
Janosh Riebesell, Adrian van Kan Lecturer: Manfred Salmhofer December 16th, 2016

Theoretical Statistical Physics

Solution to Exercise Sheet 7

1 Dynamics of a Hamiltonian system (4 points)

Consider the motion of a particle in two dimensions in a harmonic potential. In terms of the
coordinate vector q = (q1, q2), and in suitably chosen length and time units, the Newtonian
equations of motion are

q̈1 = −q1, q̈2 = −ω2 q2, (1)

where ω > 0.

a) Formulate the potential and the Hamiltonian H(p, q) for which (1) arise as the Hamilto-
nian equations of motion. Interpret ω.

b) Determine the energy shell E in phase space for an energy E > 0, and its geometric
shape. Determine also the projection P of the energy shell onto position space; how
can one describe P geometrically? Is the region R, in which the motion in coordinate
space really takes place, all of P or a proper subset of P? How can one describe R
geometrically?

c) Describe the motion in P for ω = 3/2 and ω =
√
2 qualitatively.

d) Are there constants of motion besides the Hamiltonian? Is the system ergodic for any of
the two values of ω given in c)?

a) Hamilton’s equations read

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
, i ∈ {1, 2}. (2)

For ω2 = k/m, where m denotes the mass of the particle and k determines the slope of the
potential in q2-direction (it may be thought of as a spring constant), we write the potential
as

V (q) =
m

2
q21 +

k

2
q22. (3)

Then the Hamiltonian takes the form

H(p, q) =
p21
2m

+
p22
2m

+
m

2
q21 +

k

2
q22. (4)

Inserting (4) into Hamilton’s equations yields

q̇1 =
p1
m

, q̇2 =
p2
m

, ṗ1 = −mq1, ṗ2 = −k q2. (5)

By differentiating the first two equations w.r.t. time and inserting the second two, we recover
the Newtonian equations of motion (1).

ω is the angular frequency of the oscillatory motion of the particle in q2-direction.

b) The energy shell E at energy E is the subset of phase space Γ defined by

E =
{

x = (p, q) ∈ Γ
∣

∣H(p, q) = E
}

. (6)
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Inserting (4), we get
p21
2m

+
p22
2m

+
m

2
q21 +

k

2
q22 = E, (7)

which defines the three-dimensional surface of a four-dimensional ellipsoid with semi-principal
axes of length

√
2mE,

√
2mE,

√

2E/m, and
√

2E/k in dimensions p1, p2, q1, and q2, re-
spectively.

Projected onto two-dimensional position space, the shadow of this ellipsoid gives the area
enclosed by an ellipse with semi-principal axes

√

2E/m, and
√

2E/k.

q1

q2

√

2E/m

√

2E/k

P

Solving Newton’s equations of motion (1) with initial conditions qi(0) = qi,0 and pi(0) = pi,0,
we find

q1(t) = q1,0 cos(t) +
p1,0
m

sin(t),

q2(t) = q2,0 cos(ωt) +
p2,0
mω

sin(ωt),
with pi = mq̇i. (8)

Since the motion in q1- and q2-direction decouples, R ⊂ P can at most be a rectangle
inscribed into the region P . The lengths of the sides of this rectangle are determined by the
energies E1 and E2 available in dimensions q1 and q2, which are conserved over time and
determined by the initial conditions.

However, there is still an intersting distinction to make on whether or not R is dense (after
an infinite time) within the rectangle it can at most inscribe in P . This depends on two
factors:

1. The initial conditions we impose. Consider for instance q1,0 = 1, p1,0 = 0, q2,0 = 0,
p2,0 = 0. In this case, q2(t) = 0 for all times and q1 oscillates according to q1(t) = cos(t).
The trajectory never leaves the q1-axis and hence the region R in which the motion
actually takes place is just R = {(q1, 0) | q1 ∈ [−1, 1]}.

