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Theoretical Statistical Physics

Solution to Exercise Sheet 11

1 Symmetric states (1 point)

The (anti-)symmetrized many-particle states are defined as

|α1, . . . , αn〉± = P±|α1〉 ⊗ · · · ⊗ |αn〉 =
1

n!

∑

π∈Sn

(±1)π|απ(1)〉 ⊗ · · · ⊗ |απ(n)〉 (1)

Show that

|α1, α2, α3〉− = −|α2, α1, α3〉− (2)

|α1, α2, α3〉+ = +|α2, α1, α3〉+. (3)

Written out explicitly, the states (2) and (3) are

|α1, α2, α3〉± =
1

3!

(

|α1〉 ⊗ |α2〉 ⊗ |α3〉 ± |α1〉 ⊗ |α3〉 ⊗ |α2〉 ± |α2〉 ⊗ |α1〉 ⊗ |α3〉

+ |α2〉 ⊗ |α3〉 ⊗ |α1〉 + |α3〉 ⊗ |α1〉 ⊗ |α2〉 ± |α3〉 ⊗ |α2〉 ⊗ |α1〉
)

.
(4)

Exchanging |α1〉 and |α2〉, we get

|α2, α1, α3〉± =
1

3!

(

|α2〉 ⊗ |α1〉 ⊗ |α3〉 ± |α2〉 ⊗ |α3〉 ⊗ |α1〉 ± |α1〉 ⊗ |α2〉 ⊗ |α3〉

+ |α1〉 ⊗ |α3〉 ⊗ |α2〉 + |α3〉 ⊗ |α2〉 ⊗ |α1〉 ± |α3〉 ⊗ |α1〉 ⊗ |α2〉
)

= ± 1

3!

(

|α1〉 ⊗ |α2〉 ⊗ |α3〉 ± |α1〉 ⊗ |α3〉 ⊗ |α2〉 ± |α2〉 ⊗ |α1〉 ⊗ |α3〉

+ |α2〉 ⊗ |α3〉 ⊗ |α1〉 + |α3〉 ⊗ |α1〉 ⊗ |α2〉 ± |α3〉 ⊗ |α2〉 ⊗ |α1〉
)

= ±|α1, α2, α3〉±.

(5)

2 Number fluctuations (2 points)

Consider the occupation probability

〈nk〉g = − 1

β

∂

∂ǫk
ln(Zg) (6)

of a single mode k both in an ideal Bose and Fermi gas in the grand canonical ensemble.
Compute the fluctuations of the occupation probability, 〈n2k〉− 〈nk〉2, and express it in terms
of 〈nk〉. Show that the fluctuations of the total particle number ∆N = 〈N2〉 − 〈N〉2 scale
linearly with volume.

Ideal quantum gases are systems containing a large number of non-interacting particles. Each
individual particle occupies a state that is in no way altered from that of a solitary particle.
The total energy is simply the sum of individual particle energies. Quantum gases thus form
tensor products of states out of a single-particle Hilbert space H, making them perfectly suited
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for a description i.t.o. elements of a Fock space F±. In order to compute the statistics of such
systems, we first need the grand partition function Z±

g .

Computing it requires a basis for F±. The occupation number basis consists of states of the
form

|{ni}±i 〉 = |n0, n1, n2, . . . 〉± = P±

∞⊗

i=0

|ψi〉⊗ni

= P± |ψ0〉⊗n0 ⊗ |ψ1〉⊗n1 ⊗ . . . .

(7)

It draws upon a single-particle basis {|ψn〉}n∈N0 of H to denote with ni the number of particles
in state |ψi〉 with i ∈ N0 where i labels all basis elements of H.1

States of the form (7) offer the huge advantage that they are eigenstates of both the number
operator N̂ and the Hamiltonian Ĥ on F±:

N̂ |n0, n1, . . . , nk〉± =
∞∑

i=0

ni |n0, n1, . . . , nk〉±, (8)

Ĥ |n0, n1, . . . , nk〉± =
∞∑

i=0

ni ǫi |n0, n1, . . . , nk〉±. (9)

ǫi here denotes the energy of the single-particle state |ψi〉.
Equipped with a basis, we can calculate the grand partition function on F± as the trace over
the grand canonical weighting factor,

Z±
g = trF±

(
e−β(Ĥ−µ N̂)

)
=

∞∑

N=0

∑

{ni}
±

i

〈{ni}±i |e−β(Ĥ−µ N̂)|{ni}±i 〉 δN,
∑

ni
. (10)

This is a rather complicated sum running over all possible combinations of occupation numbers
ni of all single-particle states |ψi〉 ∈ H. The Kronecker symbol ensures that in each term of the
sum over N only configurations with the correct number of total particles appear. If we had
instead chosen to work in the canonical ensemble, we would still have this restriction but the

sum over N (and the fugacity zN̂ = eβµN̂ ), would be absent from the partition function, making
the evaluation of Zc extremely difficult. The sum over all possible number of particles turns out
to be a crucial advantage of the grand canonical ensemble when it comes to quantum gases.

