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Lecturer: Timo Weigand

1 The free boson on the sphere, normal ordering, and all that

Consider the action for the free boson

S[X] =
1

2πα′

∫
dzdz̄ ∂zX(z, z̄) ∂z̄X(z, z̄), (1)

with energy momentum tensor

T (z) = − 1

α′
N [∂Xc(z)∂Xc(z)], (2)

in terms of the (anti-)chiral fields X(z, z̄) = Xc(z) +Xa(z̄).

a) Recall from the lecture the definition of the normal ordering prescription N employed above.
Give the general relation between normal ordered and radially ordered operators.

b) Give the correlator 〈Xc(z)Xc(w)〉 for the field Xc(z). Compare this with the correlator of two
primary fields in a general CFT. Deduce the correlator 〈∂zXc(z)∂wXc(w)〉 from 〈Xc(z)Xc(w)〉.

c) Review the derivation of the OPE of T (z) ∂Xc(w) for the primary field ∂Xc(w) via Wick’s
theorem as given in the lecture. Following that same logic, compute the OPE

R[T (z)T (w)] =
1

α′2
N [∂Xc(z)∂Xc(z)]N [∂Xc(w)∂Xc(w)], (3)

by writing down all cross-contractions between fields not in the same normal ordered expression
and bring the result into the standard form

T (z)T (w) =
c/2

(z − w)4
+

2T (w)

(z − w)2
+
∂wT (w)

z − w
+ (finite terms). (4)

Take a minute to enjoy the ease of this derivation of the normal ordering constant c as compared
to a brute-force computation in terms of the modes.

d) Now consider the normal ordered fieldN (eikXc(z)). By expanding the exponentialN (eikXc(z)) =∑∞
n=0

(ik)n

n! N [Xn
c (z)] and using Wick’s theorem, derive the OPE

R[∂Xc(z)N (eikXc(w))] = − iα
′k

2

N (eikXc(w))

z − w
+ (finite terms). (5)

Use this to compute also the OPE

R[T (z)N (eikXc(w))] =
α′k2

4

N (eikXc(w))

(z − w)2
+
∂N (eikXc(w))

z − w
. (6)

What does this tell us about the nature of N (eikXc(z))?
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a) Normal ordering is the prescription of moving all creation operators to the left, so that the
annihilation operators act first. Actually choosing which modes represent creators and which
annihilators usually goes hand in hand with the choice of vacuum a particular |Ω〉, where the goal
always is to match the two in such a way that the vacuum expectation value of any normal-ordered
product of operators is zero,

〈Ω|N [
∏n
i=1 Ôi]|Ω〉 = 0. (7)

In string theory, we identify modes αµm with m > 0 as annihilation and those with m ≤ 0 as
creation operators. Normal ordering can then be implemented via the map N ,

N (αµm α
ν
n) =

{
αµm ανn for m ≤ n,
ανn α

µ
m for n < m.

(8)

Another thing that should not go unmentioned in any discussion of normal ordering is Wick’s
theorem. It is used extensively in (perturbative) quantum field theories to reduce arbitrary prod-
ucts of creators and annihilators to sums of products of pairs of these operators. In string theory,
it relates normal- with time-/radially-ordered products of fields, where time-ordering applies to
the cylinder and radial-ordering arises on the complex plane respectively the Riemann sphere. For
a product of just two radially-ordered fields φ1(z), φ2(w), Wick’s theorem states

R[φ1(z)φ2(w)] = N [φ1(z)φ2(w)] + 〈Ω|φ1(z)φ2(w)|Ω〉. (9)

This relation can be inductively used to relate time-ordered and normal-ordered products of more
than two fields by summing over all possible contractions, i.e. by successively taking all pairs of
fields and replacing them by their two-point correlator. E.g. for three fields φ1(z), φ2(w), and
φ3(z3), Wick’s theorem would read

R[φ1(z)φ2(w)φ3(z3)] = N
[
φ1(z)φ2(w)φ3(z3) + φ1(z)〈Ω|φ2(w)φ3(z3)|Ω〉

+ φ2(z)〈Ω|φ1(w)φ3(z3)|Ω〉+ φ3(z)〈Ω|φ1(w)φ2(z3)|Ω〉
]

= N [φ1(z)φ2(w)φ3(z3)] +
3∑

i 6=j 6=k=1

φi(zi)〈Ω|φj(zj)φk(zk)|Ω〉.

