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1 Motivation

• Modern physics is primarily built on three pillars that have held up to experiment time and again:

– Special relativity is the framework of choice when describing fast-moving objects.

– General relativity prevails in the face of objects so massive that they bend spacetime itself.

– Quantum mechanics claims to describe physics down to the smallest level.

• But what if something is both small and fast? To describe such systems, special relativity and
quantum mechanics were beautifully incorporated into a multiparticle, relativistic framework called
quantum field theory - the most successful physical theory yet, tested to excruciating precision.

• Or, what about systems that are massive yet small (and perhaps fast)? Clearly, for something to be
both massive and small implies that we are looking at high densities on short length scales where
gravity becomes important and of a magnitude comparable to the other forces. We are entering
an exotic regime of physics involving systems such as the early universe and (rotating) black holes.
Quantum field theory in its current state is of no use here, as it discards gravity from the outset. In
fact, no field-theoretic description of gravity has been found that is both strictly local down to the
smallest level and consistently quantizable, i.e. that results in a renormalizable quantum theory.

• As suggested by the Wilsonian interpretation of QFT, a fundamentally new (nonlocal) picture of
the microscopic degrees of freedom is needed to make headway. This is where string theory comes
in, whose central axiom is that the fundamental objects in Nature are one-dimensional rather than
pointlike. Combined with the standard kinematics of general covariance1 and the usual procedure
of quantization, this simple statement has resulted in an amazingly rich, mathematically intricate
and conceptually insightful framework. In particular, string theory leads to a unified description of
all forces, a divergence-free UV completion of QFT, and it recovers Einstein gravity at low energies.

1.1 Central properties

• There is only one free parameter in string theory, the string length ℓs which (due to current limits
of high-energy colliders) can take any value in the range

(Planck length) 10−35m < ℓs < 10−19m (TeV scale). (1)

This is in stark contrast to GR and QFT where all masses and higher couplings are input parameters
that have to be taken from experiment. String couplings are given by expectation values of a
dynamical field, the scalar dilaton φ. That means they can be calculated from within the theory!

• String states can be classified into two regimes:

1. In the low-energy limit of distances much larger than ℓs, strings appear pointlike. Integrating
out the massive string tower results in a low-energy effective theory of only the massless excita-
tions. These are found to model gauge interactions and gravity. Conformal invariance of the field
theory on the worldsheet requires that to lowest order, gravity obeys the Einstein equations.

2. The ultraviolet regime resides at distances of the order of ℓs. The extended nature of the string
becomes important, rendering the theory nonlocal with important consequences for interactions:
Sharp vertices at which interactions are localized in space and time no longer exist.2 Locally, the
string always appears free with interactions encoded solely in the global worldsheet topology.

• In string perturbation, each loop order (for a given process) contains only a single diagram. By
contrast, the number of Feynman graphs in QFT grows factorially. Due to a feature called duality,
there is no need to sum over the scattering channels s, t, u. They are all the same in string theory.

1General covariance is the paradigm that the form of physical laws should be invariant under arbitrary differentiable
coordinate transformations. This statement is motivated by the conviction that coordinates don’t exist in nature,
and are only artifices of our description. Hence, which ones we choose should play no physical role.

2In point-particle theories, the sharp localization of vertices is responsible for the appearance of divergent amplitudes.
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• A string can be open or closed. Open strings generate Yang-Mills theory, closed strings produce
gravity. Since open strings can close up and vice versa, gravity and Yang-Mills are dynamically
related. One automatically implies existence of the other, as it must be, to allow for effects such as
energy stored in an electric field to gravitate itself. This is what is meant with the statement that
string theory provides a unified description of all forces.

2 Classical bosonic string

2.1 Bosonic string action

• The Nambu-Goto action of the classical bosonic string spanning the worldsheet Σ is defined as

SNG[X] = −T
∫

Σ
dA. (2)

T is the string tension and dA =
√

− det(G) dτdσ the area element of Σ with coordinates ξ =
(ξ0, ξ1) = (τ, σ). The components of the pullback G of the ambient space metric ηµν onto Σ are

Gab =
∂Xµ

∂ξa
∂Xµ

∂ξb
, a, b ∈ {0, 1}, µ ∈ {0, . . . , d− 1}. (3)

• To eliminate the square root in SNG, we introduce the worldsheet metric hab(τ, σ) as an auxiliary
(symmetric two-tensor) field and define the Polyakov action

SP[X,h] = −T
2

∫

Σ
d2ξ

√
−hhabGab, with h = det(h). (4)

The bosonic string field Xµ(τ, σ) in Gab provides an embedding of the worldsheet into ambient
space. Xµ is a spacetime vector but a scalar on the worldsheet (due to the absence of worldsheet
indices). Hence SP describes d scalar fields Xµ coupled to the dynamical worldsheet metric hab.

– Since the spacetime coordinates Xµ of the string are promoted to dynamical fields, spacetime
becomes a derived concept. The fundamental object is the field theory on the worldsheet.

– SP and SNG are classically equivalent, i.e. upon enforcing the equation of motion for the auxiliary
field hab. However, this equivalence does not extend to the quantum level.

– (4) is not the most general bosonic string action imaginable. SP could be modified in two ways:

1. A cosmological constant term SΛ = Λ
∫

Σ d2ξ
√
−h could be added, but this would spoil

Weyl invariance which will turn out to be vital for consistency of the CFT on the worldsheet.

2. We might also include an Einstein-Hilbert term SEH = λEH

4π

∫

Σ d2ξ
√
−hR with R the Ricci

scalar of the worldsheet. But this is a total derivative and hence introduces no new dynamics
(corresponding to the fact that two-dimensional gravity is dynamically trivial).

