
Janosh Riebesell, Adrian van Kan Lecturer: Manfred Salmhofer January 13th, 2017

Theoretical Statistical Physics

Solution to Exercise Sheet 9

1 Oscillators (3 points)

Calculate the canonical partition function for a system of N classical harmonic oscillators,
and determine the thermodynamics of this system.

The Hamiltonian for a single classical harmonic oscillator in n dimensions with isotropic potential

and continuous degrees of freedom q and p reads H1(p, q) =
p
2
i

2m + k
2 x

2. Its canonical partition
function can be computed using Gaussian integrals,

Z1(T ) =
1

hn

∫

Rn

∫

Rn

e−βH1(p,q) dnq dnp =
1

hn
(2πm/β)

n
2 (2π/βk)

n
2 =

1

(β ~ω)n
. (1)

Assuming the oscillators to be both distinguishable and non-interacting, the partition function
for a system of N such oscillators is just a product of single-oscillator partition functions,

Z(T,N) = Z1(T )
N =

1

(β ~ω)nN
. (2)

This results in the Helmholtz free energy

F (T,N) = − 1

β
ln(Z) = nNkBT ln(β ~ω), (3)

which unsurprisingly diverges in the thermodynamic limit N → ∞. Since F does not depend
on the volume, we get a vanishing pressure,

p = −∂F

∂V

∣

∣

∣

N,T
= 0. (4)

This is due to the lack of interactions between oscillators and because the angular frequency is
independent of volume and density.

The internal energy is

U(N,T ) = −∂ ln(Z)

∂β
= nNkBT, (5)

which gives a heat capacity of C = ∂U/∂T = nNkB.

Unlike the pressure, the entropy for a system of N oscillators - interacting or not - should not
vanish, and indeed using F = U − T S, we find

S =
1

T
(U − F ) = nNkB

[

1− ln(β~ω)
]

. (6)

Just like in exercise 1 on sheet 8, where we derived the Sackur-Tetrode equation for the entropy
of an ideal gas, the low temperature limit remains problematic. Equation (6) suggests that the
entropy of a system of harmonic oscillators becomes negative for ~ω

kBT
> e. This is the regime

where the thermal energy kBT becomes comparable to the harmonic oscillator spacing of energy
levels ~ω, suggesting that we need to employ quantum mechanics to model the low temperature
behavior of the entropy correctly.
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2 Mean-field critical exponents (3 points)

The mean-field magnetization per spin m = m(T, h) of an Ising ferromagnet is

m = tanh(2d β J m+ β h), (7)

with β = 1
kB T

(and J > 0). We have seen that in the zero-field limit h → 0+, a non-zero

solution exists for T < Tc where 2d βc J = 1. Determine how this solution m = m(T, 0+)
behaves as a function of Tc − T as T ր Tc, and how m(Tc, h) depends on h for h → 0+.
Hint: Use the Taylor expansion of tanh around zero. Determine only the leading behaviour.

From 2d βc J = 1 follows the critical temperature Tc = 2d J/kB i.t.o. which (7) reads

m(T, h) = tanh

(

Tc

T
m+ βh

)

. (8)

In the zero-field limit, (8) reduces to m(T, 0+) = tanh
(

Tc
T
m
)

. At T = Tc, we know that m = 0
is the only solution of this transcendental equation. Since m is continuous1, we infer m ≪ 1
near T . Tc. We may therefore use the Taylor expansion of tanh around zero,

tanh(x) = x− x3

3
+O(x5), (9)

to expand m(T, 0+) near but below Tc as

mc ≈
Tc

T
mc −

1

3

T 3
c

T 3
m3

c . (10)

Solving for mc yields

mc(T ) ≈
√
3

(

T

Tc

)
3
2
(

Tc

T
− 1

)
1
2

. (11)

The first factor depends only weakly on T around Tc. The dominant contribution comes from
the second factor whose derivative is singular at T = Tc, as can be seen from the following plot.
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1m continuous holds generally, even at the Curie point, i.e. during the second-order phase transition between

the ferro- and paramagnetic state. According to Ehrenfest’s classification, the order of a phase transition is

determined by the order of the first discontinuous derivative of the free energy. m = ∂F
∂h

is the free energy’s first

derivative w.r.t. the applied field and increases continuously from zero as the temperature is lowered below the

Curie temperature. The magnetic susceptibility ξ = ∂2F
∂2h

is the second derivative. It changes discontinuously.

2



Expanding the critical magnetization (11) to first order in (Tc − T ) gives

mc(T ) ≈
√

3/Tc (Tc − T )
1
2 +O[(Tc − T )

3
2 ]. (12)

Thus, near the critical point, the magnetization follows a simple power law with critical exponent
γ1 =

1
2 .

Expanding mc(Tc, h) = tanh(mc + βch) to first order in h around h = 0 gives

mc(Tc, h) = tanh(mc) +
βc

cosh2(mc)
h+O(h2). (13)

Again using mc ≪ 1 near Tc, we can expand tanh(mc) ≈ mc−m3
c
3 and approximate cosh(mc) ≈ 1

to get

mc ≈ mc −
m3

c

3
+ βc h. (14)

Solving for mc, we find

mc ≈ 3
√

3βc h ∝ h
1
3 , (15)

which is again a power law with critical exponent γ2 =
1
3 .

