
String Theory
Solution to Assignment 7

Janosh Riebesell

November 24th, 2015 (due December 2th, 2015)

Lecturer: Timo Weigand

1 Primary fields and radial quantization

A primary field φ(z, z̄) is a tensor field under conformal transformations z → z′, z̄ → z̄′ in the
sense that

φ(z, z̄)→ φ′(z′, z̄′) =

(
∂z′

∂z

)−h(∂z̄′
∂z̄

)−h̄
φ(z, z̄), (1)

where z, z̄ denote arbitrary holomorphic functions.

a) How does a primary field with conformal weights h, h̄ transform under dilations z → eλz and
rotations z → eiθz with λ, θ ∈ R? Give a physical interpretation for h+ h̄ and h− h̄.

b) Consider the infinitesimal conformal transformation

z′(z) = z + ζ(z), z̄′(z̄) = z̄ + ζ̄(z̄). (2)

Show that the infinitesimal transformation of a primary field is given by

δζ,ζ̄φ(z, z̄) =
[
h∂zζ + h̄∂z̄ ζ̄ + ζ∂z + ζ̄∂z̄

]
φ(z, z̄). (3)

c) On the cylinder with coordinates (τ, σ) we defined

ξ± = τ ± σ = −i(τ ′ ± iσ), τ = −iτ ′, (4)

and τ ′ is the time in Euclidean signature (after Wick rotation). After relabelling τ ′ → τ we
have

ξ+ = −iω̄, ξ− = −iω, ω = τ − iσ. (5)

Argue that the conformal map from the cylinder to the Riemann sphere, defined by

ω → z(ω) = e
2π
l
ω, (6)

maps left-/right-moving fields to holomorphic/antiholomorphic fields and that for a primary
field Φ = ΦL(ξ−) + ΦR(ξ+) a mode expansion

ΦL(ξ−) =
(

2π
l

)h∑
n

φn e
i 2π
l
nξ− , ΦR(ξ+) =

(
2π
l

)̄h∑
n

φ̃n e
i 2π
l
nξ+

, (7)

translates into Φ(z, z̄) = Φ(z) + Φ̄(z̄),

Φ(z) =
∑
n

φn z
−n−h, Φ̄(z̄) =

∑
n

φnz̄
−n−h̄. (8)
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d) Argue that a time-ordered product of fields on the cylinder maps to a radially ordered product

R[Φ1(z1)Φ2(z2)] =

{
Φ1(z1)Φ2(z2) for |z1| > |z2|,
Φ2(z2)Φ1(z1) for |z2| > |z1|.

(9)

a) Under dilations (rescalings) z → z′ = eλz, λ ∈ R, a primary field φ(z, z̄) with conformal weights
h, h̄ transforms as

φ(z, z̄)→ φ′(z′, z̄′) =

(
∂z′

∂z

)−h(∂z̄′
∂z̄

)−h̄
φ(z, z̄) = e−hλe−h̄λφ(z, z̄) = e−(h+h̄)λφ(z, z̄). (10)

Under rotations z → z′ = eiθz, θ ∈ R, φ(z, z̄) becomes

φ(z, z̄)→ φ′(z′, z̄′) = e−ihθeih̄θφ(z, z̄) = e−i(h−h̄)θφ(z, z̄). (11)

From eqs. (10) and (11), we infer that the sum of conformal weights h+ h̄ = ∆ gives the scaling
dimension of a primary field φ(z, z̄), whereas the difference h − h̄ = s is the field’s (conformal)
spin.

b) Equation (1) can equivalently be written as

φ(z, z̄)→ φ′(z, z̄) =

(
∂z′

∂z

)−h(∂z̄′
∂z̄

)−h̄
φ(z′, z̄′). (12)

For the conformal transformations z′(z) = z + ζ(z), z̄′(z̄) = z̄ + ζ̄(z̄), we can expand each term in
eq. (12) to first order in the infinitesimal (anti-)chiral fields ζ(z), ζ̄(z̄) to get(

∂z′

∂z

)−h
=

(
1 +

∂ζ(z)

