
Fundamentals of Simulation Methods
Exercise Sheet 8

Daniel Rosenblüh, Janosh Riebesell

January 8th, 2016

Hyperbolic conservation laws and finite volume scheme

1 An isothermal Riemann problem

Consider the isothermal gas equations in one dimension, governed by the set of conservation
laws

∂t

(
ρ
ρu

)
+ ∂x

(
ρu

ρ(u2 + c2s)

)
= 0, (1)

where ρ and u are the gas density and velocity, respectively, and cs is the constant speed of
sound. We now consider two streams of gas of equal density ρ0 that collide at time t0 = 0
at a fiducial interface x = 0, i.e. at t0 = 0, the density is ρ(x) = ρ0, and the velocity field is
u(x) = −u0 for x > 0 and u(x) = u0 for x < 0.

(a) Make a sketch of ρ(x) and u(x) at some later time t1 > t0.

(b) Now suppose the density measured at x = 0 at this later time is ρ1 = 3ρ0, and a
shock propagating towards the right, starting at x = 0, has been identified. Calculate
the shock velocity in units of u0. (Note that another shock is moving with equal but
opposite velocity to the left.)

(c) Determine the sound speed in units of u0.

(d) What is the Mach number of the two shocks (i.e. their velocity relative to the pre-shock
gas, divided by the sound-speed)?

(a) Figures 1a and 1b give a rough idea of how the gas density ρ(x) and velocity u(x) look
like at time t1 > t0 after the contact wave has begun its outward propagation.

(b) The Euler equations in their weak formulation as integral equations remain valid even at
the discontinuity of a shock front, meaning that even at a shock, mass, momentum and
energy must be conserved. These requirements are known as the Rankine-Hugoniot jump
conditions and they govern the change in density ρ, pressure P = ρu2, and velocity u

1

mailto:rosenblueh@stud.uni-heidelberg.de
mailto:riebesell@thphys.uni-heidelberg.de

10 5 0 5 10

x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
ρ
/ρ

0

ρ(x)

shock

(a) Sketch of ρ(x)

10 5 0 5 10

x

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

u
/u

0

u(x)

shock

(b) Sketch of u(x)

Figure 1: Density and velocity distribution in the Riemann problem some time after the initial
conditions were allowed to evolve

during a shock:

ρiui = ρouo (mass flux in
!

= mass flux out), (2)

ρiu
2
i + Pi = ρou

2
o + Po (momentum flux in

!
= momentum flux out), (3)

(ρiei + Pi)ui = (ρoeo + Po)uo (energy flux in
!

= energy flux out). (4)

Note: An isothermal shock necessarily involves some form of heat dissipation, such as
thermal radiation. No such process is included in eq. (4), as it was already absent from
from its root, the third Euler equation,

∂t(ρe) + ∂x[(ρe+ P)u] = 0. (5)

Thus, eq. (4) is an incomplete statement about energy conservation in the context
of isothermal processes. This also explains the third Euler equation’s absence from
the isothermal gas equations (1), which are otherwise identical to the Euler equations.
While eqs. (4) and (5) could be modified to incorporate heat dissipation, it is more
common to simply replace them by the requirement that the flow should return to its
original temperature after the shock has passed, i.e.

T0 = T1. (6)

Conditions (2) and (3) are derived from the integral form of eq. (1) and continue to
hold without change also for isothermal systems.

To determine the shock velocity, we need to take into account that the two shock waves
propagating outward in either direction from x = 0 form a compressed region of constant
density ρ1 = 3ρ0 and, by symmetry, zero velocity u1 = 0. Furthermore, gas which has not
yet gone through the shock front is undisturbed, i.e. still travels with velocity u0 towards
the shock. The trick with problems such as this one is to move into the rest frame of one
of the shock waves. Let us choose the right-moving one where gas travels into the shock
with density ρi = ρ0 and velocity ui = −u0 − us and out again with density ρo = 3ρ0 and
velocity vo = −us. Inserting these values into the first Rankine-Hugoniot condition, i.e.