2.2 Symmetries

• SP enjoys several symmetries, where it is important to distinguish between spacetime symmetries
in R

1,d−1 (taken to be flat) and worldsheet symmetries on Σ (dynamic). SP is invariant under

1. d-dimensional spacetime Poincaré transformations Xµ → Λµ
ν Xν + V µ, with Λµ

ν in the
Lorentz group SO(1, d − 1) and V µ ∈ R

1,d−1 a translation. The associated conserved charges
(according to Noether’s theorem) are energy, momentum, and angular momentum.

2. Local worldsheet diffeomorphisms ξa → ξa + ǫa(ξ) under which the string field Xµ transforms
as δXµ = ǫa∂aX

µ, the metric hab as δhab = ∇aǫb + ∇bǫa, and the object
√
−h as δ

√
−h =

∂a(ǫa
√
−h), i.e. like a scalar density of weight p = 1.

3. Local Weyl transformations hab → Λ(ξ)hab (parametrized by Λ(ξ) = eω(ξ) with ω(ξ) ∈ R for
convenient series expansion). This symmetry is special in that it arises only for two-dimensional
worldsheets (as opposed to, say, membranes), making strings a unique generalization of point-
particles. This symmetry requires T a

a = 0 and is crucial for a consistent string quantization.
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• The effect on the metric hab of certain diffeomorphisms ǫa that fulfill the conformal Killing eq.
P c

ab ǫc = (P ǫ)ab = 0 can be undone by a Weyl rescaling Λ−1. The linear operator P is defined via

δhab = ∇aǫb +∇bǫa = ∇aǫb +∇bǫa −∇cǫchab
︸ ︷︷ ︸

P c
ab

ǫc

+∇cǫc
︸︷︷︸

Λ

hab. (5)

These ǫa are the conformal Killing vectors. Every such ǫa yields a conserved current Ja
ǫ = T abǫb

with ∇aJ
a
ǫ = 0 (T a

a = 0 is used to show this). The number of such ǫa is infinite and hence infinitely
many conserved currents arise.

• The energy-momentum tensor is defined as the variation of SP w.r.t. to the worldsheet metric,

Tab =
4π√
−h

δSP
δhab

= − 1

α′

(

Gab −
1

2
habG

c
c

)

. (6)

It is traceless T a
a = 0 (as a consequence of Weyl invariance), and (for on-shell Xµ) constitutes the

conserved current ∇aTab = 0 with respect to local worldsheet diffeomorphisms.

– The e.o.m. Tab = 0 for hab implies Gab =
Gc

c

2 hab, i.e. on-shell hab is proportional to the pullback.

2.3 Gauge-fixing

• On a D-dimensional worldmembrane hab has D
2 (D + 1) degrees of freedom, while diffeomorphisms

plus Weyl rescalings account for (D + 1) parameters. Precisely in D = 2 do we have equally many
transformational parameters as metric degrees of freedom. Two more features exclusive to D = 2
are that the Riemann-tensor has only one degree of freedom given by the Ricci scalar R,

Rabcd =
R
2
(hachbd − hadhbc), (7)

and second, that under a Weyl rescaling Λ(ξ), R transforms as R → R−∇
2Λ(ξ). Choosing Λ(ξ)

such that R = ∇
2Λ(ξ) (locally, this is always possible) thus implies Rabcd = 0 ∀ a, b, c, d. This

means we can always transform the worldsheet so that locally, it resembles flat space. Once space is
flat, we can transform coordinates, i.e. apply a diffeomorphism to bring the metric into Minkowskian
shape hab = ηab. This procedure of fixing the metric is called (partially) fixing the gauge.

– It leaves a large residual gauge symmetry generated by the conformal Killing vectors ǫ men-
tioned above. Since these leave the metric invariant, they still represent an unphysical gauge
symmetry in our description even after the metric has been fixed.

– Worldsheets may exhibit topological obstructions to fixing the metric globally. In this case there
remain parameters in the metric, so-called moduli, which cannot be removed by a conformal
rescaling and diffeomorphisms. These moduli are the global properties of worldsheets that account
for string interactions (mentioned in item 2 of the central properties of string theory).

• In flat gauge hab = ηab, the Polyakov action reduces to the action of d free scalar fields,

SP[X] =
T

2

∫

Σ
d2ξ

[
(∂τX)2 − (∂σX)2

]
. (8)

• Lightcone coordinates ξ± = τ ± σ are convenient, e.g. when treating closed string mode ex-
pansions with right- and left-moving modes α±

n (+ right-moving, − left-moving). The metric in
lightcone gauge reads

h±± = 0, h±∓ = −1

2
, i.e. h =

(
0 −1

2
−1

2 0

)

, h−1 =

(
0 −2
−2 0

)

, (9)

yielding the line element ds2 = habξ
aξb = −dτ2 + dσ2 = −dξ+dξ−. The Jacobian of the transfor-

mation ( τσ ) →
(

ξ+

ξ−

)

=
(
τ+σ
τ−σ

)
from worldsheet to lightcone coordinates has determinant

| det(J)| =
∣
∣
∣
∣
det

(
∂τξ

+ ∂σξ
+

∂τξ
− ∂σξ

−

)∣
∣
∣
∣
=

∣
∣
∣
∣
det

(
1 1
1 −1

)∣
∣
∣
∣
= 2. (10)

Thus the measure becomes d2ξ = dτdσ = 1
2dξ

+dξ− and the partial derivatives are ∂± = 1
2(∂τ ±∂σ).
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– The Polyakov action and energy-momentum-tensor in lightcone coordinates read

SP[X] = T

∫

Σ
d2ξ ∂+X · ∂−X, T±± = − 1

α′
∂±X · ∂±X. (11)

Tracelessness translates into T±∓ = 0, and conservation into ∂∓T±± = 0 ⇒ T±± (ξ±). It is
important to remember that in flat gauge, the metric’s equation of motion Tab = 0 still has to be
enforced as constraint. Partially fulfilled already by tracelessness, this only amounts to T±± = 0.