∂z

)−h
= 1 + h∂zζ(z) +O(ζ2), (13)(

∂z̄′

∂z̄

)−h̄
=

(
1 +

∂ζ̄(z̄)

∂z̄

)−h̄
= 1 + h̄∂z̄ ζ̄(z̄) +O(ζ̄2), (14)

φ(z′, z̄′) = φ(z, z̄) + ζ(z) ∂zφ(z, z̄) + ζ̄(z̄) ∂z̄φ(z, z̄) +O(ζ2, ζ̄2). (15)

Dropping all terms beyond linear order gives the infinitesimal transformation

δζ,ζ̄φ(z, z̄) ≡ φ′(z, z̄)− φ(z, z̄)

=
(

1 + h ∂zζ(z)
)(

1 + h̄ ∂z̄ ζ̄(z̄)
)(

1 + ζ(z) ∂z + ζ̄(z̄) ∂z̄

)
φ(z, z̄)− φ(z, z̄)

=
[
1 + h ∂zζ(z) + h̄ ∂z̄ ζ̄(z̄) + ζ(z) ∂z + ζ̄(z̄) ∂z̄

]
φ(z, z̄)− φ(z, z̄)

=
[
h ∂zζ(z) + h̄ ∂z̄ ζ̄(z̄) + ζ(z) ∂z + ζ̄(z̄) ∂z̄

]
φ(z, z̄).

(16)

c) A Wick rotation on the cylinder with coordinates (τ, σ) ∈ R2 sends

ξ± = τ ± σ W.R.−−−→ −i(τ ± iσ) ≡

{
−iω̄ = ξ+,

−iω = ξ−,
(17)

where now τ ∈ iR and ω, ω̄ are coordinates on the cylinder.

After Wick rotating, the conformal map

iξ− = ω → z(ω) = e
2π
l
ω, iξ+ = ω̄ → z̄(ω̄) = e

2π
l
ω̄. (18)
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from the cylinder to the Riemann sphere respectively the complex plane transforms left-movers into
holomorphic fields ΦL(ξ−)→ Φ(z(ω)) ones and right-movers into antiholomorphic ones ΦR(ξ+)→
Φ(z̄(ω̄)).

This can be illustrated for the case of a primary field Φ(ξ+, ξ−) = ΦL(ξ−)+ΦR(ξ+) with conformal
weights (h, h̄), where the left- and right-moving components are given by

ΦL(ξ−) =
(

2π
l

)h∑
n

φn e
i 2π
l
nξ− , ΦR(ξ+) =

(
2π
l

)̄h∑
n

φ̃n e
i 2π
l
nξ+

. (19)

Under (18), these transform into

ΦL(ξ−)→ ΦL(z) =

(
∂z

∂ω

)−h
ΦL(ξ−) =

(
2π
l e

2π
l
ω
)−h (

2π
l

)h∑
n

φn e
− 2π

l
nω

=
∑
n

φn e
( 2π
l
ω)−n−h =

∑
n

φn z
−n−h,

(20)

ΦR(ξ+)→ ΦR(z̄) =

(
∂z̄

∂ω̄

)−h̄
ΦR(ξ+) =

(
2π
l e

2π
l
ω̄
)−̄h (

2π
l

)̄h∑
n

φ̃n e
− 2π

l
nω̄

=
∑
n

φ̃n e
( 2π
l
ω̄)−n−h̄ =

∑
n

φ̃n z
−n−h̄.

(21)

d) To see that time ordering on the cylinder corresponds to radial ordering on the complex plane, we
choose any two points ω1 = τ1−iσ1, ω2 = τ2−iσ2 such that τ1 ≤ τ2, i.e. in a time-ordered operator
product containing τ1 and τ2, the operator evaluated at τ1 would act first. For the corresponding
points z1, z2 on the plane, we have the relation

τ1 ≤ τ2 ⇐⇒ |z1| =
∣∣∣e 2π

l
ω1

∣∣∣ =
∣∣∣e 2π

l
(τ1−iσ1)

∣∣∣ = e
2π
l
τ1

≤ e
2π
l
τ2 =

∣∣∣e 2π
l

(τ2−iσ2)
∣∣∣ = |z2|.

