Theoretical Statistical Physics Solution to Exercise Sheet 9

1 Oscillators

Calculate the canonical partition function for a system of N classical harmonic oscillators, and determine the thermodynamics of this system.

The Hamiltonian for a single classical harmonic oscillator in n dimensions with isotropic potential and continuous degrees of freedom \boldsymbol{q} and \boldsymbol{p} reads $H_{1}(\boldsymbol{p}, \boldsymbol{q})=\frac{\boldsymbol{p}_{i}^{2}}{2 m}+\frac{k}{2} \boldsymbol{x}^{2}$. Its canonical partition function can be computed using Gaussian integrals,

$$
\begin{equation*}
Z_{1}(T)=\frac{1}{h^{n}} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} e^{-\beta H_{1}(\boldsymbol{p}, \boldsymbol{q})} \mathrm{d}^{n} q \mathrm{~d}^{n} p=\frac{1}{h^{n}}(2 \pi m / \beta)^{\frac{n}{2}}(2 \pi / \beta k)^{\frac{n}{2}}=\frac{1}{(\beta \hbar \omega)^{n}} \tag{1}
\end{equation*}
$$

Assuming the oscillators to be both distinguishable and non-interacting, the partition function for a system of N such oscillators is just a product of single-oscillator partition functions,

$$
\begin{equation*}
Z(T, N)=Z_{1}(T)^{N}=\frac{1}{(\beta \hbar \omega)^{n N}} \tag{2}
\end{equation*}
$$

This results in the Helmholtz free energy

$$
\begin{equation*}
F(T, N)=-\frac{1}{\beta} \ln (Z)=n N k_{\mathrm{B}} T \ln (\beta \hbar \omega) \tag{3}
\end{equation*}
$$

which unsurprisingly diverges in the thermodynamic limit $N \rightarrow \infty$. Since F does not depend on the volume, we get a vanishing pressure,

$$
\begin{equation*}
p=-\left.\frac{\partial F}{\partial V}\right|_{N, T}=0 \tag{4}
\end{equation*}
$$

This is due to the lack of interactions between oscillators and because the angular frequency is independent of volume and density.
The internal energy is

$$
\begin{equation*}
U(N, T)=-\frac{\partial \ln (Z)}{\partial \beta}=n N k_{\mathrm{B}} T \tag{5}
\end{equation*}
$$

which gives a heat capacity of $C=\partial U / \partial T=n N k_{\mathrm{B}}$.
Unlike the pressure, the entropy for a system of N oscillators - interacting or not - should not vanish, and indeed using $F=U-T S$, we find

$$
\begin{equation*}
S=\frac{1}{T}(U-F)=n N k_{\mathrm{B}}[1-\ln (\beta \hbar \omega)] \tag{6}
\end{equation*}
$$

Just like in exercise 1 on sheet 8 , where we derived the Sackur-Tetrode equation for the entropy of an ideal gas, the low temperature limit remains problematic. Equation (6) suggests that the entropy of a system of harmonic oscillators becomes negative for $\frac{\hbar \omega}{k_{\mathrm{B}} T}>e$. This is the regime where the thermal energy $k_{\mathrm{B}} T$ becomes comparable to the harmonic oscillator spacing of energy levels $\hbar \omega$, suggesting that we need to employ quantum mechanics to model the low temperature behavior of the entropy correctly.

2 Mean-field critical exponents

The mean-field magnetization per spin $m=m(T, h)$ of an Ising ferromagnet is

$$
\begin{equation*}
m=\tanh (2 d \beta J m+\beta h) \tag{7}
\end{equation*}
$$

with $\beta=\frac{1}{k_{\mathrm{B}} T}($ and $J>0)$. We have seen that in the zero-field limit $h \rightarrow 0^{+}$, a non-zero solution exists for $T<T_{c}$ where $2 d \beta_{c} J=1$. Determine how this solution $m=m\left(T, 0^{+}\right)$ behaves as a function of $T_{c}-T$ as $T \nearrow T_{c}$, and how $m\left(T_{c}, h\right)$ depends on h for $h \rightarrow 0^{+}$.
Hint: Use the Taylor expansion of tanh around zero. Determine only the leading behaviour.
From $2 d \beta_{c} J=1$ follows the critical temperature $T_{c}=2 d J / k_{\mathrm{B}}$ i.t.o. which (7) reads

$$
\begin{equation*}
m(T, h)=\tanh \left(\frac{T_{c}}{T} m+\beta h\right) \tag{8}
\end{equation*}
$$