– The conformal Killing equation (P ǫ)ab = 0 in lightcone gauge, where now ǫ = (ǫ+, ǫ−), becomes
the statement ∂±ǫ± = 0. Using ǫ± = h±aǫa = h±∓ǫ∓ = −2 ǫ∓, this means ∂∓ǫ

± = 0 ⇒ ǫ± =
ǫ±(ξ±), i.e. the ǫ± are chiral.

2.4 Mode expansion

• Varying the Polyakov action (8) w.r.t. to the bosonic string field yields the free wave equation

(∂2τ − ∂2σ)X
µ = 0 = ∂+∂−X

µ (12)

provided the boundary terms vanish. The closed string has canceling periodic boundaries. The
open string requires Neumann (∂σX

µ = 0) and/or Dirichlet (δXµ = 0 = ∂τX
µ) boundaries at

both ends σ ∈ {0, l}. Each has a different mode expansion, e.g. the open NN string expansion is

Xµ = xµ +
pµτ

T l
+ i

√
2α′

∑

n 6=0

αµ
n

n
e−iπ

l
nτ cos

(nπσ

l

)

. (13)

• From {Xµ(τ, σ),Πν(τ, σ′)}PB = ηµνδ(σ−σ′) with Πµ = T∂τX
µ, the Poisson bracket for the modes

follows as {αµ
m, αν

n}PB = −im ηµνδm,−n (for both left- and right-movers). Also, {xµ, pν}PB = ηµν .

• Inserting the ∂±X
µ that result from (13) into T±± from (11) yields the mode expansion

T±± = 4α′∑

m∈ZL
±
me

−i 2π
l
mξ± (14)

in terms of the Virasoro generators Lm. The equation of motion (or constraint if hab is fixed)
Tab = 0 thus implies the Virasoro constraints L±

m = 0 ∀m ∈ Z.

• In particular, the Hamiltonian, which for the open string reads

Hop =
π

l
L0 =

π

l

1

2

∑

n∈Z

α−n ·αn,=
π

l

(1

2
α2

0 +
1

2

∑

n 6=0

α−n ·αn

)

=
π

l

(

α′p2 +
∞∑

n=1

α−n ·αn

)

, (15)

must vanish due to Tab = 0 which implies the (classical open string) mass shell condition

M2 = −p2 = 1

α′

∑∞
n=1α−n ·αn =

N

α′
. (16)

For closed strings, Hcl =
2π
l
(L+

0 +L−
0 ) ∝ ∂+ + ∂− ∝ ∂τ

!
= 0 implements time reparametrization inv.

3 Bosonic string quantization

• There are three popular ways to quantize string theory, each with its own merits and downsides.

1. In the (old) canonical quantization, the Virasoro constraints are not implemented until we
reach the quantum level. This manifestly retains the Lorentz covariance of the classical theory,
but a unitary quantum theory is ensured only in a critical number of spacetime dimensions dcrit.

2. Lightcone quantization enforces the Virasoro constraints already at the classical level, result-
ing in a manifestly unitary quantum theory. But Lorentz covariance holds only in d = dcrit.

3. (Modern) path-integral quantization uses the Faddeev-Popov gauge fixing procedure. Criti-
cality becomes equivalent to closure of the BRST algebra, which can occur only in d = dcrit.
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3.1 Canonical quantization

• Canonical quantization promotes all fields to operators and postulates the replacement {·, ·}PB →
1
i
[·, ·], resulting in the canonical commutation relations

[Xµ(τ, σ),Πν(τ, σ′)] = iηµνδ(σ − σ′), [αµ
m, α

ν
n] = mηµνδm,−n, [xµ, pν ] = iηµν . (17)

– Reality Xµ ∈ R at the classical level implies hermiticity (Xµ)† = Xµ at the quantum level which

in turn requires (αµ
m)† = αµ

−m. This carries over to the Virasoro generators L†
m = L−m.

• As always, this procedure is terribly ambiguous because there is nothing to tell us the ‘correct’ order
within products of noncommuting operators. Hence we simply define the normal ordering to be

N(αµ
m α

ν
n) =

{

αµ
m αν

n for m ≤ n,

αν
n α

µ
m for n < m,

(18)

and use this prescription to promote the Virasoro generators to the quantum theory as the operators

Lm =
1

2

∑

n∈Z

N(αm−n ·αn). (19)

Actual ambiguity arises only in L0 because modes αµ
m, αν

n are noncommuting only if m = −n and
for m 6= 0By defining Lcl

0 = Lqu
0 − a3, where a follows from

Lcl
0 =

1

2

∑

n∈Z

α−n ·αn =
1

2

−1∑

n=−∞

{
αn ·α−n + ηµν [α

µ
−n, α

ν
n]

︸ ︷︷ ︸
−n ηµν

}
+

1

2

∞∑

n=0

α−n ·αn

=
1

2

∑

n∈Z

N(α−n ·αn) +
d

2

∞∑

n=1

n = Lqu
0 − a,

(20)

we capture the ambiguity in a divergent normal ordering constant fixed by renormalization later.