(10)

Note: The normal-ordered product of two operators is precisely the non-singular part in the
an OPE. That is to say if φ1(z), φ2(w) denote two fields, then their radially-ordered product
expansion decomposes into the two terms

R[φ1(z)φ2(w)] =
∞∑
n=1

an
(z − w)n︸ ︷︷ ︸

singular piece

+N [φ1(z)φ2(w)], (11)

which in turn, comparing with eq. (9), identifies the singular piece with the vacuum expectation
value.

b) Rather than just give the correlator 〈Xc(z)Xc(w)〉, we will try to derive it here starting from the
free boson action (1). First, note that since

0
!

=
δS[X]

δX(z, z̄)
=

1

πα′

∫
dz′dz̄′ ∂z′X(z′, z̄′)

∂z̄′δX(z′, z̄′)

δX(z, z̄)

= − 1

πα′

∫
dz′dz̄′ ∂z̄′∂z′X(z′, z̄′) δ(z − z′) δ(z̄ − z̄′) = − 1

πα′
∂z̄∂zX(z, z̄),

(12)

the string field’s e.o.m. on the plane is given by ∂z∂z̄X(z, z̄) = 0 which X(z, z̄) = Xc(z) +Xa(z̄)
is indeed the general solution of, and entirely equivalent to the e.o.m.s (∂2

τ − ∂2
σ)X(τ, σ) = 0
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and ∂+∂−X(ξ+, ξ−) = 0 we found for regular worldsheet coordinates and in lightcone gauge,
respectively.1 Using the e.o.m., we can obtain the two-point function directly from the path
integral,

0 =
1

Z

∫
DX(z′, z̄′)

δ

δX(z, z̄)

(
X(z′, z̄′)e−S[X(z′,z̄′)]

)
=

1

Z

∫
DX(z′, z̄′)

(δX(z′, z̄′)

δX(z, z̄)
e−S[X(z′,z̄′)] −X(z′, z̄′)e−S[X(z′,z̄′)] δS[X(z′, z̄′)]

δX(z, z̄)

)
(12)
=

1

Z

∫
DX(z′, z̄′) e−S[X(z′,z̄′)]

(
δ(z − z′) δ(z̄ − z̄′) +

1

πα′
X(z′, z̄′)∂z̄∂zX(z, z̄)

)
=
〈
δ(z − z′) δ(z̄ − z̄′) +

1

πα′
X(z′, z̄′)∂z̄∂zX(z, z̄)

〉
,

(13)

where the very first equality 0 = . . . comes from the fact that the path integral over a manifold M
of a functional derivative δF [φ(x)]

δφ(x) gives just the function F [φ(x)] evaluated at the boundary ∂M ,
i.e. ∫

M
Dφ(x)

δF [φ(x)]

δφ(x)
= F [φ(x)]

∣∣∣
∂M

, (14)

which we take to be zero in the case of the localized string field. Thus, we found

∂z̄∂z〈X(z, z̄)X(w, w̄)〉 = −πα′δ(z − w) δ(z̄ − w̄). (15)

To make this more explicit, we revert to Stokes theorem on the complex plane,∫
U

(
∂z̄F − ∂zG

)
dzdz̄ = −i

∮
∂U

(
F dz +G dz̄

)
, (16)

where F = F (z, z̄), G = G(z, z̄) are continuously differentiable functions on an open region U of
C. For the special case of G = 0, F = 1

z , and U = Br(0) a ball of radius r at the origin, we get∫
Br(0)

∂z̄
1

z
dzdz̄ = −i

∮
∂Br(0)

1

z
dz︸ ︷︷ ︸

2πi

= 2π = 2π

∫
δ(z) δ(z̄) dzdz̄︸ ︷︷ ︸

1

, (17)

from which we infer

2πδ(z) δ(z̄) = ∂z̄
1

z
. (18)

By reinserting this handy little formula and using ∂z̄
1
z = ∂z̄

z̄
zz̄ = ∂z̄∂z ln(|z|2), eq. (15) becomes

∂z̄∂z〈X(z, z̄)X(w, w̄)〉 = −α2

2
∂z̄∂z ln(|z − w|2), (19)

which we can integrate twice to obtain

〈X(z, z̄)X(w, w̄)〉 = −α2

2
ln(|z − w|2). (20)

This is the familiar result that the Green’s function in two dimensions is logarithmic.