In the zero-field limit, (8) reduces to $m\left(T, 0^{+}\right)=\tanh \left(\frac{T_{c}}{T} m\right)$. At $T=T_{c}$, we know that $m=0$ is the only solution of this transcendental equation. Since m is continuous ${ }^{1}$, we infer $m \ll 1$ near $T \lesssim T_{c}$. We may therefore use the Taylor expansion of tanh around zero,

$$
\begin{equation*}
\tanh (x)=x-\frac{x^{3}}{3}+\mathcal{O}\left(x^{5}\right) \tag{9}
\end{equation*}
$$

to expand $m\left(T, 0^{+}\right)$near but below T_{c} as

$$
\begin{equation*}
m_{c} \approx \frac{T_{c}}{T} m_{c}-\frac{1}{3} \frac{T_{c}^{3}}{T^{3}} m_{c}^{3} \tag{10}
\end{equation*}
$$

Solving for m_{c} yields

$$
\begin{equation*}
m_{c}(T) \approx \sqrt{3}\left(\frac{T}{T_{c}}\right)^{\frac{3}{2}}\left(\frac{T_{c}}{T}-1\right)^{\frac{1}{2}} \tag{11}
\end{equation*}
$$

The first factor depends only weakly on T around T_{c}. The dominant contribution comes from the second factor whose derivative is singular at $T=T_{c}$, as can be seen from the following plot.

[^0]Expanding the critical magnetization (11) to first order in $\left(T_{c}-T\right)$ gives

$$
\begin{equation*}
m_{c}(T) \approx \sqrt{3 / T_{c}}\left(T_{c}-T\right)^{\frac{1}{2}}+\mathcal{O}\left[\left(T_{c}-T\right)^{\frac{3}{2}}\right] \tag{12}
\end{equation*}
$$

Thus, near the critical point, the magnetization follows a simple power law with critical exponent $\gamma_{1}=\frac{1}{2}$.
Expanding $m_{c}\left(T_{c}, h\right)=\tanh \left(m_{c}+\beta_{c} h\right)$ to first order in h around $h=0$ gives

$$
\begin{equation*}
m_{c}\left(T_{c}, h\right)=\tanh \left(m_{c}\right)+\frac{\beta_{c}}{\cosh ^{2}\left(m_{c}\right)} h+\mathcal{O}\left(h^{2}\right) \tag{13}
\end{equation*}
$$

Again using $m_{c} \ll 1$ near T_{c}, we can expand $\tanh \left(m_{c}\right) \approx m_{c}-\frac{m_{c}^{3}}{3}$ and approximate $\cosh \left(m_{c}\right) \approx 1$ to get

$$
\begin{equation*}
m_{c} \approx m_{c}-\frac{m_{c}^{3}}{3}+\beta_{c} h \tag{14}
\end{equation*}
$$

Solving for m_{c}, we find

$$
\begin{equation*}
m_{c} \approx \sqrt[3]{3 \beta_{c} h} \propto h^{\frac{1}{3}} \tag{15}
\end{equation*}
$$

which is again a power law with critical exponent $\gamma_{2}=\frac{1}{3}$.