• The Virasoro algebra formed by the quantum Virasoro generators

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1) δm,−n (21)

is a central extension by C of the classical Witt algebra {Lm, Ln}PB = (m−n)Lm+n satisfied by the
classical Virasoro generators. The central charge c = ηµµ = d is given by the number of scalars
Xµ. The fact that c 6= 0 indicates a quantum anomaly of the worldsheet’s conformal symmetry.

• To exclude negative norm states from the physical Hilbert space and ensure a unitary theory, we
impose (with Ehrenfest’s theorem in mind) the physical state condition

(Lm − aδm,0)|φ〉 = 0 ∀m ≥ 0 and ∀ |φ〉 ∈ Hphys. (22)

• Since the (quantum) mass shell condition arises from the level-zero Virasoro constraint, the normal
ordering constant a affects the string mass. The structure of the physical Hilbert space is a tower
of string excitations with increasing mass according to the number of excitations counted by N :

M2
op|φ〉 =

( 1

α′
(N − a) + T 2∆x2

)

|φ〉. (23)

T 2∆x2 is the energy contribution from the string’s tension, nonzero only for states stretched between
noncoincident D-branes. The closed string states with M2

cl|φ〉 = 2
α′ (N+ +N− − a)|φ〉 are organized

by the level matching condition (N+ −N−)|φ〉 = 0.

3Lcl
0 and L

qu
0 are both quantum operators. The superscripts merely indicate that Lcl

0 has the structure of the classical
Virasoro generators without normal-ordering prescription whereas Lqu

0 does, i.e. is precisely the one defined in (19).
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– For a > 0, the vacuum |0,p〉 of bosonic string theory is tachyonic with M2 = − a
α′ . This is not

inconsistent, but signals an instability of the (naive) vacuum. Such a theory rapidly decays.

– Analysis of the level-zero Virasoro constraint on a first-excited level state |φ〉 = ξµα
µ
−1|0,p〉 reveals

(L0 − a)|φ〉 = (α2
0/2 +α1 ·α−1 − a)|φ〉 = (α′p2 + 1− a)|φ〉 !

= 0 ⇒ p2 =
a− 1

α′
. (24)

The level-one constraint evaluates to the requirement of transverse polarization ξ,

L1|φ〉 =
1

2
(· · ·+α1 ·α0 +α0 ·α1 + . . . )|φ〉 =

√
2α′ p · ξ|φ〉 !

= 0 ⇒ p · ξ = 0. (25)

All higher constraints are vacuous (automatically satisfied). Since for a > 1 we have p2 > 0, we
can choose p such that p0 = 0. Then a purely ξ0-polarized state fulfills p · ξ = 0, but, due to
〈φ|φ〉 = 〈0,p|(ξµαµ

−1)
†(ξµα

µ
−1)|0,p〉 = ξµξµ, has negative norm for every ξ0 > 0. Thus a ≤ 1 is

necessary for a unitary quantum theory. For |φ〉 twice excited, we similarly find we need d ≤ 26.

3.2 Lightcone quantization

• It is convenient in this procedure to introduce lightcone coordinates also for spacetime:

X± =
1√
2
(X0 ±Xd−1), Xi, i ∈ {1, . . . , d− 2}; η±∓ = −1 = η∓±, ηij = δij , (26)

so that X ·X = −2X+X− +
∑

i(X
i)2 = −2X+X− +X2

⊥.

• The key idea of lightcone quantization is to use the infinite dimensional residual symmetry generated
by the conformal Killing vectors fulfilling eq. (5) to gauge away an infinite number of oscillator
degrees of freedom, i.e. we set α+

n = 0 ∀n 6= 0. This is possible because τ = 1
2(ξ

+ + ξ−) fulfills
the string field’s e.o.m. ∂+∂−τ = 0. We can thus find a conformal Killing transformation that
reshapes the worldsheet so that its time-axis agrees with one of the spacetime coordinates, say X+,
i.e. X+ = 2πα′

l
p+τ + x+ (which is just the mode expansion with all modes except α+

0 set to zero).

– Of course, this procedure generally breaks Lorentz covariance as it singles out one coordinate!

• But it enables solving the Virasoro constraints at the classical level. By (11), Tab
!
= 0 becomes

− 2(∂τX ± ∂σX)+(∂τX ± ∂σX)− + (∂τX ± ∂σX)2⊥
!
= 0. (27)

Inserting the string field expansion turns the Virasoro constraints into an interdependence of modes

α−
n =

1√
2α′p+

1

2

d−2∑

i=1

∑

m∈Z

αi
n−mα

i
m. (28)

• Inserting spacetime lightcone coordinates into the flat-gauge Polyakov action from eq. (8) yields

SP =
T

2

∫

Σ
d2ξ[(∂τX)2⊥ − (∂σX)2⊥]−

∫ ∞

−∞

dτp+∂τq
−. (29)

Following the standard quantization procedure gives canonically conjugate variables Xi ↔ Πi and
p+ ↔ ∂τq

− with q− = 1
l

∫ l

0 dσX
−. Eq. (28) and Lm quantize as αi

n−mα
i
m → N(αi

n−mα
i
m)− aδm,0.

– Since the Virasoro constraints are implemented explicitly, all excitations created by transverse
modes αi

−m are automatically physical and the spectrum is manifestly free of ghosts.

• Criticality in lightcone quantization follows from requiring Lorentz covariance. A long calculation
reveals that the Lorentz algebra is non-anomalous only if d = 26, a = 1.