We make full use of it by dropping both the sum over N and the Kronecker symbol. This lets
the ni roam freely, so to speak. We still sum over all possibilities of distributing an arbitrary
number of particles (up to infinitely many) onto the single-particle states in H, thus still taking
into account every possible value for the total particle number N . By furthermore using (8)
and (9), Z±

g factorizes into

Z±
g =

∑

{ni}
±

i

e−β
∑

∞

j=0 nj(ǫj−µ) 〈{ni}±i |{ni}±i 〉
︸ ︷︷ ︸

=1

=
∞ or 1∑

n±

0 =0

∞ or 1∑

n±

1 =0

∞ or 1∑

n±

2 =0

· · ·
∞∏

j=0

e−β nj(ǫj−µ) =

∞∏

j=0

∞ or 1∑

n±

j =0

e−β nj(ǫj−µ).

(11)

For fermions, the sum over n−j contains only two terms,

Z−
g =

∞∏

j=0

(

1 + e−β (ǫj−µ)
)

, (12)

1We are working exclusively with separable Hilbert spaces here. This guarantees that even if the number of

basis vectors becomes infinite, they remain countable since any separable Hilbert space H contains a countable

subset with countable basis whose span is dense in H.
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while for bosons, we may use the geometric series to get

Z+
g =

∞∏

j=0

1

1− e−β (ǫj−µ)
. (13)

There is an important point to consider here. The geometric series will only converge if ǫj −µ >
0 ∀ j, i.e. if all single-particle energies are larger than the chemical potential. Since we take
Ĥ to be a trace class operator, i.e. a compact operator for which a trace may be defined such
that it is finite and basis-independent, it follows that the spectrum {ǫj}j of eigenvalues of Ĥ
can accumulate only at zero. To understand why, remember that in general, we are operating
on infinite-dimensional Hilbert spaces d = dim(H) = ∞. Since Ĥ† = Ĥ is self-adjoint, the set
of eigenvectors B = {|ǫj〉}j of Ĥ form an orthogonal basis of H. The cardinality of the basis is
|B| = d, i.e. there are infinitely many basis vectors. The trace of Ĥ evaluated in its eigenbasis
therefore gives an infinite sum over all eigenvalues times their degeneracy. This will only be finite
if the {ǫj}j form a null sequence, i.e. if limj→∞ ǫj = 0. To cut a long story short, the bosonic
grand partition function can only be computed in this way for systems with µ < 0 to ensure
ǫj − µ > 0 ∀ j. For fermions, due to their capped occupation number, µ remains unrestricted.

Now that we have an explicit expression for Z±
g , we can use it to calculate occupation numbers

for all single-particle states by differentiating w.r.t. that state’s energy as in (6). To see this,
note that

〈nk〉± =
1

Z±
g
trF±

(
ni e

−β(Ĥ−µ N̂)
)
=

1

Z±
g

∞∏

j=0

∑

nj

nk e
−β nj(ǫj−µ)

=
1

Z±
g

∞∏

j=0

∑

nj

(

− 1

β

∂

∂ǫk

)

e−β nj(ǫj−µ) = − 1

β

1

Z±
g

∂

∂ǫk
Z±
g = − 1

β

∂

∂ǫk
ln
(
Z±
g

)
.

(14)

Inserting (12) and (13) gives

〈nk〉± = ± 1

β

∂

∂ǫk

∞∑

j=0

ln
(
1∓ e−β (ǫj−µ)

)
= ± 1

β

1

1∓ e−β (ǫk−µ)

∂

∂ǫk

(
∓e−β (ǫk−µ)

)

=
e−β (ǫk−µ)

1∓ e−β (ǫk−µ)
=

1

eβ (ǫk−µ) ∓ 1
.