(22)

Thus in a radially ordered product, an operator evaluated on the plane at z1 would also act first.

The following graphic visualizes how different times on the cylinder correspond to different times
on the plane.

τ1 τ2σ

τ

σ

τ1

τ2

2 The OPE of the energy momentum tensor

In the complex plane, the Virasoro generators Ln, n ∈ Z are given by

Ln =

∮
C0

dz

2πi
zn+1 T (z). (23)
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a) Show that

[Lm, Ln] =

∮
C0

dw

2πi

∮
Cw

dz

2πi
zm+1wn+1R[T (z)T (w)], (24)

where C0 denotes a contour about z = 0 and Cw is a contour about z = w. As usual the
product R[T (z)T (w)] is meant to be the radially ordered product.

Hint: Write the commutator as a difference of two double contour integrals and use a contour
deformation of the dz integration for fixed w.

b) Use eq. (24) and the (radially ordered) operator product

R[T (z)T (w)] =
c/2

(z − w)4
+

2T (w)

(z − w)2
+
∂wT (w)

z − w
+O[(z − w)0]︸ ︷︷ ︸

finite terms

, (25)

as well as the Cauchy-Riemann formula,∮
Cw

dz′

2πi

f(z′)

(z′ − z)n
=

1

(n− 1)!
f (n−1)(z), (26)

to rederive the quantum Virasoro algebra

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm,−n. (27)

c) The Schwarzian derivative is defined as

S(z̃, z) =
∂3z̃

∂3z

(
∂z̃

∂z

)−1

− 3

2

(
∂2z̃

∂2z

)2(
∂z̃

∂z

)−2

. (28)

Show that the transformation

T (z)→ T̃ (z̃) =

(
∂z̃

∂z

)−2 [
T (z)− c

12
S(z̃, z)

]
, (29)

gives at the infinitesimal level for z̃ = z + ε(z),

δT (z) = ε(z)∂T (z) + 2[∂zε(z)]T (z) +
c

12
∂3
z ε(z). (30)

d) Apply this to the map from the cylinder to the plane, given by

τ − iσ ≡ ω → z(ω) = e
2π
l
ω, (31)

to show that
Tcyl(ω) =

(
2π
l

)2 (
z2Tpln(z)− c

24

)
. (32)

Which are the various physical interpretations for c?

a) Expanding the commutator of Virasoro generators gives

[Lm, Ln] =

∮
C0

dz

2πi
zm+1 T (z)

∮
C0

dw

2πi
wn+1 T (w)−

∮
C0

dw

2πi
wn+1 T (w)

∮
C0

dz

2πi
zm+1 T (z)

=

∮
C0

dw

2πi

(∮
C0

dz

2πi
zm+1wn+1 T (z)T (w)−

∮
C0

dz

2πi
zm+1wn+1 T (w)T (z)

)
.

(33)

We use the following contour deformation for the two integrals in parenthesis so that after the
deformation, we have |w| ≤ |z| ∀ z in the first integral and |w| ≥ |z| ∀ z in the second.
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0

w

z-contour

0

w

z-contour

0

w

0

w

0

w

− → − =

Then eq. (33) simplifies to

[Lm, Ln] =

∮
C0

dw

2πi

∮
Cw

dz

2πi
zm+1wn+1R[T (z)T (w)]. (34)

b) To rederive1 the quantum Virasoro algebra, we insert eq. (25) into eq. (34) to get

[Lm, Ln] =

∮
C0

dw

2πi

∮
Cw

dz

2πi
zm+1wn+1

[
c/2

(z − w)4
+

2T (w)

(z − w)2
+
∂wT (w)

z − w

]
(35)

We can perform the z-integration using the Cauchy-Riemann formula∮
Cw

dz′

2πi

f(z′)

(z′ − z)n
=

1

(n− 1)!
f (n−1)(z). (36)

The three terms in brackets thus become∮
Cw

dz

2πi

c
2 z

m+1wn+1

(z − w)4
=

c

2 · 3!
(m+ 1)m(m− 1)wm−2wn+1 =

c

12
m(m2 − 1)wm−n−1, (37)

