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Theoretical Statistical Physics

Solution to Exercise Sheet 8

1 Canonical partition function (4 points)

Consider a classical ideal gas of monatomic molecules with the proper counting of degrees
of freedom. Compute the free energy F , the internal energy U , the entropy S, and the heat
capacity CV from the canonical partition function Z(T, V,N) for large N .

The canonical partition function for a single classical particle confined to a region Λ ⊂ R
3 with

continuous degrees of freedom q and p and Hamiltonian H1(p, q) is

Z1(T, V ) =
1

h3

∫

R3

∫

Λ
e−βH1(p,q) d3q d3p. (1)

The need for a prefactor is obvious based on dimensional grounds. The partition function should
be dimensionless, so hmust have dimensions of momentum times position, i.e. those of an action.
The actual value of h does not affect physical observables such as energy or heat capacity, since
these derive from the partition function by first taking the logarithm followed by differentiation,
which removes all prefactors. It will, however, affect the entropy S = −kB ln(Z). If h is set to
Planck’s constant, Z1 becomes quantitatively correct for dilute gases at high temperature.

Since the particles of an ideal gas are non-interacting, the Hamiltonian for a system ofN particles
is a sum of N one-particle Hamiltonians,

H(p1, . . . ,pN ) =
N∑

i=1

Hi(pi), (2)

where the contribution from each gas particle is just its kinetic energy,

Hi(pi) =
p
2
i

2m
. (3)

We can thus construct the N -particle partition function as a product of one-particle functions,

Z(T, V,N) =
1

N !
Z1(T, V )N . (4)

The factor 1
N ! takes into account that even though we treat the gas as a classical system,

it is really governed by quantum mechanics. At the quantum level, identical particles are
indistinguishable. Thus if we exchange any two, the system is unaltered. We must therefore
divide by the total number of permutations among all particles N ! to ensure that the partition
function only counts distinct states.

Inserting the one-particle Hamiltonian (3) into (1), the position integral gives the volume V of
the region Λ and the momentum integration becomes a Gaussian.

Z1(T, V ) =
1

h3

∫

R3

∫

Λ
e−β p

2

2m d3q d3p =
V

h3
(2πmkBT )

3

2 =
V

λ3
, (5)

where λ = h√
2πmkBT

is the mean free path (a.k.a. thermal de Broglie wave length). Thus

Z(T, V,N) =
1

N !

V N

λ3N
. (6)
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Now that we have Z, we take its logarithm to obtain the free energy,

F = −kBT ln(Z) = −kBT
[

N ln(V )− ln(N !)−N ln(λ3)
]

≈ NkBT

[

ln

(
N λ3

V

)

− 1

]

, (7)

where we used Stirling’s approximation ln(N !) = N ln(N)−N +O(lnN) valid for large N .

The internal energy U is defined in terms of the partition function as

U = − ∂

∂β
ln(Z) ≈ − ∂

∂β
N

[

ln

(
N λ3

V

)

− 1

]

= 3N
∂

∂β
ln

(
h√

2πmkBT

)

=
3

2
N

∂

∂β
ln(β) =

3

2
NkBT.

(8)

Differentiating (8) w.r.t T yields the heat capacity for a monatomic ideal gas in three dimensions,

C =
∂U

∂T
=

3

2
NkB. (9)

Finally, we can calculate the entropy by differentiating (7) w.r.t. T ,

S = −∂F

∂T

∣
∣
∣
V
= −F

T
−NkBT

∂

∂T

[

ln

(
N λ3

V

)

− 1

]

= −F

T
+

3

2
NkB. (10)

Inserting (8), this becomes the familiar F = U − T S. Alternatively, we can insert (7), in which
case (10) becomes the famous Sackur-Tetrode equation for the entropy of a classical monatomic
ideal gas with quantum-corrected counting of states,

S = −NkB

[

ln

(
N λ3

V

)

− 1

]

+
3

2
NkB = NkB

[

ln

(
V

N λ3

)

+
5

2

]

. (11)

Note that according to (11), S → −∞ as T → 0 in conflict with the third law, signaling that
the Sackur-Tetrode equation is valid only for V

Nλ3 ≫ 1. This is because for T → 0, we leave
the classical regime where gas particles are no longer distributed onto available energy states
according to Maxwell-Boltzmann statistics, as we assumed in (1).

2 Gibbs variational principle (3 points)

Formulate and prove the Gibbs variational principle for the entropy of the canonical ensemble.
Proceed in analogy to the argument for the microcanonical entropy, but impose the constraint
that the expectation value of H is fixed to the canonical value,

〈H〉 !
= 〈H〉c, (12)

and volume V and particle number N fixed.

The microcanonical and canonical ensembles are different probability distributions. The for-
mer weighs all accessible states equally, ωm(q, p) = 1

Zm
, the latter depending on their energy

ωc(q, p) =
1
Zc
e−βH(q,p). According to Gibbs’s definition of entropy (with kB = 1 for simplicity)

S(w) = −
∫

Γ
w ln(w) dµω, (13)

this results in different values for S. dµω denotes the phase space measure associated with the
distribution ω, e.g.

dµm = δ(E −H(q, p)) dµc and dµc =
d3Nq d3Np

h3NN !
(14)
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for ωm and ωc, respectively, such that

∫

Γ
wm dµm = 1 =

∫

Γ
wc dµc. (15)

In the thermodynamic limit N → ∞, however, all physical properties (including entropy) co-
incide for both distributions (see also exercise 3.b)), excepting phase transitions. It might not
come as a surprise therefore that a unified method to treat different ensembles exists known as
the Gibbs variational principle. It states that all ensembles maximize the entropy subject to cer-
tain conditions. The only difference is what constraints we have to impose. The microcanonical
ensemble assigns non-zero probability only to states of a given volume V , number of particles
N and energy E. The canonical ensemble, on the other hand, constrains V and N as well but
replaces E with the average energy 〈E〉, i.e. the temperature T to maximize the entropy.

