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Sampling Techniques and Monte Carlo Simulation

1 Rejection method

We would like to produce a random sample {xi} drawn from the probability distribution
function (PDF)

p(x) =
p0

(x− 2)4 + sin8(x− 3)
, (1)

for 0 ≤ x < 5, with p(x) = 0 outside of this interval.

(a) Determine p0 such that the function is normalized, i.e.∫ 5

0
p(x) dx = 1. (2)

(b) Use the rejection method with a uniform parent distribution over the interval 0 ≤ x < 5
to create a sample of N = 106 numbers from this distribution. What is the rejection
rate? Plot a histogram of the distribution of your points, using 100 bins with a width
∆x = 0.05, and compare it with the target distribution function on a common plot
with logarithmic y-axis.

(c) Now consider a function f(x) meant to provide an envelope for p(x). Confirm that the
piecewise linear

f(x) =
yn+1 − yn
xn+1 − xn

(x− xn) + yn for xn ≤ x ≤ xn+1, (3)

with n ∈ {0, 1, 2, 3, 4} fulfills p(x) ≤ f(x) over the interval [0, 5] for the points

n 0 1 2 3 4

xn 0 1.8 2.35 3 5
yn 0.01 0.15 2.5 0.1 0.002

Use f(x) as an auxiliary function in the rejection method to more efficiently sample
the function p(x). What is the rejection rate now? Verify with another histogram plot
that the obtained sample is correct.
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(a) Using numerical integration, we find that a normalized PDF requires approximately

p0
!
≈ 12.8136. (4)

(b) Using a parent distribution uniformly scattered across the p(x)-comprising domain [0, 5]×
[0, 30.5], we inferred a rejection rate of

R ≈ 0.916 ≈ 92 %. (5)

A histogram of the distribution along the x-axis of the randomly generated points that
passed the rejection test together with the target distribution function p(x) is shown in
fig. 1.
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Figure 1: Histogram of accepted points, overplotted with the target distribution function p(x)

(c) Figure 2 shows how the piecewise linear function f(x) envelopes the target distribution
function p(x). We clearly have f(x) ≥ p(x) ∀x ∈ [0, 5].

We now try to make the the rejection method more efficient by no longer uniformly gen-
erating samples within a rectangle around p(x), but only within the area enclosed by the
envelope f(x) and the x-axis. To generate samples with a distribution resembling our
target distribution p(x), we use exact inversion. We can easily transform one probability
distribution p1 into another one p2 via

p1(x1) dx1
!

= p2(x2) dx2. (6)

Equation (6) holds due to conservation of probability. x1 and x2 are not independent
variables here. Rather, each is a function of the other,

x1 = x1(x2), x2 = x2(x1). (7)

Suppose now that p1 is the distribution we know how to produce, i.e. a uniform one, and
p2 is the distribution we would like to generate. To do so, we need to find exactly the
second mapping in eq. (7) that tells us how to compute the sample x2 in the distribution p2
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Figure 2: Comparison of p(x) and f(x) demonstrating that the latter is a majorant of the former

corresponding to the sample x1 in the distribution p1. This can be done easily, at least in
principle. x1 and x2 corresponding to each other means that the cumulative distribution
functions (CDF) of p1 and p2 evaluated at these points respectively, must be equal. The
CDF P (x) of a distribution p gives the probability that any randomly drawn sample of p
is smaller than x and is hence is defined as

P (x) ≡
∫ x

−∞
p(x′) dx′. (8)

Thus, using that P1(x1) = P2(x2), we obtain

P1(x1) =

∫ x1

−∞
p1(x

′
1) dx′1 =

∫ x2

−∞
p2(x

′
2) dx′2 = P2(y). (9)

Inserting for p1(x
′
1) a uniform distribution over the compact interval [a, b], i.e.

p1(x1) =

{
1

b−a for x ∈ [a, b],

0 otherwise,
(10)

with x1 ∈ [a, b], eq. (9) becomes

x1 − a
b− a

=

∫ x2

−∞
p(x′2) dx′2. (11)

The p2 in our case is given by f . So to calculate f -distributed samples x2 from a variable
x1 that is uniformly distributed, we need to calculate the remaining integral in eq. (11)
and then solve the whole expression for x2. This last step, i.e. the actual inversion, is
always well-defined since probability distributions are non-negative functions, making their
integrals monotonically increasing and hence injective.

Working through the above procedure, i.e. first calculating the CDF of our piecewise
linear function which is a quadratic spline and can be inverted by the standard quadratic
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formula to yield f -distributed numbers, we were able to perform the rejection method with
a rejection rate of

r ≈ 0.451 ≈ 45 %. (12)

A histogram of the generated samples overlayed with the target distribution p(x) is shown
in fig. 3.