(15)

These are the familiar Bose-Einstein and Fermi-Dirac distributions, respectively.

To obtain fluctuations of the occupation number, we need 〈n2k〉. Just like 〈nk〉, we can compute
it by differentiation,

〈n2k〉± =
1

β2
1

Z±
g

∂2

∂2ǫk
Z±
g =

e−β(ǫk−µ) + 1
(
e−β(ǫk−µ) ∓ 1

)2 =
(
e−β(ǫk−µ) + 1

)
〈nk〉2±. (16)

This results in the bosonic respectively fermionic fluctuations

∆n±k = 〈n2k〉± − 〈nk〉2± =
(
e−β(ǫk−µ) + 1

)
〈nk〉2± − 〈nk〉2±

= e−β(ǫk−µ) 〈nk〉2±.
(17)

The prefactor e−β(ǫk−µ) strongly suppresses fluctuations for states of energy ǫk much bigger
than the chemical potential. For fermions, where 〈nk〉− is limited to at most one particle, (17)
suggests that even for high temperatures, thermal fluctuations remain small whereas for bosons
we expect a strictly monotonic increase/decrease depending on the sign of ǫk − µ. We can plot
∆n±k as functions of T for constant ǫk − µ > 0 to confirm this.
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Note that ∆n−k is bounded by 1/4 as T → ∞. We can understand why if we write it as a
function of β, ǫk, and µ explicitly,

∆n−k =
1

2 cosh[β(ǫk − µ)] + 2
, (18)

which approaches 1/4 for ǫk 6= µ because cosh(±∞) = 1. Wrtiting out ∆n+k gives

∆n+k =
1

[
2 sinh

(β
2 (ǫk − µ)

)]2 . (19)

To find the dependence of fluctuations of the total particle number ∆N =
∑

k nk on the volume
V , we can use that in non-interacting gases, occupation numbers of different modes are uncor-
related, i.e. 〈nknl〉 = 〈nk〉〈nl〉 for k 6= l. We can therefore decompose the expectation values of
N and N2 into sums of expectation values of nk and n2k,

∆N = 〈N2〉 − 〈N〉2 =
〈(∑

k

nk

)2〉

−
〈∑

k

nk

〉2

=
〈∑

k

nk
∑

j

nj

〉

−
∑

k

〈nk〉
∑

j

〈nj〉

=
∑

k

〈n2k〉+
∑

k 6=j

〈nknj〉 −
∑

k 6=j

〈nk〉〈nj〉 −
∑

k

〈nk〉2

=
∑

k

〈n2k〉 −
∑

k

〈nk〉2 =
∑

k

∆nk,

(20)

which is proportional to V because ∆nk is V -independent and the number of modes scales
linearly with volume.

3 Relativistic Fermi gas (4 points)

Consider an ideal Fermi gas in three dimensions with ultra-relativistic dispersion relation
ǫ(k) = ~c|k| in a very large volume.

a) Compute the grand canonical potential Ω, the average energy and the average number
of particles as functions of T , V , and µ.

b) Show that U = 3pV .

c) Determine the Fermi energy and the pressure of the gas at T = 0 as functions of density.
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a) From the fermionic partition function of the ideal quantum gas derived in exercise 2, it is
easy to find the grand canonical potential. Let the particles under consideration have spin
s and be confined to a box of volume V = L3, then

Ω−(T, V, µ) = − 1

β
ln(Z−

g )
(12)
= − 1

β

∑

j

ln
(

1 + e−β(ǫj−µ)
)

= −gs
β

∑

k∈2π
L
Z3

ln
(

1 + z e−β~c|k|
)

,
(21)

where gs = 2s + 1 is the spin degeneracy and z = eβµ denotes the fugacity. We used that
the sum over single-particle states |ψj〉 ∈ H becomes a sum over all possible values for the
spin σ and three-momentum k,

∑

j

=

s∑

σ=−s

∑

k∈ 2π
L
Z3
. (22)

Considering the problem asymptotically for large volumes, the discrete (Riemann) sum (21)
translates into the following integral (we get a measure by multiplying and dividing the term
(2π)3