2. The ratio between the frequencies ω1 = 1 and ω2 = ω. If one ignores such pathological
cases as in 1., then two possibilities remain. For ω2/ω1 = ω ∈ Q, i.e. when ω is rational,
there is a finite time tc after which the trajectory closes. This may be seen as follows.
Let ω = m

n
> 0 with m,n ∈ N. Then for tc = 2πn, we have q1(t) = q1(t + tc) and

q2(t) = q2(t+ tc) due to the 2π-periodicity of sine and cosine. An orbit that closes after
a finite time can never become dense in the P -inscribed rectangle.

On the other hand, if ω /∈ Q is irrational, the orbit never closes. After an infinite time,
the orbit will then trace out the full rectangle of accessible states.
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q1

q2

√

2E/m

√

2E/k

P

R for ω /∈ Q

R for
ω = 2 ∈ Q

c) As explained in b), for ω = 3/2, the orbit will close after a time tc = 4π (Lissajous curve),
while for ω =

√
2 the trajectory never closes, instead becoming dense in R ⊂ P for t → ∞

(provided we don’t consider pathological initial conditions).

d) Since there are no coupling terms in the Hamiltonian, we may write H(p1, p2, q1, q2) =
H1(p1, q1) + H2(p2, q2), i.e. the particle describes two uncoupled harmonic oscillators, one
in each dimension. Energy is conserved under Hamiltonian time-evolution and H1 and H2

both satisfy Hamilton’s equations (2). Thus, they are conserved individually. Their values
depend on the initial conditions,

H1 =
p1,0

2

2m
+

m

2
q21,0, H2 =

p2,0
2

2m
+

k

2
q22,0, ∀ t. (9)

The fact that H1 and H2 are conserved individually explains why motion is restricted to the
rectangle qi,min ≤ qi ≤ qi,max, i ∈ {1, 2} whose corners touch the edge of P .

Furthermore, if ω = 1, the potential becomes isotropic, i.e. it attains rotational symmetry
under SO(2) acting on (q1, q2). By Noether’s theorem, we expect an additional conserved
quantity, namely the angular momentum L. In two dimensions, L is the scalar quantity

L = q1 p2 − q2 p1. (10)

Using (8), this is easily shown to be conserved,

L =
(

q1,0 cos(t) +
p1,0
m

sin(t)
)(

−mq2,0 sin(t) + p2,0 cos(t)
)

−
(

q2,0 cos(t) +
p2,0
m

sin(t)
)(

−mq1,0 sin(t) + p1,0 cos(t)
)

=
(

q1,0 p2,0 − q2,0 p1,0
)

.

(11)

Ergodicity requires time and ensemble averages of any observable to be equal. Since R ⊂ P
for all values of ω both rational and irrational, it is obvious that the system is not ergodic.
Averaging over time corresponds to averaging over the restricted set R ⊂ P , which cannot
be equal to the average over the ensemble of initial conditions sampling all of P .

2 Time evolution of the Gibbs entropy (3 points)

Assume that an ensemble of initial conditions at constant energy E is given by a distribution
x = (q, p) 7→ w0(x) on phase space Γ, and that wt is the distribution obtained from it by
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Hamiltonian time evolution. Determine how the entropy

σ(wt) = −kB

∫

Γ

wt(x) lnwt(x) dµm(x) (12)

changes with time. (Here dµm(x) = δ(E −H(x)) d6Nx is the unnormalized microcanonical
measure.1)

The time derivative of σ(wt) is

dσ

dt
= −kB

∫

Γ

dwt

dt
(1 + lnwt) dµm(x). (13)

Liouville’s continuity equation (which follows directly from Hamilton’s equations)

dwt

dt
= 0, (14)

describes the incompressible flow of phase-space probability density and identifies wt as the con-
served current associated via Noether’s theorem with conservation of energy under Hamiltonian
time evolution. Thus, the Gibbs entropy is constant,

dσ

dt
= 0. (15)

3 Ideal paramagnet (3 points)

Using the results derived in the lectures and the Gibbs fundamental relation, calculate the
thermodynamic equation of state for the ideal paramagnet of independent spins, and solve it
approximately in the limits hm ≪ kB T and hm ≫ kB T , where h denotes the external field
and m the magnetic moment of a single spin.

