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Theoretical Statistical Physics

Solution to Exercise Sheet 9

1 Oscillators (3 points)

Calculate the canonical partition function for a system of N classical harmonic oscillators,
and determine the thermodynamics of this system.

The Hamiltonian for a single classical harmonic oscillator in n dimensions with isotropic potential
P}
2m

and continuous degrees of freedom q and p reads Hi(p, q) = + %:cQ. Its canonical partition

function can be computed using Gaussian integrals,

1
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Assuming the oscillators to be both distinguishable and non-interacting, the partition function
for a system of N such oscillators is just a product of single-oscillator partition functions,

1
Z(T,N) = Z,(T)N = ————. 2
( ) ) 1( ) (ﬁ hw)nN ( )
This results in the Helmholtz free energy
1
F(T,N) = 3 In(Z) =nNkgT In(f hw), (3)

which unsurprisingly diverges in the thermodynamic limit N — oco. Since F' does not depend
on the volume, we get a vanishing pressure,

oF
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OV INT (4)

p:

This is due to the lack of interactions between oscillators and because the angular frequency is
independent of volume and density.

The internal energy is
0n(2)

op
which gives a heat capacity of C = 0U/IT = nNkg.

Unlike the pressure, the entropy for a system of IV oscillators - interacting or not - should not
vanish, and indeed using F'=U — TS, we find

U(N,T) = = nNkgT, (5)

S— %(U ~ F) = nNkg[1 — In(Bhw)]. (6)

Just like in exercise 1 on sheet 8, where we derived the Sackur-Tetrode equation for the entropy
of an ideal gas, the low temperature limit remains problematic. Equation (6) suggests that the
entropy of a system of harmonic oscillators becomes negative for k:BMT > e. This is the regime
where the thermal energy kg7 becomes comparable to the harmonic oscillator spacing of energy
levels hw, suggesting that we need to employ quantum mechanics to model the low temperature
behavior of the entropy correctly.



2 Mean-field critical exponents (3 points)
The mean-field magnetization per spin m = m(T, h) of an Ising ferromagnet is
m = tanh(2d 8 Jm + B h), (7)

with g = @% (and J > 0). We have seen that in the zero-field limit 4 — 0%, a non-zero
solution exists for T' < T, where 2d 3. J = 1. Determine how this solution m = m(T,0")
behaves as a function of T, — T as T' /T, and how m(T,, h) depends on h for h — 0T.

Hint: Use the Taylor expansion of tanh around zero. Determine only the leading behaviour.

From 2d . J = 1 follows the critical temperature T, = 2d J/kg i.t.o. which (7) reads
1.
m(T,h) = tanh<T m+ ﬁh) . (8)

In the zero-field limit, (8) reduces to m(T,0%) = tanh(% m). At T = T,, we know that m = 0
is the only solution of this transcendental equation. Since m is continuous', we infer m < 1
near T' < T,. We may therefore use the Taylor expansion of tanh around zero,

3
tanh(z) = & — “% + O, (9)
to expand m(T,0") near but below T, as
T, 173
Me R %mc—gT—% m3. (10)

Solving for m, yields

me(T) ~ \/§<§> : (1;, — 1) %. (11)

The first factor depends only weakly on 1" around 7T.. The dominant contribution comes from
the second factor whose derivative is singular at 1" = T,, as can be seen from the following plot.
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Lm continuous holds generally, even at the Curie point, i.e. during the second-order phase transition between
the ferro- and paramagnetic state. According to Ehrenfest’s classification, the order of a phase transition is
determined by the order of the first discontinuous derivative of the free energy. m = g—f is the free energy’s first
derivative w.r.t. the applied field and increases continuously from zero as the temperature is lowered below the

Curie temperature. The magnetic susceptibility £ = ‘322—1;: is the second derivative. It changes discontinuously.



Expanding the critical magnetization (11) to first order in (T, — T) gives
3
2

me(T) ~ \/3/T, (T, — T)2 + O[(T, — T)?]. (12)

Thus, near the critical point, the magnetization follows a simple power law with critical exponent
1

7= 3.
Expanding m.(T%, h) = tanh(m. + B.h) to first order in h around h = 0 gives
me(Te, h) = tanh(m,) + # h+ O(h?). (13)
cosh®(m,)
m3

Again using m. < 1 near T,, we can expand tanh(m.) ~ m.— =% and approximate cosh(m.) ~ 1

to get

ms

mc%mc—?c—f—ﬁch. (14)

me &~ $/3Bc h oc h3, (15)

which is again a power law with critical exponent vo = %

Solving for m,, we find

3 When lIsing stole Christmas (4 points)

Calculate the free energy of the d-dimensional Ising model with ferromagnetic nearest-
neighbour interaction for zero magnetic field.