2

eq. (2), we obtain
ρ0(−us − u0) = −3ρ0us, (7)

Solving for us, we get a shock velocity of

us =
u0
2
. (8)

(c) We use again that in the rest frame of the shock, gas flows into it with velocity ui =
−u0 − us and out again with uo = −us. The in- and outgoing densities remain ρi = ρ0
and ρo = ρ1 = 3ρ0, so that the second jump condition reads

ρ0[(u0 + us)
2 + c2s] = 3ρ0(u

2
s + c2s). (9)

which can be simplified to

u20 + 2u0us + u2s + c2s = 3u2s + 3c2s. (10)

By inserting our result for the shock velocity from part (b), we obtain

u20 + 2u0
u0
2
− 2

u20
4︸ ︷︷ ︸

3
2
u2
0

= 2c2s (11)

and thus arrive at a speed of sound of

cs =

√
3

2
u0. (12)

(d) The Mach number is defined as the ratio of the shock velocity to the speed of sound in the
rest frame of the gas which is hit by the shock. Since in the rest frame of the shock, the
gas flows into the shock with velocity −u0 − us, the shock appears to move towards the
gas with velocity u0 + us in its own rest frame. Dividing u0 + us by the speed of sound,
we get a Mach number of

M =
u0 + us
cs

=
u0 + u0

2√
3
2 u0

=
√

3. (13)

2 Roe’s approximate Riemann solver for the isothermal problem

We begin by considering the one-dimensional isothermal Riemann problem, augmented with
an advection of the y-momentum:

∂tU + ∂xF = 0, (14)

where the state vector U and flux vector F (U) are given by

U =

 ρ
ρu
ρv

 , F =

 ρu
ρ(u2 + c2s)

ρuv

 . (15)

cs is the fixed sound speed, and u and v describe the velocity field in the x- and y-directions,
respectively.

3

We now seek an (approximate) solution for the flux across the interfaces of cells of width ∆x,
allowing us to update the state of the cells as

Un+1
i = Un

i +
∆t

∆x

[
F i− 1

2
− F i+ 1

2

]
. (16)

If we consider each cell interface as an initial value problem with initial conditions

U(x, 0) =

{
UL for x < 0,

UR for x > 0,
(17)

then Godunov’s original first order method consists of taking as flux F i+ 1
2

= F [U i+ 1
2
(0)],

where U i+ 1
2
(0) = U i+ 1

2
(x/t) is the exact self-similar solution of the Riemann problem on the

characteristic emanating from the interface.
Instead of seeking the exact solution of the isothermal Riemann problem (which is not too
difficult actually, but requires the iterative solution of a non-linear equation), we shall here
calculate an estimate of the flux based on an approximate solution of the Riemann problem,
following the approach of Roe. To this end, we linearize the PDE. We can first rewrite
eq. (14) as

∂tU + A(U)∂xU = 0, where A =
∂F

∂U
(18)

is a Jacobian matrix. The central idea for linearizing is now to replace A with a matrix Ã
that only depends on the left and right states, Ã = Ã(UL,UR). This in turn will convert
eq. (18) into a linear system with constant coefficients. Roe’s Riemann solver sets for this
matrix

Ã =

 0 1 0
c2s − ũ2 2ũ 0
−ũṽ ṽ ũ

 , (19)

where ũ and ṽ are weighted averages of the velocities of the left and right state, with the
weights chosen as square roots of the density, i.e.

ũ =

√
ρLuL +

√
ρRuR√

ρL +
√
ρR

, (20)

and similarly for ṽ. Note that Ã(U ,U) = A, i.e. this average is consistent with the original
Jacobian. The linearized system can now be diagonalized and solved as a set of linear
advection problems.