• The quantized Hamiltonian for open NN strings is H = π
l
(L0 − a). It needs to be renor-

malized due to the divergent a. First, we regularize with a cutoff Λ: a = d−2
2

∑∞
n=1 n =

limΛ→∞
d−2
2

∑∞
n=1 n

(
e−

π
lΛ

)n
. Using

∑∞
n=1 nq

n = q d
dq

∑∞
n=1 q

n = q
(1−q)2

, this becomes

π

l
a = lim

Λ→∞

π

l

d− 2

2

e−
π
lΛ

(
1− e−

π
lΛ

)2 = lim
Λ→∞

d− 2

2

( l

π
Λ2 − π

l

1

12
+O(Λ−1)

)

. (30)
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– The divergent Λ2-term scales with l. It can be absorbed by adding (via renormalization) a
cosmological constant counterterm Scc ∝ Λ2

∫

Σ d2ξ
√
−h to the bare Polyakov action.4

– The finite term is only present due to the finite size of the string (it disappears for l → ∞). There
exists no local counterterm that could be added to absorb it. This term is therefore physical and
defines the Casimir energy of the string as π

l
a = π

l
d−2
24 .

• For mixed rather than pure NN boundary conditions, the normal ordering constant increases by 1
24

per NN-/DD-dimension and decreases by − 1
48 per ND-/DN-dimension. Thus atot =

d−2
24 − nND+nDN

16 .

3.3 String spectrum

• In a d-dimensional Lorentz covariant theory, states form irreducible representations of the subgroup
S - called little group or stabilizer - of the d-dimensional Poincaré group SO(1, d − 1) ⋊ R

1,d−1

that leave their momentum pµ invariant. Depending on whether pµ is space-/light-/timelike, S is:

1. For p2 > 0, we can Lorentz transform to get p = (0, p, 0, . . . , 0) and hence S = SO(1, d− 2). An
example is the tachyonic ground state |0,p〉 with p2 = a

α′ , a scalar of the little group SO(1, 24).

2. For p2 = 0 we can rotate coordinates so that p = (p, p, 0, . . . , 0), i.e. S = SO(d − 2). States
of this type are the first-level massless transverse excitations ξiα

i
−1|0,p〉. They are spacetime

vectors in the fundamental representation (denoted �) of S = SO(24).

3. p2 < 0 admits p = (p, 0, . . . , 0), i.e. S = SO(d − 1). All massive states (i.e. at second excited
level or higher) form irreducible representations of S = SO(25). E.g. a second-level state of the
form (ξi α

i
−2 + ζij α

i
−1α

j
−1)|0,p〉 has 24+ 24

2 (24+ 1) = 324 polarization degrees of freedom which
combine into the symmetric traceless representation (denoted ��) of SO(25).

• A Dp-brane is a (p + 1)-dimensional hypersurface on which open strings can end, fixing them in
place in the dimensions normal to it. DD boundary conditions allow for momentum flow off the
string ends which implies that D-branes are dynamical (albeit non-perturbative) objects themselves.

• Open string spectrum: 1. The presence of a single Dp-brane allows the following low-level states5:

– The ground state |0,p〉 can have nonzero momentum p only in NN dimensions along the brane.

– Excitations ξiα
i
−1|0,p〉 parallel to the brane for i ∈ {1, . . . , p−1} form a massless vector from the

perspective of the Dp-brane. Its interactions identify it as a gauge potential. Thus a single brane
hosts a U(1) gauge theory! Excitations normal to the brane ξaα

a
−1|0,p〉 for a ∈ {p, . . . , 24}

form 24 − p massless scalars. They are the Goldstone bosons associated with spontaneous
breaking of the 26-dimensional Poincaré symmetry by the brane.

2. Strings stretched between parallel Dp-branes located at xa1 and xa2 receive a mass contribution
T 2

∑

a(x
a
2 − xa1)

2 from tension, rendering the above gauge and Goldstone excitations massive.

3. ForN coincident Dp-branes, states need to be labelled by Chan-Paton factors r, s ∈ {1, . . . , N}
enumerating the branes to keep track of the boundaries. We get the same states listed under 1,
but N2 copies of each, i.e. N2 massless vectors and N2(24 − p) massless scalars. The vectors
enhance the original U(1) gauge symmetry to a non-Abelian U(N). States can be expanded in
terms of the N2 hermitian N ×N -Chan-Paton-matrices λa that span the Lie algebra of U(N).6

• Closed string spectrum: The polarization two-tensor ξij of the first excited level decomposes
into irreducible representations of the little group SO(24): ξij = gij + Bij + φ δij , where gij is
symmetric traceless and describes massless, transversely polarized spin 2 particles, i.e. gravitons,
while the antisymmetric Bij is called Kalb-Ramond tensor field and models a generalized (i.e.
higher-rank) gauge potential. Lastly, φ, the trace part of ξij , is a scalar field called the dilaton.

4We have to cancel the divergent term entirely to preserve conformal invariance: A nonzero cosmological constant term
would break conformal symmetry already at the classical level. a 6= 0 also breaks conformal invariance, but only in
the form of an acceptable anomaly at the quantum level.

5The lightcone coordinates X± = 1√
2

(

X0 ±X25
)

must lie in NN dimensions for a treatment within lightcone quantiz.
6In orientifolded theories, also SO(N) and the symplectic Sp(2N) are possible gauge groups of coincident branes.
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3.4 Covariant quantization

• The modern covariant approach to quantization utilizes the path integral which is particularly
suitable for theories with gauge symmetries, and a powerful tool to compute string interactions.