To prove Gibbs’s statement that the canonical distribution ωc maximizes the entropy Sc at
〈H〉 !

= 〈H〉c, consider

Sc = −
∫

Γ
ωc ln(ωc) dµc = −

∫

Γ
ωc

[

ln(ωc e
βH)− βH

]

dµc

= −
∫

Γ
ωc ln(Z

−1
c ) dµc + β

∫

Γ
ωcH dµc = ln(Zc) + β〈H〉c,

(16)

Sω = −
∫

Γ
ω ln(ω) dµω = −

∫

Γ
ω
[

ln(ω eβH)− βH
]

dµω

= −
∫

Γ
ω ln(ω eβH) dµω + β〈H〉ω,

(17)

where ω is any non-negative probability distribution normalized with the same measure as ωc,
i.e.

∫

Γ ω dµc = 1. Taking the difference of (16) and (17) gives

Sc − Sω =

∫

Γ
ω
[

ln(Zc) + ln(ω eβH)
]

dµc + β
(
〈H〉c − 〈H〉ω
︸ ︷︷ ︸

0

)

=

∫

Γ
ωc

ω

ωc
ln(ω/ωc) dµc

≥
∫

Γ
ωc(ω/ωc − 1) dµc =

∫

Γ
ω dµc −

∫

Γ
ωc dµc = 0.

(18)

To get from the second to the third line, we used the inequality x ln(x) ≥ x − 1 which holds
because x ln(x) is convex and x− 1 is its tangent. Thus Sc ≥ Sω at 〈H〉 = 〈H〉c for any ω.
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3 Fluctuations and equivalence of ensembles (3 points)

a) Show that the fluctuation of the total energy

σ2
H =

〈
(H − 〈H〉)2

〉
(19)

for the canonical ensemble satisfies σ2
H = − ∂

∂β
〈H〉. Assuming that the energy E = 〈H〉 is

non-zero and that E and its derivative with respect to inverse temperature are extensive,
how does σH

E
behave for large N?

b) Calculate σ2
H for the grand canonical ensemble and compare it to the result for the

canonical ensemble. Discuss the N -dependence of the difference for large N .

a) By linearity of the expectation value 〈·〉, we have

σ2
H =

〈
(H − 〈H〉)2

〉
=

〈
H2 − 2H〈H〉+ 〈H〉2

〉
= 〈H2〉 − 〈H〉2. (20)

The canonical partition function reads

Zc =

∫

Γ
e−βH dµc, (21)

with dµc as in (14). Thus

〈H〉 = 1

Zc

∫

Γ
H e−βH dµc = − 1

Zc

∂Zc

∂β
, (22)

and

−∂〈H〉
∂β

=
∂

∂β

(
1

Zc

∂Zc

∂β

)

=
1

Zc

∂2Zc

∂2β
−
(

1

Zc

∂Zc

∂β

)2

= 〈H2〉 − 〈H〉2 = σ2
H . (23)

Since 〈H〉 and ∂
∂β

〈H〉 are extensive, they both scale with N . This implies

σH
〈H〉 ∼

√
N

N
=

1√
N

N→∞−−−−→ 0, (24)

i.e. in the thermodynamic limit, energy fluctuations tend to zero, meaning lim
N→∞

〈H〉 = E.

b) The grand canonical partition function reads

Zg =
∞∑

N=0

∫

Γ
e−β(H−µN) dµc =

∞∑

N=0

zNZc, (25)

with z = eβµ, and the average energy

〈H〉g =
1

Zg

∞∑

N=0

∫

Γ
H e−β(H−µN) dµc, (26)

where H is a function of N . Consider

−∂〈H〉g
∂β

= − ∂

∂β

[

1

Zg

∞∑

N=0

∫

Γ
H e−β(H−µN) dµc

]

=
1

Zg

∂Zg

∂β
︸ ︷︷ ︸

−〈H−µN〉g

〈H〉g −
1

Zg

∂

∂β

[ ∞∑

N=0

∫

Γ
H e−β(H−µN) dµc

]

︸ ︷︷ ︸

−〈H(H−µN)〉g

= 〈H2〉g − µ〈NH〉g − 〈H〉2g + µ〈N〉g〈H〉g

(27)
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We can solve (27) for the grand canonical energy fluctuations,

σ2
H,g = 〈H2〉g − 〈H〉2g = −∂〈H〉g

∂β
+ µ

(

〈NH〉g − 〈N〉g〈H〉g
)

. (28)

The covariance of N and H, may be rewritten as

〈NH〉g − 〈N〉g〈H〉g =
1

β

∂〈H〉g
∂µ

(29)

since

1

β

∂〈H〉g
∂µ

=
1

β

(

− 1

Zg

∂Zg

∂µ
〈H〉g +

1

Zg

∞∑

N=0

βN

∫

Γ
H e−β(H−µN) dµc

)

=
1

β

(

− 1

Zg

∞∑

N=0

βN zNZc〈H〉g + β〈NH〉g
)

= 〈NH〉g − 〈N〉g〈H〉g.
(30)

This leads to

σ2
H,g = −∂〈H〉g

∂β
+

µ

β

∂〈H〉g
∂µ

. (31)

Energy fluctuations in the grand canonical and canonical ensemble differ by

σ2
H,g − σ2

H,c =
µ

β

∂〈H〉g
∂µ

∼ N, (32)

which vanishes in the thermodynamic limit since

1

E

√

σ2
H,g − σ2

H,c ∼
√
N

N

N→∞−−−−→ 0. (33)
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