L3 which limits to an infinitesimal volume element of momentum space for L→ ∞),

Ω−(T, V, µ) = −gs
β

V

(2π)3

∫

R3

ln
(

1 + z e−β~c|k|
)

d3k

= −gs
β

V

(2π)3
4π

∫ ∞

0
k2 ln

(

1 + z e−β~ck
)

dk

= −gs
β

V

2π2

(

−
∫ ∞

0

k3

3

(−zβ~c)e−β~ck

1 + z e−β~ck

)

dk

= −gs
β

V

6π2
1

(β~c)3

∫ ∞

0

x3

z−1 ex + 1
dx

≡ − gs
π2β

V

(β~c)3
f−4 (z),

(23)

where we transformed to spherical coordinates in the second step, partially integrated with
vanishing boundaries in the third, substituted x = β ~ c k, dx = β ~ c dk in the fourth, and
defined the integral function

f±ν (z) =
1

Γ(ν)

∫ ∞

0

xν−1

z−1 ex ∓ 1
dx, (24)

in the last line.

The average energy is given by the Hamiltonian’s grand canonical expectation value,

U(T, V, µ) = 〈Ĥ〉g =
1

Z−
g
trH

(

Ĥe−β(Ĥ−µN̂)
)

=
s∑

σ=−s

∑

k

~c|k|
z−1eβ~c|k| + 1

V→∞−−−−→ gs
V

(2π)3
4π

∫ ∞

0

~ c k

z−1 eβ~ck + 1
k2 dk

=
gs

2π2β

V

(β~c)3

∫ ∞

0

x3

z−1ex + 1
dx =

3gs
π2β

V

(β~c)3
f−4 (z)

(25)

Finally, the average particle number derives from the number operator’s expectation value,

N(T, V, µ) = 〈N̂〉g =
1

Z−
g
trH

(

N̂ e−β(Ĥ−µN̂
)

=
s∑

σ=−s

∑

k

〈nk〉 V→∞−−−−→ gs
V

(2π)3
4π

∫ ∞

0

k2 dk

z−1eβ~ck + 1
=
gs
π2

V

(β~c)3
f3(z).

(26)

where we used 〈nk〉g = ∂Ω−

∂ǫ(k) =
1

z−1eβǫ(k)+1
.
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b) The pressure is given by the derivative of the grand potential (23) w.r.t. volume,

p = −∂Ω
−

∂V
=

gs
π2β

f−4 (z)

(β~c)3
. (27)

Comparing (25) and (27), we see that

U = 3pV. (28)

c) To determine the energy and pressure of a relativistic Fermi gas in the T → 0 limit, we
employ an asymptotic expansion of f−ν (z) for ln(z) = βµ≫ 1,

f−ν (eβµ) =
(βµ)ν

Γ(ν + 1)

(

1 + 2
n∑

j=1

(2j)!

(
ν

2j

)
(
1 + 21−2j

)
ζ(2k) (βµ)−2j +O

[
(βµ)−2n−1

]
)

, (29)

where ζ(s) =
∑∞

n=1
1
ns , s ∈ C is the Riemann zeta function. We only need to consider the

leading order behaviour,

f−4 (eβµ) =
(βµ)4

4!
+O

[
(βµ)3

]
. (30)

to find that β → ∞ with µ fixed results in the Fermi energy and pressure

EF = U(0, V, µ) =
gs
8π2

V µ4

(~c)3
, (31)

pF = P (0, V, µ) =
gs

24π2
µ4

(~c)3
. (32)

The reason they are non-zero is the Pauli principle. It prevents identical fermions from
occupying the same state more than once. Macroscopic condensation into the ground state
as in bosonic systems near absolute zero is therefore impossible. Instead, a Fermi system
at T = 0 fills up all available energy states from the bottom up, a configuration known as
full degeneracy. Adding particles or compressing the system forces the particles into higher-
energy states. The necessary energy must be introduced into the system by a compression
force performing work against the resisting pressure (32).

To express (31) and (32) in terms of the Fermi density, we may again apply the asymptotic
expansion of f−ν (eβµ), this time to (26) to find

ρF =
1

V
N(0, V, µ) =

gs
6π2

µ3

(~c)3
, (33)

which gives

EF =
3

4
ρFV µ, (34)

pF =
1

4
ρFµ. (35)

Note that the Fermi pressure depends exclusively on the density of the fermions, while the
Fermi Energy, being an extensive quantity, also scales linearly with volume.

