34}
\end{equation*}
$$

b) To rederive ${ }^{1}$ the quantum Virasoro algebra, we insert eq. (25) into eq. (34) to get

$$
\begin{equation*}
\left[L_{m}, L_{n}\right]=\oint_{C_{0}} \frac{\mathrm{~d} w}{2 \pi i} \oint_{C_{w}} \frac{\mathrm{~d} z}{2 \pi i} z^{m+1} w^{n+1}\left[\frac{c / 2}{(z-w)^{4}}+\frac{2 T(w)}{(z-w)^{2}}+\frac{\partial_{w} T(w)}{z-w}\right] \tag{35}
\end{equation*}
$$

We can perform the z-integration using the Cauchy-Riemann formula

$$
\begin{equation*}
\oint_{C_{w}} \frac{\mathrm{~d} z^{\prime}}{2 \pi i} \frac{f\left(z^{\prime}\right)}{\left(z^{\prime}-z\right)^{n}}=\frac{1}{(n-1)!} f^{(n-1)}(z) \tag{36}
\end{equation*}
$$

The three terms in brackets thus become

$$
\begin{align*}
& \oint_{C_{w}} \frac{\mathrm{~d} z}{2 \pi i} \frac{\frac{c}{2} z^{m+1} w^{n+1}}{(z-w)^{4}}=\frac{c}{2 \cdot 3!}(m+1) m(m-1) w^{m-2} w^{n+1}=\frac{c}{12} m\left(m^{2}-1\right) w^{m-n-1} \tag{37}\\
& \oint_{C_{w}} \frac{\mathrm{~d} z}{2 \pi i} \frac{2 T(w) z^{m+1} w^{n+1}}{(z-w)^{2}}=2 T(w)(m+1) w^{m} w^{n+1} \tag{38}\\
& \oint_{C_{w}} \frac{\mathrm{~d} z}{2 \pi i} \frac{\partial_{w} T(w) z^{m+1} w^{n+1}}{z-w}=\partial_{w} T(w) w^{m+1} w^{n+1} \tag{39}
\end{align*}
$$

We reinsert eqs. (37) to (39) into eq. (35) and get

$$
\begin{align*}
{\left[L_{m}, L_{n}\right] } & =\oint_{C_{0}} \frac{\mathrm{~d} w}{2 \pi i}\left[\frac{c}{12} m\left(m^{2}-1\right) w^{m-n-1}+2 T(w)(m+1) w^{m} w^{n+1}+\partial_{w} T(w) w^{m+1} w^{n+1}\right] \\
& =\frac{c}{12} m\left(m^{2}-1\right) \delta_{m,-n}+\underbrace{\oint_{C_{0}} \frac{\mathrm{~d} w}{2 \pi i}\left[T(w)(m+1) w^{m} w^{n+1}\right.}_{(m+1) L_{m+n}}+\partial_{w}\left[T(w) w^{m+1}\right] w^{n+1}] \tag{40}
\end{align*}
$$

Integration by parts in the last term where the boundary terms cancel since we integrate over the closed contour C_{0} gives

$$
\begin{align*}
\oint_{C_{0}} \frac{\mathrm{~d} w}{2 \pi i} \partial_{w}\left[T(w) w^{m+1}\right] w^{n+1} & =-\oint_{C_{0}} \frac{\mathrm{~d} w}{2 \pi i} T(w) w^{m+1} \partial_{w} w^{n+1} \\
& =-(n+1) \oint_{C_{0}} \frac{\mathrm{~d} w}{2 \pi i} T(w) w^{m+1} w^{n}=-(n+1) L_{m+n} \tag{41}
\end{align*}
$$

Thus we arrive at the renowned Virasoro algebra

$$
\begin{align*}
{\left[L_{m}, L_{n}\right] } & =\frac{c}{12} m\left(m^{2}-1\right) \delta_{m,-n}+(m+1) L_{m+n}-(n+1) L_{m+n} \tag{42}\\
& =(m-n) L_{m+n}+\frac{c}{12} m\left(m^{2}-1\right) \delta_{m,-n}
\end{align*}
$$

[^0]Note: We have not really rederived the Virasoro algebra here. Instead the operator product expansion (25) was really constructed in such a way as to reproduce this known commutator of two Virasoro generators.
c) The change of chiral fields (in a two-dimensional quantum field theory) under infinitesimal conformal transformations can be calculated using the conformal Ward-Takahashi identity. For transformations of the form $\tilde{z}=z+\epsilon(z)$ it reads

$$
\begin{equation*}
\delta_{\epsilon} \mathcal{O}(z)=\oint_{C_{z}} \frac{\mathrm{~d} z^{\prime}}{2 \pi i} \epsilon\left(z^{\prime}\right) \mathcal{R}\left[T\left(z^{\prime}\right) \mathcal{O}(z)\right] \tag{43}
\end{equation*}
$$