3 When Ising stole Christmas

Calculate the free energy of the d-dimensional Ising model with ferromagnetic nearestneighbour interaction for zero magnetic field.
Hints:

1. Start with $d=1$, then $d=\infty$, then $d=2$, then $d=\infty-1$, etc.
2. This is a bonus question: You get 4 extra points for $d=1,4^{\left(4^{4}\right)}$ for $d=2$, and \aleph_{4} for $3 \leq d<\infty$.
$\boldsymbol{d}=\mathbf{1}$ The energy of a chain of N Ising spins occupying the spin configuration s is given by the Hamiltonian

$$
\begin{equation*}
H(s)=J \sum_{i=1}^{N}\left(1-s_{i} s_{i+1}\right)-h \sum_{i=1}^{N} s_{i} \tag{16}
\end{equation*}
$$

The sum over 1 just gives rise to an overall constant $N J$, which we drop to simplify our calculation. Further, we assume periodic boundary conditions such that $s_{1}=s_{N+1}$, making the chain a ring of spins. We will study the Ising model in the canonical ensemble for which the partition function is

$$
\begin{equation*}
Z_{c}=\sum_{s \in \mathcal{S}_{N}} e^{-\beta H(s)} \tag{17}
\end{equation*}
$$

where \mathcal{S}_{N} is the set of all possible spin configurations of cardinality $\left|\mathcal{S}_{N}\right|=2^{N}$. From (17), the free energy may be computed as

$$
\begin{equation*}
F=-\frac{1}{\beta} \ln \left(Z_{c}\right) \tag{18}
\end{equation*}
$$

We will leave $h \neq 0$ for now and take $h=0$ only in the end. Inserting (16) into (17), we get

$$
\begin{align*}
Z_{c} & =\sum e^{\beta\left(J \sum_{i=1}^{N} s_{i} s_{i+1}+h \sum_{i=1}^{N} s_{i}\right)} \\
& =\sum_{s_{1}, \ldots, s_{N} \in\{ \pm 1\}} e^{\beta\left(J s_{1} s_{2}+h s_{1}\right)} \ldots e^{\beta\left(J s_{N} s_{1}+h s_{N}\right)} \\
& =\sum_{s_{1}, \ldots, s_{N} \in\{ \pm 1\}} M_{s_{1} s_{2}} M_{s_{2} s_{3}} \ldots M_{s_{N} s_{1}} \tag{19}\\
& =, \ldots, s_{N} \in\{ \pm 1\}
\end{align*}
$$

where the $M_{s s^{\prime}}$ are matrix elements defined by

$$
\begin{equation*}
M_{s s^{\prime}}=e^{\beta J s s^{\prime}+\beta h s} \tag{20}
\end{equation*}
$$

This allows us to write the partition function as:

$$
\begin{equation*}
Z_{c}=\sum_{s_{1} \in\{ \pm 1\}}\left(M^{N}\right)_{s_{1} s_{1}}=\operatorname{tr}\left(M^{N}\right)=\lambda_{1}^{N}+\lambda_{2}^{N}, \tag{21}
\end{equation*}
$$

where λ_{i} are the two eigenvalues of M and we used that the trace is basis independent, so we may perform it in a basis in which M takes diagonal form. ${ }^{2}$ Let λ_{1} be the eigenvalue of larger magnitude. In the thermodynamic limit, we then get

$$
\begin{equation*}
\lim _{N \rightarrow \infty} Z_{c}=\lim _{N \rightarrow \infty} \lambda_{1}^{N}\left(1+\lambda_{2}^{N} / \lambda_{1}^{N}\right) \sim \lambda_{1}^{N} . \tag{22}
\end{equation*}
$$

Hence, all we need to do to find Z_{c} is to compute the larger of the two eigenvalues of

$$
M=\left(\begin{array}{cc}
e^{\beta(J+h)} & e^{\beta(-J+h)} \tag{23}\\
e^{-\beta(J+h)} & e^{\beta(J-h)}
\end{array}\right) .
$$

The eigenvalues of a general 2×2 matrix A are

$$
\begin{equation*}
\lambda_{ \pm}=\frac{\operatorname{tr}(A)}{2} \pm \sqrt{\frac{\operatorname{tr}(A)^{2}}{4}-\operatorname{det}(A)} \tag{24}
\end{equation*}
$$