Note: This logarithmic correlation exempts the string field X(z, z̄) from having a definite
scaling dimension, meaning it is not a primary nor even a quasi-primary field of the free
bosonic CFT. However, as we will see, both its derivative and exponential are primary fields.

1We did not pick up any boundary terms from the partial integration in eq. (12) because the timelike ones vanish due
to the variation being held fixed at initial and final times, i.e. δX(z, z̄)|τi,τf = 0, and the spacelike boundary terms
either cancel each other for the closed string with periodic boundaries or vanish separately for the open string with
Dirichlet or Neumann boundary conditions.
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Since 〈X(z, z̄)X(w, w̄)〉 = 〈Xc(z)Xc(w)〉 + 〈Xc(z)Xa(w̄)〉 + 〈Xa(z̄)Xc(w)〉 + 〈Xa(z̄)Xa(w̄)〉 and
ln(|z−w|2) can be split up into ln[(z−w)(z̄− w̄)] = ln(z−w) + ln(z̄− w̄), we simply match terms
based on their functional arguments to identify the chiral and antichiral two-point correlators as

〈Xc(z)Xc(w)〉 = −α
′

2
ln(z − w), 〈Xa(z̄)1Xa(w̄)〉 = −α

′

2
ln(z̄ − w̄). (21)

From this in turn, 〈∂zXc(z)∂wXc(w)〉 follows by differentiation,

〈∂zXc(z)∂wXc(w)〉 = ∂z∂w〈Xc(z)Xc(w)〉(21)
= −α

′

2
∂w∂z ln(z − w)

=
α′

2
∂z

1

z − w
= −α

′

2

1

(z − w)2

(22)

Note: This indeed fits the form of the two-point function of two quasi-primaries,

〈φi(zi)φj(zj)〉 =
dij δhi,hj

(zi−zj)2hi
, which is a sufficient condition for ∂zXc(z) to be a quasi-primary

field of weight h = 1.

c) Applying Wick’s theorem to R[T (z) ∂wXc(w)] gives

R[T (z) ∂wXc(w)]
(2)
= − 1

α′
R
[
N [∂zXc(z)∂zXc(z)] ∂wXc(w)

]
(23)

(10)
= − 1

α′

[
N
[
∂zXc(z)∂zXc(z) ∂wXc(w)

]︸ ︷︷ ︸
non-singular piece

+2 ∂zXc(z) 〈∂zXc(z)∂wXc(w)〉︸ ︷︷ ︸
−α′

2
1

(z−w)2

+ ∂wXc(w) 〈N [∂zXc(z)∂zXc(z)]〉︸ ︷︷ ︸
0, by eq. (7)

]
.

Expanding the prefactor ∂zXc(z) of the singular term around z = w to first order,

∂zXc(z)
∣∣
w

= ∂wXc(w) + ∂2
wXc(w)(z − w) +O[(z − w)2], (24)

and reinserting it into (23) gives

R[T (z) ∂wXc(w)] =
∂wXc(w)

(z − w)2
+
∂2
wXc(w)

z − w
+ (terms non-singular at z = w). (25)

This matches the OPE of a primary field φ(z) of weight h with the energy-momentum tensor,

R[T (z)φ(w)] =
hφ(w)

(z − w)2
+
∂wφ(w)

z − w
+ (terms non-singular at z = w), (26)

identifying ∂wXc(w) as a primary with h = 1.

To compute the OPE of R[T (z)T (w)], we again employ Wick’s theorem,

R[T (z)T (w)]
(2)
=

1

α′2
R
[
N [∂zXc(z)∂zXc(z)]N [∂wXc(w)∂wXc(w)]

]
(10)
=

1

α′2
N
[
∂zXc(z)∂zXc(z) ∂wXc(w)∂wXc(w)

+ 4 ∂zXc(z)∂wXc(w)〈∂zXc(z)∂wXc(w)〉

+ 2 〈∂zXc(z)∂wXc(w)〉2
]
,

(27)
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where we ignored all contractions inside normal-ordered operator products, i.e.