Hints:

1. Start with d = 1, then d = oo, then d = 2, then d = co — 1, etc.

2. This is a bonus question: You get 4 extra points for d = 1, 44 for d = 2, and Ny for
3<d< .

d =1 The energy of a chain of N Ising spins occupying the spin configuration s is given by
the Hamiltonian

N N
H(S) = JZ(l — S¢Si+1) — thi. (16)
=1 1=1

The sum over 1 just gives rise to an overall constant NJ, which we drop to simplify our calcula-
tion. Further, we assume periodic boundary conditions such that s; = sy41, making the chain
a ring of spins. We will study the Ising model in the canonical ensemble for which the partition

function is
7, = Z(;BH(S% (17)
SESN

where Sy is the set of all possible spin configurations of cardinality |Sy| = 2. From (17), the

free energy may be computed as

F——;me (18)

We will leave h # 0 for now and take h = 0 only in the end. Inserting (16) into (17), we get

fem 3 AUt )

81,...,8N€{:|:1}

— Z 65(J3152+h31) o 65(J8N81+h81\7) (19)
81y, sNE{EL}

— Z M8182M8283 ce Mstla
S1,...,sNE{E1}



where the Mgy are matrix elements defined by
M,y = eﬁJss’—&—Bhs. (20)
This allows us to write the partition function as:

Ze = Z(MN)8181 = tl“(MN) = )‘{V + )\é\f’ (21)
Sle{ﬂ:l}

where \; are the two eigenvalues of M and we used that the trace is basis independent, so we
may perform it in a basis in which M takes diagonal form.? Let \; be the eigenvalue of larger
magnitude. In the thermodynamic limit, we then get

lim Z, = lim AV (14 A/ ~ AT (22)

N—o0

Hence, all we need to do to find Z. is to compute the larger of the two eigenvalues of

oBI+R)  GB(=J+h) ”3
= (e—B(J-i-h) eB(J—=h) > ) (23)
The eigenvalues of a general 2 x 2 matrix A are
A A)?
Ay = A \/“( P det(4). (24)
2 4
For M, we get
tr(M) = ePUI=h) 4 BhtJ) det(M) = B+ I)=p(h=J) _ B(h—J)=B(h+J)
25
= 2¢77 cosh(Bh), = 2sinh(28J). (25)
Thus the larger eigenvalue reads
A1 = e cosh(Bh) + \/eZW sinh?(8h) + e=287, (26)
and the free energy per spin is
FT) = tim ZEDW e iy Lz, 1]
N—o00 N—oo N (27)
= —kpTIn [eﬁ‘] cosh(Bh) + \/6_25‘] + sinh?(Bh)es | .
For vanishing field A = 0 this result simplifies to
£0,7) = —kBTln(eW te B ) = — kT In(2 cosh(3.J)). (28)

d =2 In two dimensions, the Ising model is still solvable for vanishing external field. This
is the Onsager solution, presented in Kerson Huang’s “Statistical Mechanics” (pp. 268 - 293).
Reproducing here the full derivation would be too lengthy. The final result, eq. (15.133), for
the free energy per spin reads

B£(0,T) = —In[2cosh(28.])] — % /07r doln B (1 /1 — K2 sin2(¢))] : (29)

where x = 2tanh(25J)/ cosh(28J). The interesting thing about this solution is that it displays
a phase transition at a critical temperature. This can be seen simply from the fact that the

2Note that M is a matrix of rank 2, same as its dimension and is therefore diagonalizable.



elliptic integral has a singularity at K = 1. This divergence turns out to be a logarithmic one.
The value of the critical temperature is found to be

p J
2 tanh? <k ‘; > L1 = T,~2272. (30)
Blc

The magnetization may also be computed (another tedious task). The deceivingly simple result

0 T>1,

{1-[sinh(26.)]"1}s (T <T)’ (31)

m(0,7T) = {

is a spontaneous magnetization in the sense that it is non-zero only below the critical temperature
and its derivative diverges in the limit 7" — 7.". We plot it below.
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