3 When Ising stole Christmas (4 points)

Calculate the free energy of the d-dimensional Ising model with ferromagnetic nearest-
neighbour interaction for zero magnetic field.
Hints:
1. Start with d = 1, then d = ∞, then d = 2, then d = ∞− 1, etc.

2. This is a bonus question: You get 4 extra points for d = 1, 4(4
4) for d = 2, and ℵ4 for

3 ≤ d < ∞.

d = 1 The energy of a chain of N Ising spins occupying the spin configuration s is given by
the Hamiltonian

H(s) = J

N
∑

i=1

(1− sisi+1)− h

N
∑

i=1

si. (16)

The sum over 1 just gives rise to an overall constant NJ , which we drop to simplify our calcula-
tion. Further, we assume periodic boundary conditions such that s1 = sN+1, making the chain
a ring of spins. We will study the Ising model in the canonical ensemble for which the partition
function is

Zc =
∑

s∈SN

e−β H(s), (17)

where SN is the set of all possible spin configurations of cardinality |SN | = 2N . From (17), the
free energy may be computed as

F = − 1

β
ln(Zc). (18)

We will leave h 6= 0 for now and take h = 0 only in the end. Inserting (16) into (17), we get

Zc =
∑

s1,...,sN∈{±1}

eβ
(

J
∑N

i=1 sisi+1+h
∑N

i=1 si

)

=
∑

s1,...,sN∈{±1}

eβ(Js1s2+hs1) . . . eβ(JsNs1+hsN )

=
∑

s1,...,sN∈{±1}

Ms1s2Ms2s3 . . .MsNs1 ,

(19)
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where the Mss′ are matrix elements defined by

Mss′ = eβJss
′+βhs. (20)

This allows us to write the partition function as:

Zc =
∑

s1∈{±1}

(MN )s1s1 = tr(MN ) = λN
1 + λN

2 , (21)

where λi are the two eigenvalues of M and we used that the trace is basis independent, so we
may perform it in a basis in which M takes diagonal form.2 Let λ1 be the eigenvalue of larger
magnitude. In the thermodynamic limit, we then get

lim
N→∞

Zc = lim
N→∞

λN
1

(

1 + λN
2 /λN

1

)

∼ λN
1 . (22)

Hence, all we need to do to find Zc is to compute the larger of the two eigenvalues of

M =

(

eβ(J+h) eβ(−J+h)

e−β(J+h) eβ(J−h)

)

. (23)

The eigenvalues of a general 2× 2 matrix A are

λ± =
tr(A)

2
±
√

tr(A)2

4
− det(A). (24)

For M , we get

tr(M) = eβ(J−h) + eβ(h+J) det(M) = eβ(h+J)−β(h−J) − eβ(h−J)−β(h+J)

= 2 eβJ cosh(βh), = 2 sinh(2βJ).
(25)

Thus the larger eigenvalue reads

λ1 = eβJ cosh(βh) +

√

e2βJ sinh2(βh) + e−2βJ , (26)

and the free energy per spin is

f(h, T ) = lim
N→∞

F (h, T )

N

(18)
= −kBT lim

N→∞

1

N
ln
[

Zc(h, T )
]

= −kBT ln

[

eβJ cosh(βh) +

√

e−2βJ + sinh2(βh)eβJ
]

.

(27)

For vanishing field h = 0 this result simplifies to

f(0, T ) = −kBT ln
(

eβJ + e−βJ
)

= −kBT ln
(

2 cosh(βJ)
)

. (28)

d = 2 In two dimensions, the Ising model is still solvable for vanishing external field. This
is the Onsager solution, presented in Kerson Huang’s “Statistical Mechanics” (pp. 268 - 293).
Reproducing here the full derivation would be too lengthy. The final result, eq. (15.133), for
the free energy per spin reads

βf(0, T ) = − ln
[

2 cosh(2βJ)
]

− 1

2π

∫ π

0
dφ ln

[

1

2

(

1 +

√

1− κ2 sin2(φ)
)

]

, (29)

where κ = 2 tanh(2βJ)/ cosh(2βJ). The interesting thing about this solution is that it displays
a phase transition at a critical temperature. This can be seen simply from the fact that the

2Note that M is a matrix of rank 2, same as its dimension and is therefore diagonalizable.
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elliptic integral has a singularity at K = 1. This divergence turns out to be a logarithmic one.
The value of the critical temperature is found to be

2 tanh2
(

2J

kBTc

)

!
= 1 ⇒ Tc ≈ 2.27

J

kB
. (30)

The magnetization may also be computed (another tedious task). The deceivingly simple result

m(0, T ) =

{

0 T > Tc

{1− [sinh(2βJ)]−4} 1
8 (T < Tc)

, (31)

is a spontaneous magnetization in the sense that it is non-zero only below the critical temperature
and its derivative diverges in the limit T → T−

c . We plot it below.
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