2N [∂zXc(z)∂zXc(z)] 〈N [∂zXc(z)∂zXc(z)]〉,
and 〈N [∂zXc(z)∂zXc(z)]〉 〈N [∂wXc(w)∂wXc(w)]〉,

(28)

by argument of eq. (7). Inserting eqs. (22) and (24) into eq. (27) yields

R[T (z)T (w)] =
1

α′2

[
N
[
∂zXc(z)∂zXc(z) ∂wXc(w)∂wXc(w)

]
− 2 α′

N
[
∂zXc(z)∂wXc(w)

]
(z − w)2

+
α′2

2

1

(z − w)4

]
.

(29)

Inserting the following Taylor expansion for the numerator of the second term,

N
[
∂zXc(z)∂wXc(w)

]
= N

[
∂wXc(w)∂wXc(w)

]︸ ︷︷ ︸
−α′T (w)

+N
[
[∂2
wXc(w)]∂wXc(w)

]
(z − w) +O[(z − w)2]

= −α′T (w) +
1

2
∂wN

[
∂wXc(w)∂wXc(w)

]︸ ︷︷ ︸
−α′∂wT (w)

(z − w) +O[(z − w)2].

(30)

we finally get the OPE of the energy-momentum tensor with itself,

R[T (z)T (w)] =
1← c
2

(z − w)4
+

2T (w)

(z − w)2
+
∂wT (w)

z − w
+ (terms non-singular at z = w), (31)

which confirms that the central extension c of the Virasoro algebra is given by 1. c 6= 0 signals a
quantum anomaly of the CFT’s classical conformal symmetry.

d) Next, we compute the OPE of R[∂zXc(z)N (eikXc(w))], where N (eikXc(w))] can be expanded into∑∞
n=0

(ik)n

n! N [Xn
c (w)].

R[∂zXc(z)N (eikXc(w))]

=

∞∑
n=0

(ik)n

n!
R
[
∂zXc(z)N [Xn

c (w)]
]︸ ︷︷ ︸

N
[
∂zXc(z)Xn

c (w)+nXn−1
c (w)〈∂zXc(z)Xc(w)〉

]
, by Wick’s thm.

W.T.
↘
=

∞∑
n=0

(ik)n

n!
N
[
∂zXc(z)X

n
c (w)

]
+
∞∑
n=1

(ik)n

(n− 1)!
N [Xn−1

c (w)] ∂z〈Xc(z)Xc(w)〉.

(32)

The first term is simply the operator product we started with but now in normal-ordered form,
N [∂zXc(z)N (eikXc(w))]. For the correlator in the second term, we adjust the sum to start at
n = 0 and insert our result 〈Xc(z)Xc(w)〉 = −α′

2 ln(z − w) from eq. (21) to obtain

R[∂zXc(z)N (eikXc(w))] = N [∂zXc(z)N (eikXc(w))]︸ ︷︷ ︸
non-singular at z = w

−ikα
′

2

∞∑
n=1

(ik)nn

n!

N [Xn−1
c (w)]

z − w

= −ikα
′

2

N [eikXc(w)]

z − w
+ (terms non-singular at z = w).

(33)
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We can use eq. (33) to further calculate R[T (z)N (eikXc(w))].

R[T (z)N (eikXc(w))] = − 1

α′

∞∑
n=0

(ik)n

n!
R
[
N [∂zXc(z) ∂zXc(z)]N [Xn

c (w)]
]

W.T.
↘
= − 1

α′

[ ∞∑
n=0

(ik)n

n!
N [∂zXc(z) ∂zXc(z)X

n
c (w)] ← non-singular

+ 〈∂zXc(z)Xc(w)〉
∞∑
n=1

(ik)n

n!
2nN [∂zXc(z)X

n−1
c (w)]

+ 〈∂zXc(z)Xc(w)〉2
∞∑
n=2

(ik)n

n!
n(n− 1)N [Xn−2

c (w)]

]
(34)

At this point, we again use 〈∂zXc(z)Xc(w)〉 = −α′

2
1

z−w and adjust the sums to start at n = 0 to
obtain

R[T (z)N (eikXc(w))]