Since we are interested in the transformational behavior of the energy-momentum tensor, we can again use the operator product expansion

$$
\begin{equation*}
\mathcal{R}\left[T\left(z^{\prime}\right) T(z)\right]=\frac{c / 2}{\left(z^{\prime}-z\right)^{4}}+\frac{2 T(z)}{\left(z^{\prime}-z\right)^{2}}+\frac{\partial_{z} T(z)}{z^{\prime}-z}+\underbrace{\mathcal{O}\left[\left(z^{\prime}-z\right)^{0}\right]}_{\text {finite terms }} \tag{44}
\end{equation*}
$$

as well as the Cauchy-Riemann formula (26) to compute

$$
\begin{align*}
\delta_{\epsilon} T(z) & =\oint_{C_{z}} \frac{\mathrm{~d} z^{\prime}}{2 \pi i} \epsilon\left(z^{\prime}\right) \mathcal{R}\left[T\left(z^{\prime}\right) T(z)\right]=\oint_{C_{z}} \frac{\mathrm{~d} z^{\prime}}{2 \pi i} \epsilon\left(z^{\prime}\right)\left[\frac{\partial_{z} T(z)}{z^{\prime}-z}+\frac{2 T(z)}{\left(z^{\prime}-z\right)^{2}}+\frac{c / 2}{\left(z^{\prime}-z\right)^{4}}\right] \tag{45}\\
& =\epsilon(z) \partial_{z} T(z)+2\left[\partial_{z} \epsilon(z)\right] T(z)+\frac{c}{12} \partial_{z}^{3} \epsilon(z)
\end{align*}
$$

which is indeed the transformation we were asked to derive. Equation (45) confirms that $T(z)$ transforms as a tensor of weight $(2,0)$ but only for special transformations that satisfy $\partial_{z}^{3} \epsilon(z)=0$ or for general transformations if $c=0$.

Note: Instead of doing all the expansions by hand in section 1, part b), we could equally well have used the Ward-Takahashi identity there as well to calculate the change of primary fields under conformal transformations.
d) The Schwarzian derivative of the map $\omega \rightarrow z(\omega)=e^{\frac{2 \pi}{l} \omega}$ from the cylinder to the plane reads

$$
\begin{align*}
S(z, \omega) & =\frac{\partial^{3} z}{\partial^{3} \omega}\left(\frac{\partial z}{\partial \omega}\right)^{-1}-\frac{3}{2}\left(\frac{\partial^{2} z}{\partial^{2} \omega}\right)^{2}\left(\frac{\partial z}{\partial \omega}\right)^{-2} \tag{46}\\
& =\left(\frac{2 \pi}{l}\right)^{3} z\left(\frac{2 \pi}{l}\right)^{-1} z^{-1}-\frac{3}{2}\left(\frac{2 \pi}{l}\right)^{4} z^{2}\left(\frac{2 \pi}{l}\right)^{-2} z^{-2}=-\frac{1}{2}\left(\frac{2 \pi}{l}\right)^{2}
\end{align*}
$$

Solving eq. (29) for the energy-momentum tensor on the cylinder yields

$$
\begin{equation*}
T_{\mathrm{pln}}(z)=\left(\frac{\partial z}{\partial \omega}\right)^{-2}\left[T_{\mathrm{cyl}}(\omega)-\frac{c}{12} S(z, \omega)\right] \quad \Rightarrow \quad T_{\mathrm{cyl}}(\omega)=\left(\frac{\partial z}{\partial \omega}\right)^{2} T_{\mathrm{pln}}(z)+\frac{c}{12} S(z, \omega) \tag{47}
\end{equation*}
$$

We plug in our result for the Schwarzian derivative and get

$$
\begin{equation*}
T_{\mathrm{cyl}}(\omega)=\left(\frac{2 \pi}{l}\right)^{2} z^{2} T_{\mathrm{pln}}(z)-\frac{1}{2}\left(\frac{2 \pi}{l}\right)^{2} \frac{c}{12}=\left(\frac{2 \pi}{l}\right)^{2}\left(z^{2} T_{\mathrm{pln}}(z)-\frac{c}{24}\right) \tag{48}
\end{equation*}
$$