• The naive partition function Z =
∫
DXDh eiSP[X,h] overcounts due to gauge-equivalent configura-

tions of the auxiliary field hab. The solution is to isolate the integral over gauge space, in this case
over all diffeomorphisms ǫa and Weyl rescalings Λ, and cancel it by division with the gauge group’s
volume. This can be achieved with the Faddeev-Popov gauge fixing procedure and yields

Z =

∫

DX det(P )eiSP[X,ĥ] (31)

with ĥab an arbitrary reference metric, and det(P ) the Faddeev-Popov determinant, stemming
from the Jacobian of the transformation used to factor out Dǫ and DΛ and cancel with Vol−1

diff×Weyl,

Dh→ DǫDΛ det

(
∂(P ǫ,Λ)

∂(ǫ,Λ)

)

= DǫDΛ det

(
P 0
0 1

)

. (32)

– We assumed every metric hab can be transformed to ĥab for precisely one combination of ǫa and Λ.
There is, however, a double mismatch: 1. The conformal Killing vectors generate as yet unfixed
residual gauge transformations which leave the metric invariant and must not be integrated over
to avoid overcounting. 2. For worldsheets of complicated topology the metric contains global
properties - the moduli - not accounted for by local gauge transformations. For topologies more
complicated than the vacuum, we must sum over these moduli by hand.

• By introducing the Grassmann-valued Faddeev-Popov ghost ca(ξ) and antighost bab(ξ), det(P ) can

be expressed as the Berezin integral det(P ) =
∫
DbDc e 1

4π

∫
Σ
d2ξ (−ĥ)

1
2 b·(P ·c) with which (31) becomes

Z =

∫

DX DbDc ei(SP+Sg). (33)

ca(ξ) and bab(ξ) are anti-commuting, fermionic fields with integer spin in violation of the spin-
statistics theorem, thus producing negative norm states. They are governed by the ghost action

Sg =
−i
2π

∫

Σ
d2ξ (−ĥ) 1

2 ĥabcd∇abbd
lcg
=

i

π

∫

Σ
d2ξ (c+∂−b++ + c−∂+b−−) (34)

and the equations of motion ∇abab = 0 = ∂∓b±± and P c
ab cc = 0 = ∂∓c

± ⇒ ca. The latter tells us
that the ghost vectors ca are in one-to-one correspondence with the conformal Killing vectors ǫa.

• Ghosts and antighosts are canonically conjugate fields. Their modes bn, cn fulfill the anti-commutation
relations {cm, bn} = δm,−n and {cm, cn} = {bm, bn} = 0. I.t.o. the ghost modes, the ghost Virasoro
generators read Lg

m =
∑

n∈Z(m− n)N(bm+nc−n). The L
g
m satisfy the ghost Virasoro algebra

[Lg
m, L

g
n] = (m− n)Lg

m+n +
m

6
(1− 13m2) δm,−n. (35)

Defining Ltot
m = LX

m +Lg
m − atot δm,−n yields the combined ghost and bosonic Virasoro algebra

[Ltot
m , Ltot

n ] = (m− n)Ltot
m+n +

[
ctot

12
m(m2 − 1) + 2m(atot − 1)

]

δm,−n, (36)

with central charge ctot = cX + cg where cg = −26, cX = d in R
1,d−1, and total normal ordering

constant atot = aX + ag, where ag = + 1
12 and aX = d

24 in a covariant gauge that treats X± as
independent d.o.f. The presence of a central term signals a Weyl anomaly of the full action SP+Sg
and, hence, the path integral. But we used Weyl invariance to factor out the integration over gauge-
equivalent metrics. Self-consistency thus requires that the central term vanishes which is the case
precisely in d = 26 (this really fixes the central charge cX and only indirectly constrains d).
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• In path integral quantization of gauge theories, the physical state condition is implemented via the
BRST symmetry, a global, fermionic, residual symmetry of the full action SP+Sg invariant under

δǫX
µ = ǫ(c+∂+ + c−∂−)X

µ, δǫc
± = ǫ(c+∂+ + c−∂−)c

±, δǫb±± = iǫ(TX
±± +Xg

±±), (37)

where ǫ is a global Grassmann-valued parameter. BRST invariance is present even after gauge fixing
hab = ηab. It is generated by the nilpotent, Hermitian, conserved charge QB via the brackets

δǫX
µ = ǫ[QB, X

µ], δǫc
± = ǫ{QB, c

±}, δǫb±± = {QB, b±±}. (38)

A long calculation reveals that nilpotence Q2
B = 1

2{QB, QB} !
= 0, as required for consistency of the

BRST symmetry, is equivalent to absence of the Weyl anomaly, i.e. zero central extension in (36).

• A physical state must be gauge invariant. Since QB acts on Xµ like the residual gauge transfor-
mations generated by conformal Killing vectors, a physical state must be invariant under a BRST
transformation, i.e. QB|φ〉 = 0 ∀ |φ〉 ∈ Hphys. This is not sufficient, however. As in quantization of
Yang-Mills theory, we find that due to nilpotence, all states in H lie either in the kernel ker(QB) or
image Im(QB) of QB. The latter states are null, i.e. orthogonal to all states including themselves.
The physical (positive-norm) Hilbert space is given by the cohomology of QB, i.e.

Hphys = C(QB) =
ker(QB)

Im(QB)
. (39)

States differing only by elements of Im(QB) are in the same equivalence class and transform into
one another by gauge transformations.