= − 1

α′
α′2

4

(ik)2

(z − w)2

∞∑
n=0

(ik)n

n!
N [Xn

c (w)] +
1

α′
α′

2

2ik

z − w

∞∑
n=0

(ik)n

n!
N [∂zXc(z)X

n−1
c (w)]

+ (terms non-singular at z = w) (35)

=
α′k2

4

N (eikXc(w))

(z − w)2
+
ikN [

∂wXc(w)+O[z−w]︷ ︸︸ ︷
∂zXc(z) e

ikXc(w)]

z − w
+ (terms non-singular at z = w)

=
α′k2

4

N (eikXc(w))

(z − w)2
+
∂zN [eikXc(w)]

z − w
+ (terms non-singular at z = w).

This matches the operator product expansion of a primary field with T (z) as given in eq. (26) and

tells us that N (eikXc(w)) is a primary with weight h = α′k2

4 .

2 Unitary CFTs

The OPE of the energy-momentum tensor T (z) with a primary field φ(w) of dimension h is

T (z)φ(w) =
hφ(w)

(z − w)2
+
∂wφ(w)

z − w
+ (non-singular terms). (36)

a) Let φ(w) be a primary field. Use eq. (36) to show the following action of the Virasoro generators
Lm, defined by T (z) =

∑
m∈Z z

−m−2Lm,

L−1φ(w) = ∂wφ(w), L0φ(w = 0) = hφ(w = 0). (37)

b) Use the Virasoro algebra to compute the norm 〈φ|LmL−m|φ〉 for the state |φ〉 = φ(0)|0〉 and
m ∈ N0. Deduce that if the CFT is to be unitary, the central term c of the Virasoro algebra
must satisfy c ≥ 0 and h ≥ 0 for all primary fields.

c) Use eq. (37) to show that in a unitary CFT, a primary field of dimension h = 0 must be a
constant field.

Note: Locality and the equal time commutation relations for a constant field imply that it
must be a simple number in C. Therefore in a unitary CFT, the only primary with h = 0 is
the identity operator with associated highest weight state the PSL(2,C)-invariant vacuum |0〉.
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a) T (z) is a chiral tensor of weight (h, h̄) = (2, 0). Its Laurent series on the complex plane thus reads

T (z) =
∑
m∈Z

z−m−2 Lm, (38)

in terms of the Virasoro generators

Lm =

∮
C0

dz

2πi
zm+1 T (z). (39)

Inserting this integral representation of Lm into eq. (37)’s first equality and using eq. (36) gives

L−1φ(w) =

∮
Cw

dz

2πi
T (z)φ(w)

(36)
=

∮
Cw

dz

2πi

[
hφ(w)

(z − w)2
+
∂wφ(w)

z − w

]
= ∂wφ(w). (40)

Equation (37)’s second equality may be demonstrated in the same way,

L0φ(0) =

∮
C0

dz

2πi
z T (z)φ(0)

(36)
=

∮
C0

dz

2πi

[
h

z
φ(0) + ∂wφ(0)

]
= hφ(0). (41)

b) The Virasoro algebra is defined by the commutator

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm,−n, ∀m,n ∈ Z. (42)

We can use it to calculate the primary-state expectation value 〈φ|LmL−m|φ〉 by writing

〈φ|LmL−m|φ〉 = 〈φ|[Lm, L−m]|φ〉. (43)

To establish the truth of this will require most of the work in this exercise.

1. First, note that since φ(w) was introduced as a primary field of weight h, it too enjoys a
Laurent series

φ(w) =
∑
n∈Z

φnw
−n−h. (44)

We postulate that its action on the vacuum φ(w)|0〉 should be non-singular at all times,

but in particular at initial time τi = −∞ which corresponds to wi = e
2π
l

(τi−iσi) = 0 on the
complex plane.2 For φ(w)|0〉 not to blow up at w = 0 requires

φ(0)|0〉 =
∑
n∈Z

lim
w→0

1

wn+h
φn|0〉 <∞ ⇔ φn|0〉 = 0 ∀n+ h > 0. (45)

Now, enforcing condition (45) while acting with φ(0) on the vacuum gives

|φ〉 = φ(0)|0〉 =
∑
n∈Z

lim
w→0

1

wn+h
φn|0〉

(45)
=
∑
n≤−h

lim
w→0

1

wn+h
φn|0〉

=
∑
n<−h

lim
w→0

1

wn+h︸ ︷︷ ︸
0

φn|0〉+
1

w−h+h
φ−h|0〉 = φ−h|0〉.