We interpret the central term c of the quantum Virasoro algebra as the Casimir energy.
Note: Operating on the plane means dealing with flat infinitely extended spacetime. Intuitively, the lowest possible energy, i.e. the zero-point energy $\left\langle H_{0}\right\rangle$, on this space should vanish (see lecture notes, p. 81). Since Hamiltonian and energy-momentum tensor are directly related, $H \propto \int \mathrm{~d} \sigma T(\tau, \sigma)$, this particularly implies that the one-point function on the plane must also
vanish, i.e. $\left\langle T_{\mathrm{pln}}(z)\right\rangle=0$. Using this information in eq. (48), we get the very interesting result

$$
\begin{equation*}
\left\langle T_{\mathrm{cyl}}(\omega)\right\rangle=-\frac{c}{24}\left(\frac{2 \pi}{l}\right)^{2} . \tag{49}
\end{equation*}
$$

Not only does eq. (49) demonstrate, that the one-point function on the cylinder is nonvanishing, it also seems to introduce a length scale into our theory, thereby breaking the conformal symmetry it enjoyed thus far. This is due to the underlying geometry containing a length scale: the radius l of the cylinder.

3 Bonus question: Fractional linear transformations

The purpose of this exercise is to show that conformal transformations on the Riemann sphere (i.e. on $\mathbb{C} \cup\{\infty\}$) map any 3 points to any other 3 points. The conformal group on the Riemann-sphere is given by $S L(2, \mathbb{C})$ of 2×2-matrices with unit determinant acting on the Riemann-sphere by so-called fractional linear transformations

$$
\begin{equation*}
z \rightarrow z^{\prime}=\frac{a z+b}{c z+d} \tag{50}
\end{equation*}
$$

where

$$
\boldsymbol{A}=\left(\begin{array}{ll}
a & b \tag{51}\\
c & d
\end{array}\right) \in S L(2, \mathbb{C}) .
$$

a) Show that two successive fractional linear transformations,

$$
\begin{equation*}
z \rightarrow z^{\prime}=\frac{a z+b}{c z+d}, \quad z^{\prime} \rightarrow z^{\prime \prime}=\frac{e z^{\prime}+f}{g z^{\prime}+h}, \tag{52}
\end{equation*}
$$

are equivalent to one fractional linear transformation

$$
\begin{equation*}
z \rightarrow z^{\prime \prime}=\frac{j z^{\prime}+k}{l z^{\prime}+m}, \tag{53}
\end{equation*}
$$

where the matrix

$$
\left(\begin{array}{cc}
j & k \tag{54}\\
l & m
\end{array}\right) \in S L(2, \mathbb{C})
$$

is the product of the two $S L(2, \mathbb{C})$ matrices that correspond to the single transformations $z \rightarrow z^{\prime}$ and $z^{\prime} \rightarrow z^{\prime \prime}$.
b) Show that the fractional linear action of the inverse matrix of (51) on z^{\prime} leads back to z, and hence corresponds to the inverse transformation $z^{\prime} \rightarrow z$.
c) Consider the map

$$
\begin{equation*}
z \rightarrow z^{\prime}=\frac{(b-c)(z-a)}{(b-a)(z-c)} \tag{55}
\end{equation*}
$$

Show that this defines, up to an overall rescaling, an $S L(2, \mathbb{C})$ transformation provided a, b, c are pairwise distinct. Use this to show that $S L(2, \mathbb{C})$ maps any 3 distinct points on S^{2} to any other 3 distinct points.
d) Show that the cross-ratio

$$
\begin{equation*}
\left\langle z_{1}, z_{2}, z_{3}, z_{4}\right\rangle \equiv \frac{\left(z_{1}-z_{2}\right)\left(z_{3}-z_{4}\right)}{\left(z_{1}-z_{4}\right)\left(z_{3}-z_{2}\right)} \tag{56}
\end{equation*}
$$

is $S L(2, \mathbb{C})$ invariant. Use this to show that

$$
\begin{equation*}
\langle z, a, b, c\rangle=z^{\prime}, \tag{57}
\end{equation*}
$$

where z^{\prime} is the one given in part c).
a) The conformal group on the Riemann sphere $S^{2}=\mathbb{C} \cup\{\infty\}$ is the group of special linear transformations of degree 2,

$$
\begin{equation*}
S L(2, \mathbb{C})=\{\boldsymbol{A} \in \operatorname{Mat}(2 \times 2, \mathbb{C}) \mid \operatorname{det}(\boldsymbol{A})=1\}, \tag{58}
\end{equation*}
$$

with ordinary matrix multiplication and matrix inversion as group operations. $S L(2, \mathbb{C})$ can be parametrized by fractional-linear transformations (also known as Möbius transformations)

$$
z \rightarrow z^{\prime}=\frac{a z+b}{c z+d}, \quad \quad \boldsymbol{A}=\left(\begin{array}{ll}
a & b \tag{59}\\
c & d
\end{array}\right) \in S L(2, \mathbb{C})
$$