∮
Cw

dz

2πi

2T (w) zm+1wn+1

(z − w)2
= 2T (w) (m+ 1)wmwn+1, (38)

∮
Cw

dz

2πi

∂wT (w) zm+1wn+1

z − w
= ∂wT (w)wm+1wn+1. (39)

We reinsert eqs. (37) to (39) into eq. (35) and get

[Lm, Ln] =

∮
C0

dw

2πi

[
c

12
m(m2 − 1)wm−n−1 + 2T (w) (m+ 1)wmwn+1 + ∂wT (w)wm+1wn+1

]
=

c

12
m(m2 − 1)δm,−n +

∮
C0

dw

2πi

[
T (w) (m+ 1)wmwn+1︸ ︷︷ ︸

(m+1)Lm+n

+∂w[T (w)wm+1]wn+1

]

(40)
Integration by parts in the last term where the boundary terms cancel since we integrate over the
closed contour C0 gives∮

C0

dw

2πi
∂w[T (w)wm+1]wn+1 = −

∮
C0

dw

2πi
T (w)wm+1 ∂ww

n+1

= −(n+ 1)

∮
C0

dw

2πi
T (w)wm+1wn = −(n+ 1)Lm+n.

(41)

Thus we arrive at the renowned Virasoro algebra

[Lm, Ln] =
c

12
m(m2 − 1)δm,−n + (m+ 1)Lm+n − (n+ 1)Lm+n

= (m− n)Lm+n +
c

12
m(m2 − 1)δm,−n.

(42)

1See exercise 1 on assignment 4 for the first (painstakingly long) derivation.
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Note: We have not really rederived the Virasoro algebra here. Instead the operator product
expansion (25) was really constructed in such a way as to reproduce this known commutator
of two Virasoro generators.

c) The change of chiral fields (in a two-dimensional quantum field theory) under infinitesimal confor-
mal transformations can be calculated using the conformal Ward-Takahashi identity. For trans-
formations of the form z̃ = z + ε(z) it reads

δεO(z) =

∮
Cz

dz′

2πi
ε(z′)R[T (z′)O(z)]. (43)

Since we are interested in the transformational behavior of the energy-momentum tensor, we can
again use the operator product expansion

R[T (z′)T (z)] =
c/2

(z′ − z)4
+

2T (z)

(z′ − z)2
+
∂zT (z)

z′ − z
+O[(z′ − z)0]︸ ︷︷ ︸

finite terms

, (44)

as well as the Cauchy-Riemann formula (26) to compute

δεT (z) =

∮
Cz

dz′

2πi
ε(z′)R[T (z′)T (z)] =

∮
Cz

dz′

2πi
ε(z′)

[
∂zT (z)

z′ − z
+

2T (z)

(z′ − z)2
+

c/2

(z′ − z)4

]
= ε(z)∂zT (z) + 2 [∂zε(z)]T (z) +

c

12
∂3
z ε(z),

(45)

which is indeed the transformation we were asked to derive. Equation (45) confirms that T (z)
transforms as a tensor of weight (2, 0) but only for special transformations that satisfy ∂3

z ε(z) = 0
or for general transformations if c = 0.

Note: Instead of doing all the expansions by hand in section 1, part b), we could equally well
have used the Ward-Takahashi identity there as well to calculate the change of primary fields
under conformal transformations.

d) The Schwarzian derivative of the map ω → z(ω) = e
2π
l
ω from the cylinder to the plane reads

S(z, ω) =
∂3z

∂3ω

(
∂z

∂ω

)−1

− 3

2

(
∂2z

∂2ω

)2(
∂z

∂ω

)−2

=
(

2π
l

)3
z
(

2π
l

)−1
z−1 − 3

2

(
2π
l

)4
z2
(

2π
l

)−2
z−2 = −1

2

(
2π
l

)2 (46)

Solving eq. (29) for the energy-momentum tensor on the cylinder yields

Tpln(z) =

(
∂z

∂ω

)−2 [
Tcyl(ω)− c

12
S(z, ω)

]
⇒ Tcyl(ω) =

(
∂z

∂ω

)2

Tpln(z)+
c

12
S(z, ω). (47)

We plug in our result for the Schwarzian derivative and get

Tcyl(ω) =
(

2π
l

)2
z2 Tpln(z)− 1

2

(
2π
l

)2 c

12
=
(

2π
l

)2 (
z2 Tpln(z)− c

24

)
. (48)

We interpret the central term c of the quantum Virasoro algebra as the Casimir energy.