(46)

This is conformal field theory’s famous operator-state correspondence.

2. Having worked this hard to find |φ〉 = φ−h|0〉, we want to use this equation to work out the
effect of Lm on |φ〉. We need one more tool for this, however, and that is [Lm, φn]. Using the
integral representation of the Laurent series coefficients,

φn =

∮
C0

dw

2πi
wn+h−1φ(w), (47)

2See exercise 1.c) on assignment 7 for details concerning the conformal map from the cylinder to the plane.
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we calculate

[Lm, φn] =

∮
C0

dz

2πi
zm+1 T (z)

∮
C0

dw

2πi
wn+h−1φ(w)−

∮
C0

dw

2πi
wn+h−1φ(w)

∮
C0

dz

2πi
zm+1 T (z)

=

∮
C0

dw

2πi

∮
Cw

dz

2πi
zm+1wn+h−1R[T (z)φ(w)],

(48)
where we reemployed the contour deformation trick first used in exercise 2 on assignment 7.

0

w

z-contour

0

w

z-contour

0

w

0

w

0

w

− → − =

By inserting the radially ordered OPE (36), we get

[Lm, φn] =

∮
C0

dw

2πi

∮
Cw

dz

2πi
zm+1wn+h−1

[
hφ(w)

(z − w)2
+
∂wφ(w)

z − w

]
=

∮
C0

dw

2πi

[
(m+ 1)wmwn+h−1 hφ(w) + wm+1wn+h−1 ∂wφ(w)

]
,

(49)

where we used the Cauchy-Riemann formula to execute the z-integration,∮
Cw

dz

2πi

f(z)

(z − w)n
=

1

(n− 1)!
f (n−1)(w). (50)

After partially integrating the last term in eq. (49),3 we can reverse-apply eq. (47) to obtain

[Lm, φn] =

∮
C0

dw

2πi

[
h (m+ 1)wm+n+h−1 φ(w)− (∂ww

m+n+h︸ ︷︷ ︸
(m+n+h)wm+n+h−1

)φ(w)

]

= [h (m+ 1)− (m+ n+ h)]

∮
C0

dw

2πi

[
wm+n+h−1 φ(w)

]
= [(h− 1)m− n]φm+n.

(51)

3. Finally, all is in place to tackle Lm|φ〉.

Lm|φ〉 = Lmφ−h|0〉 = φ−hLm|0〉+ [Lm, φ−h]|0〉 = φ−hLm|0〉+ [(h− 1)m+ h]φm−h|0〉. (52)

By the same reasoning as employed in eq. (45), regularity of T (z) =
∑

m∈Z z
−m−2Lm at initial

time z = 0 requires Lm|0〉 = 0 ∀m > −2. Since m was given as m ∈ N0 by the exercise, this
takes care of the φ−hLm|0〉 term in eq. (52). The second term is zero if φm−h|0〉 = 0, which
by eq. (45) is the case for all m+ h− h = m > 0. Thus we have

Lm|φ〉 = 0 ∀m > 0. (53)

The case m = 0 was already treated in part a) where we found L0|φ〉 = h|φ〉. Unfortunately,
we do not learn much from

〈φ|L0L0|φ〉 = h2〈φ|φ〉. (54)

But for all m > 0, thanks to eq. (53), we can now confirm our initial statement 〈φ|LmL−m|φ〉 =
〈φ|[Lm, L−m]|φ〉. Inserting the Virasoro commutator (42), we hence get

〈φ|LmL−m|φ〉
(42)
= 〈φ|2mL0 +

c

12
m(m2 − 1)|φ〉 = 2mh 〈φ|φ〉+

c

12
m(m2 − 1) 〈φ|φ〉. (55)

3Where we pick up no boundary terms due to integrating along the closed contour C0.
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For m = 1, eq. (55) becomes
〈φ|L1L−1|φ〉 = 2h 〈φ|φ〉, (56)

which demonstrates that h ≥ 0 is a necessary condition for the absence of negative norm states.
For m→∞, we get exactly the same constraint for the Virasoro algebra’s central charge, c ≥ 0.