Performing two successive fractional linear transformations, $z \rightarrow z^{\prime}=\frac{a z+b}{c z+d}$ followed by $z^{\prime} \rightarrow z^{\prime \prime}=$ $\frac{e z^{\prime}+f}{g z^{\prime}+h}$, we get

$$
\begin{equation*}
z^{\prime \prime}=\frac{e \frac{a z+b}{c z+d}+f}{g \frac{a z+b}{c z+d}+h}=\frac{a e z+b e+c f z+d f}{a g z+b g+c h z+d h}=\frac{(a e+c f) z+(b e+d f)}{(a g+c h) z+(b g+d h)} \equiv \frac{j z+k}{l z+m} . \tag{60}
\end{equation*}
$$

Thus, the overall transformation is given by

$$
\boldsymbol{C}=\left(\begin{array}{cc}
j & k \tag{61}\\
l & m
\end{array}\right)=\left(\begin{array}{ll}
a e+c f & b e+d f \\
a g+c h & b g+d h
\end{array}\right) .
$$

Since

$$
\begin{align*}
\operatorname{det}(\boldsymbol{C}) & =(a e+c f)(b g+d h)-(a g+c h)(b e+d f) \\
& =\underline{a b e g}+a e d h+c f b g+\underline{\underline{c f d h}}-\underline{a g b e}-a g d f-c h b e-\underline{\underline{c h d f}} \tag{62}\\
& =a e d h+c f b g-a g d f-c h b e=a d(\underbrace{e h-g f}_{1})+b c(\underbrace{f g-e h}_{-1})=a d-b c=1,
\end{align*}
$$

\boldsymbol{C} is also in $S L(2, \mathbb{C})$. Hence, any two successive $S L(2, \mathbb{C})$-transformations give a third. This is not surprising as we had already asserted $S L(2, \mathbb{C})$ to be a group.
b) The inverse of \boldsymbol{A} from eq. (51) is given by

$$
\boldsymbol{A}^{-1}=\left(\begin{array}{cc}
d & -b \tag{63}\\
-c & a
\end{array}\right)
$$

Applying the fractional linear transformation corresponding to \boldsymbol{A}^{-1} to z^{\prime} returns z,

$$
\begin{equation*}
\frac{d z^{\prime}-b}{-c z^{\prime}+a}=\frac{d \frac{a z+b}{c z+d}-b}{-c \frac{a z+b}{c z+d}+a}=\frac{d a z+\underline{d b}-b c z-\underline{b d}}{\underline{\underline{-a c z}}-c b+\underline{\underline{a c z}}+a d}=\frac{(a d-b c) z}{a d-c b}=z . \tag{64}
\end{equation*}
$$

The inverse of transformation (50) is indeed represented by \boldsymbol{A}^{-1}.
c) Reshaped into the standard form of a fractional linear transformation, eq. (55) reads

$$
\begin{equation*}
z \rightarrow z^{\prime}=\frac{(b-c) z-a(b-c)}{(b-a) z-c(b-a)} \tag{65}
\end{equation*}
$$

The corresponding $S L(2, \mathbb{C})$-matrix

$$
\boldsymbol{D}=\left(\begin{array}{ll}
b-c & (c-b) a \tag{66}\\
b-a & (a-b) c
\end{array}\right)
$$

has determinant

$$
\begin{equation*}
\operatorname{det}(\boldsymbol{D})=(b-c)(a-b) c-(b-a)(c-b) a=(a-b)(b-c)(c-a) . \tag{67}
\end{equation*}
$$

As long as $a \neq b \wedge a \neq c \wedge b \neq c, \boldsymbol{D}$ has non-vanishing determinant and can be made $S L(2, \mathbb{C})$ with a simple scale factor of $\boldsymbol{D}^{\prime}=\boldsymbol{D} / \sqrt{\operatorname{det}(\boldsymbol{D})}$.
As for showing that $S L(2, \mathbb{C})$ maps any 3 distinct points on S^{2} to any other 3 distinct points, we note that the transformation (55) maps

$$
z^{\prime}=\frac{(b-c)(z-a)}{(b-a)(z-c)}= \begin{cases}0 & \text { for } z=a \tag{68}\\ 1 & \text { for } z=b \\ \infty & \text { for } z=c\end{cases}
$$

where $\{0,1, \infty\}$ all lie on S^{2} and we already showed that a, b, and c are arbitrary but distinct points on S^{2}. Thus, all that remains to be shown is that there exists an $S L(2, \mathbb{C})$-transformation that maps $\{0,1, \infty\}$ to any three distinct points $\left\{z_{1}, z_{2}, z_{3}\right\}$ on S^{2}. Fortunately, we already know that a transformation of the form (55), i.e.

