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Fluid instability and blast waves

1 Trinity shock wave

Consider the image sequence in fig. 1, showing the blast wave of the first atomic bomb
triggered in 1945. We expect the radius Rs of the blast wave (which is an extremely strong
shock) to evolve as

Rs ∝
(
Et2

ρ

) 1
5

(1)

in three dimensions (according to the so-called Sedov-Taylor solution), with a proportionality
coefficient close to unity (and which we assume is exactly one). Here E is the energy released
and ρ is the background density.

(a) Confirm by dimensional analysis that Rs is the only length scale that one can construct
from an energy E, a density ρ, and a time t.

(b) Estimate the released explosion energy E based on the images, and convert to the
equivalent in kilotons of TNT (1 kt TNT ' 5× 1012 J).

(c) Estimate the post-shock temperature at time t = 1 ms.

(a) E, ρ and t have dimensions

[E] = J =
kg m2

s2
, [ρ] =

kg

m3 , [t] = s. (2)

To determine if their exists a unique combination of these building blocks to construct a
length scale, we impose

m = [Rs]
!

= [E]α · [ρ]β · [t]γ =

(
kg m2

s2

)α
·
(

kg

m3

)β
· sγ = kgα+β ·m2α−3β · s−2α+γ (3)

The above equation is only satisfied if

α+ β
!

= 0

2α− 3β
!

= 1

−2α+ γ
!

= 0

 ⇒ α =
1

5
, β = −1

5
, γ =

2

5
. (4)
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Figure 1: Trinity test in New Mexico, 1945

(b) From the last snapshot on the left in fig. 1, we can estimate that the explosion had a
diameter of roughly 2Rs ≈ 70 m after a time t = 0.94 ms. Assuming a background density
of Earth’s atmosphere at sea level, ρE = 1.225 kg

m3 , eq. (1) yields an explosion energy of

E =
ρER

5
s

t2
≈ 7.28× 1013 J ≈ 17.41 kt TNT (5)

(c) To estimate the post-shock temperature, we need the shock’s Mach number M defined
i.t.o. the velocity v with which the shock discontinuity propagates and the pre-shock speed
of sound cs ≈ 343.2 m

s ,

M =
v

cs
=

1

cs

dRs
dt

=
2

5cs

(
E

ρt3

) 1
5

≈ 41.48. (6)

The post-shock temperature T ′ can be expressed as (see p. 189, “Theoretical Astrophysics”
by M. Bartelmann for a derivation)

T ′

T
=
q

r
, (7)

where T is the pre-shock temperature, and q and r are the ratio of post- to pre-shock
density and pressure, respectively,

r =
ρ′

ρ
=

M2(γ + 1)

M2(γ − 1) + 2
≈ 5.96, q =

P ′

P
=

2γM2 − γ + 1

γ + 1
≈ 2008.38. (8)

Thus, assuming a pre-shock temperature of T = 20 ◦C, the post-shock temperature is
approximately given by

T ′ =
q

r
T ≈ 98 820 K (9)
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Note: Doing a rough energy estimate of the resulting kinetic energy with this tem-
perature (assuming diatomic molecules with a mean molecular mass of m = 29 u, a
post-shock density according to the jump condition (8) of ρ′ = 5.96 ρ and a spherical
volume V = 4

3πR
3
s(t = 1 ms)), we get a total number of particles inside the fireball of

N =
ρ′V

m
≈ 4.07× 1031 (10)

and hence a kinetic energy

Ekin =
5

2
NkBT ≈ 1.39× 1014 J (11)

Since this is larger than the energy released by the explosion, and much larger still than
that part of the energy which is actually located inside the post-shock region (most of
the energy released is carried outward by the shock-wave after all), the post-shock
region where thermodynamics is applicable must be confined to a volume much smaller
than V inside the actual blast sphere.

2 Kelvin-Helmholtz instability

For definiteness, we consider a two-dimensional domain of extension [0, L]×[0, L] with periodic
boundaries on the left and right sides, and reflecting boundaries on the top and bottom. Let
the upper half of the box be filled with gas (γ = 5/3) at density ρ1 = 1.0, pressure P1 = 1.0,
and velocity u1 = 0.3 in the x-direction (i.e. to the right). The lower half has density
ρ2 = 2.0, the same pressure P2 = P1, and moves with velocity u2 = −0.3 to the left. In order
to avoid a perfectly sharp boundary in the initial conditions between these two phases (which
is prone to triggering secondary instabilities at grid corners) we introduce a small transition
region that smoothly connects them:

ρ(x, y) = ρ1 +
ρ2 − ρ1

1 + exp[σ(y − 1
2)]
, (12)

and similarly

u(x, y) = u1 +
u2 − u1

1 + exp[σ(y − 1
2)]
, (13)

with σ = 100. In these unperturbed initial conditions, we now impose a seed perturbation
in the velocity in the y-direction of the form

v(x, y) = A cos(kx) e−k|y−
1
2
|, (14)

with wavenumber k = 22π
L and perturbation amplitude A = 0.05. For simplicity, we refrain

from imparting a perturbation in ρ and u as well that would be consistent with the velocity
perturbation in the y-direction at the linear theory level, kind of hoping that we get away
with this on the grounds that the perturbation should anyway grow (which is expected if the
shear flow is indeed unstable against arbitrarily small transverse perturbations).