The energy of an ideal paramagnet consisting of N uncoupled Ising spins in the configuration
s = (s1, . . . , sN ) ∈ SN = {±1}N , each of gyromagnetic factor m > 0 and subject to the external
field h is H(s) = −hm

∑N
j=1

sj . A given energy shell corresponds to a fixed number N↓ of down
spins sj = −1, and the microcanonical partition function is the number of such configurations,

Zm =

(

N

N↓

)

=
N !

N↓!(N −N↓)!
. (16)

Since the spins are uncoupled, all possible configurations that conform to a given macrostate
are equally likely to occur, justifying the use of the microcanonical ensemble.

The entropy S = kB ln(Zm) is maximized in the microcanonical ensemble. N↓ = N
2

maximizes

the binomial coefficient, so we insert N↓ = N−k
2

, where k ≪ N parametrizes fluctuations, and
use Stirling’s approximation for large factorials to write S as

S(E, h) = kB

(

ln(N !)− ln(N↓!)− ln[(N −N↓)!]
)

≈ kB

(

N ln(N)−✚✚N − N−k
2

ln
(

N−k
2

)

+
✚
✚✚N−k
2

− N+k
2

ln
(

N+k
2

)

+
✚
✚✚N+k
2

)

= kB

(

N ln(2N)−✘✘✘✘N ln(2)− N−k
2

ln(N − k) +✘✘✘✘✘N−k
2

ln(2)− N+k
2

ln(N + k) +✘✘✘✘✘N+k
2

ln(2)
)

= NkB ln(2)− NkB
2

[

(

1− k
N

)

ln
(

1− k
N

)

+
(

1 + k
N

)

ln
(

1 + k
N

)

]

= NkB ln(2)− NkB
2

[

(

1 + E
Nmh

)

ln
(

1 + E
Nmh

)

+
(

1− E
Nmh

)

ln
(

1− E
Nmh

)

]

,

(17)

1We can fix the units, i.e. make dµm(x) dimensionless, correct the counting of states for systems of identical
particles, and thus avoid the Gibbs paradox by including the factor 1

h3NN !
.
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where E = −kmh is the deviation in energy from Nmh.

The Gibbs fundamental relation for a magnetic system exhibiting total magnetization M and
subject to the magnetic field h reads

dS(E, h) =
1

T
dE +

M

T
dh. (18)

Therefore,

1

T
=

∂S

∂E

∣

∣

∣

h
= − kB

mh
arctanh

(

E

Nmh

)

(19)

M

T
=

∂S

∂h

∣

∣

∣

E
=

kBE

mh2
arctanh

(

E

Nmh

)

(20)

Solving (19) for E gives

E = −Nmh tanh

(

mh

kBT

)

. (21)

Inserting (21) into (20) yields the magnetization

M(h, T ) = Nm tanh

(

mh

kBT

)

. (22)

The plot below shows that tanh(x) → ±1 for x → ±∞ while tanh(x) ≈ x for |x| ≪ 1.

−2 −1 1 2

−1

−0.5

0.5

1

x

tanh(x)

The asymptotic behavior of the magnetization at low and high temperatures is thus

M ≈
{

Nm2h
kBT

for mh ≪ kBT , (Curie’s law)

Nm for mh ≫ kBT .
(23)

An intuitive interpretation of this result is that for low temperatures, all spins align to give a
large magnetization, whereas for high temperatures, thermal fluctuations disturb spin alignment,
resulting in a low magnetization that tends to zero as mh/kBT → 0.

5


	Dynamics of a Hamiltonian system
	Time evolution of the Gibbs entropy
	Ideal paramagnet