(a) Verify that λ1 = ũ − cs, λ2 = ũ + cs, and λ3 = ũ are eigenvalues of Ã with the
eigenvectors

K1 =

 1
ũ− cs
ṽ

 , K2 =

 1
ũ+ cs
ṽ

 , K3 =

0
0
1

 . (21)

(b) Check that the difference vector ∆U = (u1, u2, u3) = UR − UL between the states
left and right can be expressed in terms of the eigenvectors as ∆U =

∑
i αiKi, with

coefficients

α1 =
(ũ+ cs)u1 − u2

2cs
, α2 =

−(ũ− cs)u1 + u2
2cs

, α3 = u3 − ṽu1. (22)

4

(c) Write a subroutine riemann_roe_isothermal that takes as input arguments the state
left and right of an interface, i.e. (ρL, uL, vL) and (ρR, uR, vR), as well as the sound
speed cs, and returns the three components F ? = (f1, f2, f3) of the flux vector, which
is given by

F ? =
1

2
(F L + FR)− 1

2

∑
i

αi|λi|Ki. (23)

(d) Test your Riemann solver with the input values given in table 1, assuming cs = 2.0. The
first two expected results are included in the table already, verify those and determine
the one for the third row.

(a) Direct computation confirms that the Ki are eigenvectors of A.

ÃK1 =

 ũ− cs
c2s − ũ2 + 2ũ(ũ− cs)
−ũṽ + ṽ(ũ− cs) + ũṽ

 = (ũ− cs)

 1
ũ− cs
ṽ

 = λ1K1. (24)

ÃK2 =

 ũ+ cs
c2s − ũ2 + 2ũ(ũ+ cs)
−ũṽ + ṽ(ũ+ cs) + ũṽ

 = (ũ+ cs)

 1
ũ+ cs
ṽ

 = λ2K2. (25)

ÃK3 =

0
0
ũ

 = ũ

0
0
1

 = λ3K3. (26)

(b) We compute the three components of
∑

i αiKi separately.(∑
i

αiKi

)
x

= α1 + α2 =
1

2cs

[
(ũ+ cs)u1 − u2 − (ũ− cs)u1 + u2

]
= u1. (27)

(∑
i

αiKi

)
y

= α1(ũ− cs) + α2(ũ+ cs)

=
1

2cs

[
(ũ2 − c2s)u1 − u2(ũ− cs)− (ũ2 − c2s)u1 + u2(ũ+ cs)

]
= u2.

(28)

(∑
i

αiKi

)
z

= α1ṽ + α2ṽ + α3

=
1

2cs

[
(ũ+ cs)u1ṽ − u2ṽ − (ũ− cs)u1ṽ + u2ṽ + 2cs(u3 − ṽu1)

]
= u3.

(29)

Combining eqs. (27) to (29), we indeed have

∑
i

αiKi =

u1u2
u3

 = ∆U . (30)

(c) See roes_riemann_solver.c.

(d) A test of our Riemann solver with the input values supplied in table 1 was conducted,
successfully reproducing the flux values in rows 1 and 2 and generating new values as
given in the third row.

5

Table 1: Riemann solver input values and results

ρL uL vL ρR uR vR f1 f2 f3

1.0 1.0 2.0 3.0 1.0 0.0 0.0 6.0 1.268
2.5 2.0 3.0 1.0 −3.0 −2.0 2.6243 24.602 12.475
2.0 −1.0 −2.0 1.0 −1.0 2.0 −0.5 5.5 −2.172

3 Doing a one-dimensional sweep

We now consider a two-dimensional periodic domain of extension [Lx, Ly], subdivided into
N ×M cells. We want to carry out on this domain one timestep according to eq. (16), with
Roe’s approximate flux as derived above.
To this end, write a subroutine sweep that takes as input parameters the density field ρ[i, j]
and the velocity fields u[i, j] and v[i, j]. Further, the routine should accept the timestep ∆t
and the mesh-spacing ∆x, as well as the mesh dimensions N and M as input. Finally, pass
two small relative offset vectors to the routine which tell it which cell should be considered
“left” and which “right” of any current cell. For example, if the x-direction is evolved, this
offset vector would be (−1, 0) for the left cell and (+1, 0) for the right cell, since ρi−1,j is then
considered “left” of ρi,j . In terms of output, the subroutine should automatically update the
input fields ρ[i, j], u[i, j] and v[i, j] with the new values at the end of the timestep.
Implement the following steps in the routine sweep:

(a) Create three empty arrays for the components of the new state Un+1 = (q1, q2, q3) at
the end of the sweep.