(a) We want to simulate this problem with the Athena mesh code developed by
the group of Jim Stone (Princeton University). You can download version 4.1
of this code from http://www.astro.princeton.edu/~jstone/downloads/athena/

athena4.1.tar.gz. Then, unpack the code with the command: tar -zxvf athena4.1.

tar.gz.
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We want to run the problem with Athena until time t = 3.0 and create an image of
the resulting density field at the end. To this end, you need to implement appropriate
initial conditions in a problem generator according to the design of this code, and
then compile the code appropriately. For the problem generator, you can use the file
kelvin.c provided on moodle and place it into the subdirectory src/prob of Athena.
Edit the file to finish off the implementation of the initial conditions (there are primarily
three lines to fill out - see the comments in the file). Then configure the code with

./ configure --with -problem=kelvin --with -gas=hydro --with -eos=

adiabatic --with -flux=roe

followed by the compilation step with make all.

Next, you also need to setup a parameter file that is passed to Athena at run time. This
sets things such as the resolution you want to use, the number and times of outputs
you want to have, the desired simulation time span, etc. You can try the parameter
file kelvin.param supplied on moodle to get started, which you may modify as you
see fit (for example to change the resolution or the parameters of the initial conditions
generator). Then run the code with

./bin/Athena -i <parameterfile >

where you replace the name of the parameterfile with your file kelvin.param.

At the final time, you should get a .ppm image file displaying a slice of the density
field, e.g. kh.0060.d.ppm. Load this into an image view program of your choice.
Carry out a series of simulations with different resolutions, equal to 64× 64, 128× 128,
and 256 × 256 mesh cells, and produce images for them at the same nominal pixel
resolution, for example 512×512 pixels, by enlarging the images accordingly. Compare
them visually and discuss.

(b) We now want to check whether we can verify the linear growth rate of the perturbation.
As discussed in the lecture, the growth rate of a single mode k is given by ∝ eωt, with

ω = k|u1 − u2|
√
ρ1ρ2

ρ1 + ρ2
. (15)

Make a plot of the log of the mean kinetic energy in the y-direction as a function of time
(you can get this quantity from the history output in kh.hst, column 1 has the time,
column 9 the kinetic energy in the y-direction), and overplot a growth line reflecting the
above timescale. Why is the growth initially slower than expected based on eq. (15)?
What could be the reason that there is a large slow-down at late times?

(c) Now repeat the Kelvin-Helmholtz simulation of part (a) but add a constant velocity of
∆u = 5.0 everywhere to the initial conditions. At time t = 3.0, would you expect the
result to look different than in part (a)? Compare with what you actually obtain when
doing this test, and discuss the result.

(a) The final state at time t = 3.0 of our Kelvin-Helmholtz simulations at different resolutions
is shown in figs. 2a to 2d. Higher resolutions produce noticeably sharper density gradients
at the interface of both gases. Also, vortices lengthen considerably.

(b) The evolution over time of the mean kinetic energy in y-direction is shown and fitted in
fig. 3.
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(a) 64× 64 (b) 128× 128

(c) 256× 256 (d) 512× 512

Figure 2: Images of a Kevin-Helmholtz instability at different resolutions
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Figure 3: Time evolution of kinetic energy

The initial drop-off is puzzling. The way we set up the system, there should be no initial
velocity in the y-direction at all. The fall-off for later times can be attributed to nonlin-
earity and size effects; after an initial rapid growth phase, the vortices no longer increase
in size but start to overlap and flow into each other. This dampens a further increase of
motion in the y-direction.

(c) Repeated Kelvin-Helmholtz simulations with a constant velocity shift of ∆u = 5.0 applied
to both u1 and u2 at resolutions 128× 128 and 512× 512 are shown in figs. 4a and 4c, re-
spectively. For comparison, we displayed the previous final state obtained without velocity
shift at equal resolution next to either (figs. 4b and 4d).

Physically, one might argue that an equal shift applied to the velocities of both gases should
not have an effect on the behavior of the system since it seems like we are just performing
a change of reference frame. However, our simulations clearly show at both 128× 128 and
512×512 that this “change of reference frame” diffuses vortices and decreases their length.

This is most likely due to our finite grid. It imposes a cutoff of the wave vector. When
simulating our system with ∆u = 5.0 we are effectively Doppler shifting the oscillations
and transforming back at the end. If during this procedure oscillations get transformed
below the k-cutoff their information is lost.
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(a) 128× 128 with ∆u = 5 (b) 128× 128 no shift

(c) 512× 512 with ∆u = 5 (d) 512× 512 no shift

Figure 4: Kelvin-Helmholtz instability with equal relative, but increased absolute gas velocities
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