For M, we get

$$
\begin{align*}
\operatorname{tr}(M) & =e^{\beta(J-h)}+e^{\beta(h+J)} & \operatorname{det}(M) & =e^{\beta(h+J)-\beta(h-J)}-e^{\beta(h-J)-\beta(h+J)} \tag{25}\\
& =2 e^{\beta J} \cosh (\beta h), & & =2 \sinh (2 \beta J) .
\end{align*}
$$

Thus the larger eigenvalue reads

$$
\begin{equation*}
\lambda_{1}=e^{\beta J} \cosh (\beta h)+\sqrt{e^{2 \beta J} \sinh ^{2}(\beta h)+e^{-2 \beta J}}, \tag{26}
\end{equation*}
$$

and the free energy per spin is

$$
\begin{align*}
f(h, T) & =\lim _{N \rightarrow \infty} \frac{F(h, T)}{N} \stackrel{(18)}{=}-k_{\mathrm{B}} T \lim _{N \rightarrow \infty} \frac{1}{N} \ln \left[Z_{c}(h, T)\right] \\
& =-k_{\mathrm{B}} T \ln \left[e^{\beta J} \cosh (\beta h)+\sqrt{e^{-2 \beta J}+\sinh ^{2}(\beta h) e^{\beta J}}\right] . \tag{27}
\end{align*}
$$

For vanishing field $h=0$ this result simplifies to

$$
\begin{equation*}
f(0, T)=-k_{\mathrm{B}} T \ln \left(e^{\beta J}+e^{-\beta J}\right)=-k_{\mathrm{B}} T \ln (2 \cosh (\beta J)) \tag{28}
\end{equation*}
$$

$\boldsymbol{d}=\mathbf{2}$ In two dimensions, the Ising model is still solvable for vanishing external field. This is the Onsager solution, presented in Kerson Huang's "Statistical Mechanics" (pp. 268-293). Reproducing here the full derivation would be too lengthy. The final result, eq. (15.133), for the free energy per spin reads

$$
\begin{equation*}
\beta f(0, T)=-\ln [2 \cosh (2 \beta J)]-\frac{1}{2 \pi} \int_{0}^{\pi} \mathrm{d} \phi \ln \left[\frac{1}{2}\left(1+\sqrt{1-\kappa^{2} \sin ^{2}(\phi)}\right)\right] \tag{29}
\end{equation*}
$$

where $\kappa=2 \tanh (2 \beta J) / \cosh (2 \beta J)$. The interesting thing about this solution is that it displays a phase transition at a critical temperature. This can be seen simply from the fact that the

[^1]elliptic integral has a singularity at $K=1$. This divergence turns out to be a logarithmic one. The value of the critical temperature is found to be
\[

$$
\begin{equation*}
2 \tanh ^{2}\left(\frac{2 J}{k_{\mathrm{B}} T_{c}}\right) \stackrel{!}{=} 1 \quad \Rightarrow \quad T_{c} \approx 2.27 \frac{J}{k_{\mathrm{B}}} . \tag{30}
\end{equation*}
$$

\]

The magnetization may also be computed (another tedious task). The deceivingly simple result

$$
m(0, T)= \begin{cases}0 & T>T_{c} \tag{31}\\ \left\{1-[\sinh (2 \beta J)]^{-4}\right\}^{\frac{1}{8}} & \left(T<T_{c}\right)\end{cases}
$$

is a spontaneous magnetization in the sense that it is non-zero only below the critical temperature and its derivative diverges in the limit $T \rightarrow T_{c}^{-}$. We plot it below.

[^0]: ${ }^{1} m$ continuous holds generally, even at the Curie point, i.e. during the second-order phase transition between the ferro- and paramagnetic state. According to Ehrenfest's classification, the order of a phase transition is determined by the order of the first discontinuous derivative of the free energy. $m=\frac{\partial F}{\partial h}$ is the free energy's first derivative w.r.t. the applied field and increases continuously from zero as the temperature is lowered below the Curie temperature. The magnetic susceptibility $\xi=\frac{\partial^{2} F}{\partial^{2} h}$ is the second derivative. It changes discontinuously.

[^1]: ${ }^{2}$ Note that M is a matrix of rank 2, same as its dimension and is therefore diagonalizable.