c) Lastly, we show that in a unitary CFT, a primary field |φ0〉 of dimension h = 0 must be constant.
Utilizing again the operator-state correspondence, this follows immediately from considering the
norm of the state limw→0 ∂wφ

0(w)|0〉,

lim
w→0
||∂wφ0(w)|0〉||2(40)

= lim
w→0
||L−1φ

0(w)|0〉||2 = ||L−1|φ0〉||2 = 〈φ0|L1L−1|φ0〉(56)
= 2h〈φ0|φ0〉 = 0,

⇒ ∂wφ
0(w) = 0, i.e. φ0(w) = φ0 is constant. (57)

3 Bonus question: Verma modules and descendant fields

The Verma module Vhj associated with the primary field φj of dimension hj was defined in the

lecture as the span of states |φ{ki}j 〉 = |φk1,...,knj 〉 = L−k1 . . . L−kn |φj〉. These states are created from

the PSL(2,C)-invariant vacuum by insertion of the descendant field φ
{ki}
j (z) at z = 0, i.e.

|φ{ki}j 〉 = φ
{ki}
j (0)|0〉. (58)

a) What is the L0 eigenvalue of L−k1 . . . L−kn |φj〉?

b) Show that the descendant field φkj (w) corresponding to the state |φkj 〉 = L−k|φj〉 is given by

φkj (w) =

∮
Cw

dz

2πi
(z − w)1−k T (z)φj(w). (59)

Hint: First perform a Taylor expansion for T (z) about z = w and then expand T (z) into
Virasoro modes.

a) The L0 eigenvalue of a basis state |φ{ki}j 〉 = L−k1 . . . L−kn |φj〉 of the Verma module Vhj can be
computed with the help of the Virasoro algebra

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm,−n, ∀m,n ∈ Z. (60)

From it, we gather that all L−k with k > 0 act as creation operators on eigenstates L0|φ〉 = h|φ〉
of L0,

L0L−k|φ〉 = L−kL0|φ〉+ [L0, L−k]|φ〉 = hL−k|φ〉+ (0 + k)L−k|φ〉 = (h+ k)L−k|φ〉. (61)

By definition of the Verma module, the indices ki of the Virasoro generators are ordered, i.e.

ki ≥ ki−1 > 0 ∀ i ∈ {2, 3, . . . , n}, and in particular, all larger than zero. For the state |φ{ki}j 〉, we
thus have

L0|φ{ki}j 〉 = L0

n∏
i=1

L−ki |φj〉 =
(
hj +

n∑
i=1

ki

) n∏
i=1

L−ki |φj〉 =
(
hj +

n∑
i=1

ki

)
|φ{ki}j 〉. (62)

b) Descendant fields are a new class of central objects in conformal field theory. They are not
primary but rather secondary operators and enter the theory as coefficients via the operator
product expansion of primary fields with the energy-momentum tensor, i.e.

T (z)φj(w) =

∞∑
k=0

(z − w)k−2 φkj (w) =
φ0
j (w)

(z − w)2
+
φ1
j (w)

z − w
+ . . . (63)
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Note: Comparing this expansion with the OPE eq. (36) we wrote down earlier, we can imme-
diately identify φ0

j (w) = hj φj(w) and φ1
j (w) = ∂wφj(w).

We can pick out the φkj (w) term in the sum, by multiplying it with (z − w)1−k and integrating
around the singularity at z = w:∮

Cw

dz

2πi
(z − w)1−k T (z)φj(w) =

∮
Cw

dz

2πi
(z − w)1−k

∞∑
m=0

(z − w)m−2 φmj (w)

=
∞∑
m=0

∮
Cw

dz

2πi

φmj (w)

(z − w)k−m+1
= φkj (w)

(64)

Note: Recalling

Lm =

∮
C0

dz

2πi
zm+1 T (z), (65)

we can also very easily confirm that the descendant states are created from the primary ones
by the action of the Virasoro generators,

|φkj 〉
(58)
= φkj (0) |0〉(64)

=

∮
C0

dz

2πi
z1−k T (z)φj(0) |0〉(65)

= L−kφj(0) |0〉 = L−k|φj〉 (66)
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