4 Two-dimensional Bose gas (3 points)

Consider a two-dimensional ideal Bose gas in a box of side length L with periodic boundary
conditions and dispersion relation ǫ(k) = k

2/2m.
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a) Calculate the grand canonical partition function Z+
g and obtain the limit

lim
A→∞

1

A
ln[Z+

g (z,A, T )] (36)

where A = L2 is the area available to the system, and z = eβµ denotes the fugacity.

b) Explicitly find the average number of particles per unit area as a function of z and T .

c) Show that no macroscopic occupation of the k = 0 mode is necessary at any density.
What are the consequences for Bose-Einstein condensation?

a) The partition function for the ideal Bose gas of spin-s particles confined to a two-dimensional
box of side length L reads

Z+
g =

∏

k∈2π
L
Z2

s∏

σ=−s

1

1− e−β [ǫ(k)−µ]
=

∏

k∈2π
L
Z2

(

1− e−β (k2/2m−µ)
)−gs

, (37)

where we used that the dispersion relation ǫ(k) = k
2/2m is independent of σ, so the product

over spin states just gives the degeneracy gs = 2s+1. To write Z+
g as a momentum integral,

we take the logarithm and perform the continuum limit in the resulting sum,

ln(Z+
g ) = −gs

L2

(2π)2

∑

k 6=0

(2π)2

L2
ln
(

1− z e−
β
2m

k
2
)

− gs ln(1− z)

L→∞−−−−→ −gs
A

(2π)2
2π

∫ ∞

0
k ln

(

1− z e−
β
2m

k2
)

dk − gs ln(1− z)

part. int.

ց
= gs

A

2π

∫ ∞

0

k2

2

β
mk z e

− β
2m

k2

1− z e−
β
2m

k2
dk − gs ln(1− z)

= gs
A

2π

β

m

∫ ∞

0

k3

z−1e
β
2m

k2 − 1
dk − gs ln(1− z)

= gs
A

2π

β

m

2m2

β2

∫ ∞

0

x

z−1ex − 1
dx− gs ln(1− z)

= gs
A

π

m

β
f+2 (z)− gs ln(1− z).

(38)

The limit (36) gives the pressure

β p = − lim
A→∞

β

A
Ω = lim

A→∞

1

A
ln(Z+

g ) =
gs
π

m

β
f+2 (z). (39)

b) The average number of particles per unit area, i.e. the areal density, is given by

1

A
N(T,A, µ) =

1

A
〈N̂〉g =

1

A

1

Z+
g
tr
(

N̂e−β(Ĥ−µN̂)
)

=
1

A

s∑

σ=−s

(
A

(2π)2

∑

k 6=0

(2π)2

L2
〈nk〉+ 〈n0〉

)

=
gs

(2π)2
2π

∫ ∞

0

k

z−1eβǫ(k) − 1
dk +

gs
A

z

1− z

=
gs
2π

m

β

∫ ∞

0

dx

z−1ex − 1
+
gs
A

z

1− z

=
gs
2π

m

β
f+1 (z) +

gs
A

z

1− z
.

(40)
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c) For the three-dimensional ideal Bose gas discussed in the lecture, we had calculated the
number of particles per unit volume to be

N

V
=
gs
λ3
f+3/2(z) +

gs
V

z

1− z
, (41)

where λ = h/
√
2πmkBT denotes the thermal de Broglie wavelength. We had argued that

since λ−3 ∝ T
3
2 and the integral function f+3/2(z) is bounded from above by f+3/2(1) =

ζ(3/2) ≈ 2.61 for z ∈ [0, 1]2, the occupation numbers of all states but the zero mode tend to
zero as T → 0, which requires z → 1 so that the zero mode occupation diverges. Otherwise,
it would not be able to account for the macroscopic density ρF at T = 0 all on its own. This
is Bose-Einstein condensation.

In two dimensions, the situation is different. While f+1 (z) = − ln(1 − z) is still monotonic
for z ∈ [0, 1], it is no longer bounded. Instead, it diverges as z → 1.

0.2 0.4 0.6 0.8

1

2

3

4

5

z

− ln(1− z)

Hence, we can no longer argue that as T → 0, the term gs
2π

m
β f

+
1 (z) in (40) must vanish

because β−1 ∝ T will be countered by f+1 (z) → ∞ if z = 1, i.e. if µ = 0. So if the thermal
mode occupation doesn’t vanish at absolute zero, nothing forces the zero mode occupation
to become macroscopic, meaning no Bose-Einstein condensation will take place.

2Recall that we had used µ < 0 and thus z = e
βµ

< 1 to apply the geometric series in the calculation of the

bosonic partition function. Otherwise the sum over occupation numbers wouldn’t even have been convergent.
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