Note: Operating on the plane means dealing with flat infinitely extended spacetime. Intu-
itively, the lowest possible energy, i.e. the zero-point energy 〈H0〉, on this space should vanish
(see lecture notes, p. 81). Since Hamiltonian and energy-momentum tensor are directly related,
H ∝

∫
dσ T (τ, σ), this particularly implies that the one-point function on the plane must also
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vanish, i.e. 〈Tpln(z)〉 = 0. Using this information in eq. (48), we get the very interesting result

〈Tcyl(ω)〉 = − c

24

(
2π
l

)2
. (49)

Not only does eq. (49) demonstrate, that the one-point function on the cylinder is non-
vanishing, it also seems to introduce a length scale into our theory, thereby breaking the
conformal symmetry it enjoyed thus far. This is due to the underlying geometry containing a
length scale: the radius l of the cylinder.

3 Bonus question: Fractional linear transformations

The purpose of this exercise is to show that conformal transformations on the Riemann sphere (i.e.
on C∪{∞}) map any 3 points to any other 3 points. The conformal group on the Riemann-sphere
is given by SL(2,C) of 2 × 2-matrices with unit determinant acting on the Riemann-sphere by
so-called fractional linear transformations

z → z′ =
az + b

cz + d
, (50)

where

A =

(
a b
c d

)
∈ SL(2,C). (51)

a) Show that two successive fractional linear transformations,

z → z′ =
az + b

cz + d
, z′ → z′′ =

ez′ + f

gz′ + h
, (52)

are equivalent to one fractional linear transformation

z → z′′ =
jz′ + k

lz′ +m
, (53)

where the matrix (
j k
l m

)
∈ SL(2,C) (54)

is the product of the two SL(2,C) matrices that correspond to the single transformations
z → z′ and z′ → z′′.

b) Show that the fractional linear action of the inverse matrix of (51) on z′ leads back to z, and
hence corresponds to the inverse transformation z′ → z.

c) Consider the map

z → z′ =
(b− c)(z − a)

(b− a)(z − c)
. (55)

Show that this defines, up to an overall rescaling, an SL(2,C) transformation provided a, b, c
are pairwise distinct. Use this to show that SL(2,C) maps any 3 distinct points on S2 to any
other 3 distinct points.

d) Show that the cross-ratio

〈z1, z2, z3, z4〉 ≡
(z1 − z2)(z3 − z4)

(z1 − z4)(z3 − z2)
(56)

is SL(2,C) invariant. Use this to show that

〈z, a, b, c〉 = z′, (57)

where z′ is the one given in part c).
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a) The conformal group on the Riemann sphere S2 = C ∪ {∞} is the group of special linear trans-
formations of degree 2,

SL(2,C) = {A ∈ Mat(2× 2,C)|det(A) = 1}, (58)

with ordinary matrix multiplication and matrix inversion as group operations. SL(2,C) can be
parametrized by fractional-linear transformations (also known as Möbius transformations)

z → z′ =
az + b

cz + d
, A =

(
a b
c d

)
∈ SL(2,C). (59)

Performing two successive fractional linear transformations, z → z′ = az+b
cz+d followed by z′ → z′′ =

ez′+f
gz′+h , we get

z′′ =
e az+bcz+d + f

g az+bcz+d + h
=
aez + be+ cfz + df

agz + bg + chz + dh
=

(ae+ cf)z + (be+ df)

(ag + ch)z + (bg + dh)
≡ jz + k

lz +m
. (60)

Thus, the overall transformation is given by

C =

(
j k
l m

)
=

(
ae+ cf be+ df
ag + ch bg + dh

)
. (61)