$$
z \rightarrow z^{\prime}=\frac{\left(z_{2}-z_{3}\right)\left(z-z_{1}\right)}{\left(z_{2}-z_{1}\right)\left(z-z_{3}\right)}, \quad \text { with }\left(\begin{array}{ll}
z_{2}-z_{3} & \left(z_{3}-z_{2}\right) z_{1} \tag{69}\\
z_{2}-z_{1} & \left(z_{1}-z_{2}\right) z_{3}
\end{array}\right) \equiv \boldsymbol{E}
$$

maps $\left\{z_{1}, z_{2}, z_{3}\right\}$ to $\{0,1, \infty\}$ and can be made $S L(2, \mathbb{C})$ by scaling

$$
\begin{equation*}
S L(2, \mathbb{C}) \quad \ni \quad \boldsymbol{E}^{\prime}=\frac{1}{\sqrt{\operatorname{det}(\boldsymbol{E})}} \boldsymbol{E}=\frac{1}{\sqrt{\left(z_{1}-z_{2}\right)\left(z_{2}-z_{3}\right)\left(z_{3}-z_{1}\right)}} \boldsymbol{E} \tag{70}
\end{equation*}
$$

Thus the combined transformation $\boldsymbol{F} \equiv \boldsymbol{E}^{\prime-1} \boldsymbol{D}^{\prime}$ maps any three points $\{a, b, c\}$ to any other three points $\left\{z_{1}, z_{2}, z_{3}\right\}$ on S^{2}, where the points in each set are pairwise distinct.
d) A simple calculation shows that the cross-ratio defined in eq. (56) is invariant under $S L(2, \mathbb{C})$ transformations,

$$
\begin{align*}
&\left\langle z_{1}, z_{2}, z_{3}, z_{4}\right\rangle \rightarrow\left\langle z_{1}^{\prime}, z_{2}^{\prime}, z_{3}^{\prime}, z_{4}^{\prime}\right\rangle=\frac{\left(z_{1}^{\prime}-z_{2}^{\prime}\right)\left(z_{3}^{\prime}-z_{4}^{\prime}\right)}{\left(z_{1}^{\prime}-z_{4}^{\prime}\right)\left(z_{3}^{\prime}-z_{2}^{\prime}\right)} \stackrel{(55)}{=} \frac{\left(\frac{z_{1}-a}{z_{1}-c}-\frac{z_{2}-a}{z_{2}-c}\right)\left(\frac{z_{3}-a}{z_{3}-c}-\frac{z_{4}-a}{z_{4}-c}\right)}{\left(\frac{z_{1}-a}{z_{1}-c}-\frac{z_{4}-a}{z_{4}-c}\right)\left(\frac{z_{3}-a}{z_{3}-c}-\frac{z_{2}-a}{z_{2}-c}\right)} \tag{71}\\
&=\frac{\frac{\left(z_{1}-z_{2}\right)\left(z_{3}-z_{4}\right)(a-c)^{2}}{\left(z_{1}-c\right)\left(z_{2}-c\right)\left(z_{3}-c\right)\left(z_{4}-c\right)}}{\frac{\left(z_{1}-z_{4}\right)\left(z_{3}-z_{2}\right)(a-)^{2}}{\left(z_{1}-c\right)\left(z_{2}-c\right)\left(z_{3}-c\right)\left(z_{4}-c\right)}}=\frac{\left(z_{1}-z_{2}\right)\left(z_{3}-z_{4}\right)}{\left(z_{1}-z_{4}\right)\left(z_{3}-z_{2}\right)}=\left\langle z_{1}, z_{2}, z_{3}, z_{4}\right\rangle
\end{align*}
$$

Completely unrelated and simply by definition, we have

$$
\begin{equation*}
\langle z, a, b, c\rangle \stackrel{(56)}{=} \frac{(z-a)(b-c)}{(z-c)(b-a)} \stackrel{(55)}{=} z^{\prime} \tag{72}
\end{equation*}
$$

[^0]: ${ }^{1}$ See exercise 1 on assignment 4 for the first (painstakingly long) derivation.