0 1 2 3 4 5

x

10-4

10-3

10-2

10-1

100

101
p
(x

)

p(x)

paux(x)

Figure 3: Histogram of samples generated from the auxiliary function f(x) overlayed with the
target distribution p(x)

2 Sampling a given distribution with a Monte Carlo Markov chain

Let’s assume we want to generate random numbers from the distribution

p(x) ∝ e−[x+2 cos2(x)]
2

. (13)

This simple case could also be done with the rejection method, but here we want to adopt
a different approach, namely the use of a stochastic process constructed with the Metropolis
algorithm.

(a) Start with some random guess x0 for which p(x) is not zero.

(b) Make a proposal for x′i in your chain by adding a random number drawn uniformly
from the interval [−1, 1] to xi−1.

(c) Accept the proposal with probability

r = min

(
1,

p(x′i)

p(xi−1)

)
, (14)

i.e. in the case of acceptance, make it the entry xi in your Monte Carlo chain. Oth-
erwise, adopt the unmodified xi−1 as your element xi. Then proceed with the next
element xi+1.
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(d) Produce a chain with N = 106 elements, and make a histogram with bin size ∆x = 0.02
of the entries in order to verify that they correctly sample the overplotted shape of p(x).
How many different points are in your chain?

For parts (a) to (c), see markovchain.c.

(d) A histogram of the elements in our Markov chain is shown in fig. 4. Sorting the array and
incrementing a count every time two successive entries are unequal yields

ndist = 507049 (15)

as the number of distinct entries in the Markov chain.
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Figure 4: Histogram of points in a 106-entry-long Markov chain, overplotted with the normalized
target distribution function p(x)

3 Monte Carlo simulation of the 2D Ising model

We consider a two-dimensional Ising model with the partition function

Z =
∑

{sx = ±1}

exp
[
−β

2

∑
〈x,y〉

(1− sxsy)
]

(16)

for spins with values sx = ±1 on a regular lattice of Cartesian topology. For every lattice
site x, the interaction term only involves the four nearest neighbours y on adjacent lattice
sites. Use an N ·N = 322-square lattice with periodic boundary conditions.
We have the goal to measure the average magnetization

〈|M |〉 =

〈∣∣∣∣∣ 1

N2

∑
x

sx

∣∣∣∣∣
〉

(17)
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in thermal equilibrium for different values of β, namely

β ∈ {1.6, 1.3, 1.1, 1.0, 0.9, 0.8, 0.7, 0.6, 0.4, 0.1}. (18)

(a) For each value of β, go through the lattice in red-black order for at least 3000 times to
establish thermalization. At each encountered lattice site x, calculate the interaction
energies E+ and E− for the spin up and the spin down directions of x, respectively.
Then choose for the site the spin-up direction with the heat bath (Gibbs sampling)
probability

p+ =
e−E+

e−E+ + e−E−
, (19)

and the spin-down direction correspondingly with probability p− = 1− p+.

(b) After the thermalization period, take measurements of M after at least 1000 full mesh
sweeps and calculate the average 〈|M |〉. Report this in a table for each β.

(c) Plot 〈|M |〉 as a function of T ∝ 1/β. We note that this model has a phase transition at
a critical βc = ln(1 +

√
2) ≈ 0.881 (corresponding to a critical temperature Tc ∝ 1/βc).

Below this temperature (i.e. for β > βc), the systems shows spontaneous magnetization.
The present two-dimensional model without external field has been solved analytically
by Onsager. In three dimensions, no analytic solution is known but it can be readily
obtained with Monte Carlo simulations.

(a) See ising.c.

(b) The average magnetizations we measured for the supplied values of β are shown table 1.

Table 1: Average magnetization 〈|M |〉 at different temperatures

β 1.6 1.3 1.1 1.0 0.9 0.8 0.7 0.6 0.4 0.1

〈|M |〉 0.996 0.984 0.955 0.910 0.719 0.206 0.103 0.062 0.041 0.028

(c) The average magnetization 〈|M |〉 as a function of temperature T is shown in fig. 5.

Note: Figures 6a to 6j show the spin states of the thermalized lattices at different β as a
color-coded surface. A red square indicates that the spin at the corresponding lattice site is
pointing in the upward direction, whereas a blue square represents a spin down.
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Figure 5: Average magnetization 〈|M |〉 as a function of T
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(a) β = 1.6
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(b) β = 1.3
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(c) β = 1.1
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(d) β = 1.0
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(e) β = 0.9
0 5 10 15 20 25 30

x

0

5

10

15

20

25

30

y

(f) β = 0.8
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(g) β = 0.7

0 5 10 15 20 25 30

x

0

5

10

15

20

25

30

y

(h) β = 0.6
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(i) β = 0.4
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(j) β = 0.1

Figure 6: Color-coded (red: sx = 1, blue: sx = −1) lattice configurations at different tempera-
tures after 3000 relaxation sweeps
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