4 Conformal field theory

• Conformal symmetry is invariance under rescalings which requires a theory to be free of intrinsic
length, mass or energy scale, including the absence of massive excitations. Examples are 1. the
string worldsheet, 2. fixed points of the renormalization group equations, 3. critical points in con-
densed matter and statistical physics, where the correlation length diverges, and 4. the AdS/CFT
correspondence relates gravity on anti-de Sitter spaces to a conformal field theory on the boundary.

• Conformal transformations (henceforth conformals) are diffeomorphisms gµν (x) → ∂µ′xα∂ν′x
β gαβ

!
=

Λ(x)gµν (x) that change the metric only up to a factor Λ(x) = eω(x). Infinitesimally, this becomes

∂µǫν + ∂νǫµ = ω(x) gµν where we expanded xµ = x′µ + ǫµ(x) and eω(x) = 1 + ω(x). ω(x) satisfies
constraints one of which is vacuous in d = 2 making the group of conformals less restrictive, so
much so that its volume becomes infinite. This allows to solve some CFTs in d = 2 completely.

– The set of infinitesimal conformals includes translations, Lorentz transformations, dilations (rescal-
ings), and special conformals (inversion, translation, followed by another inversion).

4.1 Conformal group in d = 2

• In d = 2, after compactifying the plane C∪{∞} with a point at infinity to the sphere S2, a globally
defined conformal can be parametrized by z → az+b

cz+d
where invertibility requires ab− cd 6= 0. Since

rescaling to ab − cd = 1 and (a, b, c, d)
Z2→ (−a,−b,−c,−d) does not affect the transformation, the

conformal group on S
2 is the Möbius group is PSL(2,C) = SL(2,C)/Z2. It is generated by

l−1, l0, l1, where the generators ln = −zn+1∂z fulfill the classical Witt algebra. An important
property of PSL(2,C)-invariance is that it can be used to map any three distinct points to any
other three distinct points. In scattering amplitudes, this allows us to remove the residual gauge
redundancy by fixing positions of asymptotic in- and out-states, implemented via vertex operators.

• By a Wick rotation τ → −iτ , the metric becomes Euclidean ηab = δab and ξ± = −i(τ ± iσ). The

conformal map τ + iσ → e
2π
l
(τ+iσ) then projects the cylinder (worldsheet of a freely propagating

closed string) to the compactified plane C ∪ {∞} ∼= S
2. Similarly, the strip (worldsheet of a freely

propagating open string) is conformally mapped to the (upper) half plane H by τ + iσ → e
π
l
(τ+iσ).

Both maps translate time ordering on the cylinder/strip to radial ordering on the plane.
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4.2 Primary fields and operator product expansion

• Primary fields transform as tensors φ(z, z̄) → φ′(z′, z̄′) = (∂zf)
−h(∂z̄ f̄)

−h̄φ(z, z̄) under a conformal
z → z′ = f(z), where h, h̄ are the conformal weights of φ(z, z̄). h+ h̄ is the field’s mass dimension,
h− h̄ its conformal spin. For infinitesimal f(z) = z+ ǫ(z), this is δǫ,ǭ φ = (h∂zǫ+ ǫ∂z + h̄∂z̄ ǭ+ ǭ∂z̄)φ.

– Combined with operator product expansions, primaries can be used to express all higher n-point
functions i.t.o. lower correlators; this enables defining a CFT i.t.o. a finite amount of input data.

– Quasi-primary fields behave like primaries, but only for f ∈ PSL(2,C).

– The string field Xµ itself is not a primary (nor even a quasi-primary), but ∂Xµ and N(eik·X) are.

• A purely left-/right-moving field φ(ξ−)/φ(ξ+) on the cylinder corresponds to a chiral/antichiral
primary field φ(z)/φ(z̄) of weight h/h̄ on the plane with Laurent series φ(z) =

∑

n∈Z φnz
−n−h.

• In a CFT, the structure of the operator product expansion (OPE) given by

Oi(xi)Oj(xj) =
∑

k

Ck
ij(|xi − xj |)Ok(xk) (40)

is particularly powerful due to three properties that stem from conformal invariance: 1. The OPE
of two quasi-primaries involves only other quasi-primaries and their derivatives, the descendant
fields. 2. The functional dependence of the structure constants Ck

ij is completely fixed. 3. The OPE
is an exact expression with radius of convergence equal to the distance of the next field insertion.

• By Wick’s theorem, the radially ordered operator product R(
∏n

i=1 φi) can be expanded as

R
( n∏

i=1

φi

)

= N
{ n∏

i=1

φi +
n∑

j 6=k

〈φjφk〉
n∏

i 6=j,k

φi +

n∑

j 6=k,l 6=m

〈φjφk〉〈φlφm〉
n∏

i 6=j,k,l,m

φi + . . .
}

. (41)

4.3 Conformal Ward identities

• Ward identities are general statements that appear in any QFT: given a symmetry transformation,
be it a global field shift φ → φ + ǫδφ, a gauge transformation Aµ → Aµ + ∂µα(x) as in QED, or
a conformal as discussed here, the Ward identities tell us how the correlation functions transform.
Since a symmetry implies that correlations should remain unchanged, this usually results in con-
straints on the scattering amplitudes, as e.g. in QED, where the Ward identities require kµMµ = 0
for any scattering M = ξµMµ with an external photon of momentum kµ and polarization ξµ.