Since

det(C) = (ae+ cf)(bg + dh)− (ag + ch)(be+ df)

= abeg + aedh+ cfbg + cfdh− agbe− agdf − chbe− chdf

= aedh+ cfbg − agdf − chbe = ad(eh− gf︸ ︷︷ ︸
1

) + bc(fg − eh︸ ︷︷ ︸
−1

) = ad− bc = 1, X
(62)

C is also in SL(2,C). Hence, any two successive SL(2,C)-transformations give a third. This is
not surprising as we had already asserted SL(2,C) to be a group.

b) The inverse of A from eq. (51) is given by

A−1 =

(
d −b
−c a

)
. (63)

Applying the fractional linear transformation corresponding to A−1 to z′ returns z,

dz′ − b
−cz′ + a

=
daz+bcz+d − b
−caz+bcz+d + a

=
daz + db− bcz − bd
−acz − cb+ acz + ad

=
(ad− bc)z
ad− cb

= z. X (64)

The inverse of transformation (50) is indeed represented by A−1.

c) Reshaped into the standard form of a fractional linear transformation, eq. (55) reads

z → z′ =
(b− c)z − a(b− c)
(b− a)z − c(b− a)

. (65)

The corresponding SL(2,C)-matrix

D =

(
b− c (c− b)a
b− a (a− b)c

)
(66)

has determinant

det(D) = (b− c)(a− b)c− (b− a)(c− b)a = (a− b)(b− c)(c− a). (67)
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As long as a 6= b ∧ a 6= c ∧ b 6= c, D has non-vanishing determinant and can be made SL(2,C)
with a simple scale factor of D′ = D/

√
det(D).

As for showing that SL(2,C) maps any 3 distinct points on S2 to any other 3 distinct points, we
note that the transformation (55) maps

z′ =
(b− c)(z − a)

(b− a)(z − c)
=


0 for z = a,

1 for z = b,

∞ for z = c,

(68)

where {0, 1,∞} all lie on S2 and we already showed that a, b, and c are arbitrary but distinct
points on S2. Thus, all that remains to be shown is that there exists an SL(2,C)-transformation
that maps {0, 1,∞} to any three distinct points {z1, z2, z3} on S2. Fortunately, we already know
that a transformation of the form (55), i.e.

z → z′ =
(z2 − z3)(z − z1)

(z2 − z1)(z − z3)
, with

(
z2 − z3 (z3 − z2)z1

z2 − z1 (z1 − z2)z3

)
≡ E (69)

maps {z1, z2, z3} to {0, 1,∞} and can be made SL(2,C) by scaling

SL(2,C) 3 E′ =
1√

det(E)
E =

1√
(z1 − z2)(z2 − z3)(z3 − z1)

E. (70)

Thus the combined transformation F ≡ E′−1D′ maps any three points {a, b, c} to any other three
points {z1, z2, z3} on S2, where the points in each set are pairwise distinct.

d) A simple calculation shows that the cross-ratio defined in eq. (56) is invariant under SL(2,C)-
transformations,

〈z1, z2, z3, z4〉 → 〈z′1, z′2, z′3, z′4〉 =
(z′1 − z′2)(z′3 − z′4)

(z′1 − z′4)(z′3 − z′2)

(55)
=

(
z1−a
z1−c −

z2−a
z2−c

)(
z3−a
z3−c −

z4−a
z4−c

)
(
z1−a
z1−c −

z4−a
z4−c

)(
z3−a
z3−c −

z2−a
z2−c

)
=

(z1−z2)(z3−z4)(a−c)2

(z1−c)(z2−c)(z3−c)(z4−c)
(z1−z4)(z3−z2)(a−c)2

(z1−c)(z2−c)(z3−c)(z4−c)

=
(z1 − z2)(z3 − z4)

(z1 − z4)(z3 − z2)
= 〈z1, z2, z3, z4〉.

(71)

Completely unrelated and simply by definition, we have

〈z, a, b, c〉(56)
=

(z − a)(b− c)
(z − c)(b− a)

(55)
= z′. (72)
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