(b) Write two nested loops that go over all primary cells, i ∈ {0, . . . , N−1}, j ∈ {0, . . . ,M−
1}, and which identify the left and right cells of the current cell (here you need to
observe the periodic boundary conditions by wrapping around if needed). Call the
routine riemann_roe_isothermal that you wrote for both the left and the right interface
of the cell, obtaining two flux vectors, F ?

i− 1
2

and F ?
i+ 1

2

. Calculate the new state of each

cell as

Un+1 = Un +
∆t

∆x

[
F ?

i− 1
2

− F ?
i+ 1

2

]
. (31)

(c) Based on q1[i, j], q2[i, j], and q3[i, j], calculate the new values for the density field and
the velocity fields u[i, j] and v[i, j], which forms the output of the routine.

For parts (a) to (c), see roes_riemann_solver.c.

4 Carrying out a multidimensional simulation

We now consider the full two-dimensional isothermal problem, which takes the form

∂tU + ∂xF + ∂yG = 0, (32)

with

U =

 ρ
ρu
ρv

 , F =

 ρu
ρ(u2 + c2s)

ρuv

 , G =

 ρv
ρuv

ρ(u2 + c2s)

 . (33)

6

As we discussed in the lecture, one possibility to solve this system lies in operator splitting,
essentially by achieving a full time advance over a timestep ∆t by solving the two problems

∂tU + ∂xF = 0, (34)

and
∂tU + ∂yG = 0, (35)

independently one after the other. To linear order in time, this can be simply done by
carrying out sweeps for these equations one after the other.

(a) Verify that our subroutine sweep can be used without change to carry out a sweep in
the y-direction, corresponding to a step of eq. (35), provided the velocity fields are
appropriately passed. The sequence of calls

sweep(ρ, u, v, ∆t, ∆x, cs, N , M , -1, 0, 1, 0);

sweep(ρ, v, u, ∆t, ∆y, cs, N , M , 0, -1, 0, 1);

can hence be used to first do a sweep in the x-direction, followed by one in the y-
direction.

(b) Write a short code that integrates the two-dimensional isothermal problem over a cer-
tain time interval [0, Tmax], based on your function sweep. Adopt as timestep

∆t = CCFL
min(∆x,∆y)

cs + max(u, v)
. (36)

(c) For definiteness, take Lx = 3.0, Ly = 1.5, cs = 2.0, Tmax = 1.5, and the initial
conditions

ρ(x, y) =

{
4.0 for |x− Lx/2| < Lx/4 and |y − Ly/2| < Ly/4,

1.0 otherwise,
(37)

with u(x, y) = v(x, y) = 0. Evolve the system with CCFL = 0.4 and N = 60, M = 30.
Plot the density field at the final time t = Tmax along the x-axis and along the y-axis
through the mid-point of the box. If everything works, the result for the y-axis should
not be too different from the result in fig. 2.

Optional: You may also produce a movie of the time evolution of the density field, and
try things out with higher grid resolution.

For parts (a) and (b), see roes_riemann_solver.c.

(c) Figures 3a and 3b show the density at final time Tmax along lines of constant x and y,
respectively.

7

0.0 0.5 1.0 1.5

y

0.0

0.5

1.0

1.5

2.0

2.5

ρ

Figure 2: Expected result

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

y

0.0

0.5

1.0

1.5

2.0

2.5

ρ

ρ(y)

(a) ρ(y) for constant x

0.0 0.5 1.0 1.5 2.0 2.5 3.0

x

0.0

0.5

1.0

1.5

2.0

2.5

ρ

ρ(x)

(b) ρ(x) for constant y

Figure 3: Density ρ(x, y) at final time Tmax along lines parallel to the x- and y-axis through the
middle of the simulation domain

8

	An isothermal Riemann problem
	Roe’s approximate Riemann solver for the isothermal problem
	Doing a one-dimensional sweep
	Carrying out a multidimensional simulation