• By the conformal Ward identity, the behavior of a field φ(z) (chiral for brevity) under a conformal
z → z + ǫ(z) is encoded in the residua of its OPE with the energy-momentum tensor T (z),

δǫ φ(w) =

∫

Cw

dz

2πi
ǫ(z)R

[
T (z)φ(w)

]
. (42)

– For φ(w) primary of weight h, this gives R
[
T (z)φ(w)

]
= hφ(w)

(z−w)2
+ ∂wφ(w)

z−w
+terms regular at z = w.

– The energy-momentum tensor’s OPE with itself follows from the Virasoro algebra [Lm, Ln] as

T (z)T (w) =
c/2

(z − w)4
+

2T (w)

(z − w)2
+
∂wT (w)

z − w
. (43)

Thus, T (z) is a primary of h = 2 only if c = 0. Otherwise it is quasi-primary. (Here, we expanded
T (z) =

∑

n∈Z Lnz
−n−2 and used Ln =

∮
dz
2πi T (z)z

n+1.)
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4.4 Operator-state correspondence

• The operator-state correspondence is an isomorphism in two-dimensional CFTs that relates
the action of primary fields on the PSL(2,C)-invariant vacuum to asymptotic in- and out-states:

|φin〉 = φ(0) |0〉 = φ−h|0〉, 〈φout| = 〈0|φ(0) = 〈0|φh, (44)

where we took φ(z) to be a primary of weight h with expansion φ(z) =
∑

n∈Z φn z
−n−h. The modes

φn, n > −h act as annihilators since φn|0〉 = 0 ∀n > −h. Modes φn with n ≤ −h are creators.

• A primary state |φ〉 = φ(0)|0〉 = φ−h|0〉 is eigenstate of the level-zero Virasoro generator L0 with
eigenvalue h, i.e. L0|φ〉 = h|φ〉. Using [Lm, φn] = [m(h− 1)− n]φm+n, we can show that for m > 0
(m < 0) the other Lm act on these so-called highest-weight states as annihilators (creators):

L0|φ〉 = h|φ〉 ⇒
{

Lm|φ〉 = 0 ∀m > 0,

L0 L−m|φ〉 = (m+ h)|φ〉 ∀m ≥ 0.
(45)

The complete Hilbert space is obtained by acting with L−m, m > 0 on all highest weight states
|φj〉, where j labels all primary fields.

• Requiring BRST-invariance of the X-CFT gives as physical state condition Lm|φ〉 = 0 ∀m > 0
and (L0 − 1)|φ〉 = 0. This demonstrates that physical states are in one-to-one correspondence with
primaries of weight h = 1, leading to the concept of a vertex operator as a primary field of h = 1.

– For instance, N(eik·X)] is a primary of weight h = α′
4 k

2. h
!
= 1 implies M2 = − 4

α′ . Inserted at
z = 0, this creates the closed string ground state from the vacuum.

– N[∂Xµ(z)eik·X(z)] is a primary of weight h = 1 + α′
4 k

2. As a vertex operator with h
!
= 1, this

implies M2 = 0, i.e. this vertex operator produces first-excited level states from the vacuum.

• The Verma module Vhj
is the span of all states that are of the form

|φk1...kmj 〉 =
m∏

i

L−ki |φj〉 with weight hV = hj +
m∑

i

ki and ki > 0. (46)

The |φk1...kmj 〉 are created by the descendant fields φk1...kmj (z), i.e. derivatives of quasi-primaries.

For ascending ki, i.e. k1 ≥ k2 ≥ · · · ≥ km, the |φk1...kmj 〉 are linearly independent.

• CFT unitarity requires the conformal anomaly to fulfill c > 0 and the spectrum of primaries φj
to have all non-negative weights, hj ≥ 0 ∀ j. Finally, hφ = 0 must imply φ = 1, i.e. only the
PSL(2,C)-invariant vacuum may have conformal dimension h = 0.

• A two-dimensional CFT is completely specified by its conformal anomaly c, the spectrum of primary
fields φj , their weights hj , and their OPE coefficients Ck

ij . In particular, no action SCFT is needed.

5 String interactions

• A key property of string scattering is the absence of interaction vertices which fundamentally
distinguishes it from point-particle scattering in QFT. Locally, the string worldsheet always looks
like that of a freely propagating string! Only global properties of the worldsheet capture interactions,
which are hence encoded already in the free two-dimensional CFT without adding arbitrary further
terms to the action as in QFT.

• As an important result, correlators of different fields (bosons, fermions, ghosts) decouple! This is
completely different from e.g. Yang-Mills which suffers from complicated ghost-gauge interactions.
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• The path integral for the computation of scattering amplitudes usually accounts for the initial
and final states by admitting only those worldsheets into the sum over histories that asymptote
towards the specified in- and out-configurations. Thanks to the operator-state correspondence,
the worldsheet CFT allows for a simpler procedure: We consider trivial boundary conditions, i.e.
the vacuum, as asymptotic in- and out-states and specify the type of scattering process solely by
inclusion of vertex operators in the integrand, corresponding to states being created at different
places on the worldsheet

5.1 String perturbation and worldsheet topologies

• String perturbation aims to calculate the S-matrix of a scattering process. The loop expansion
corresponds to a sum over compact worldsheets of increasingly complex topology, but each with the
same number of vertex operators inserted on the surface (closed string) or boundary (open string).

• Which topologies to sum over is determined by the central theorem: Every compact, connected,
oriented two-dimensional manifold is topologically equivalent to a sphere with g handles (g for genus)
and b boundaries. In fact, b and g fully determine a worldsheet’s Euler characteristic χ = 2−2g−b,
a topological invariant unaffected by continuous deformations of the worldsheet metric. According
to the Riemann-Roch theorem, it is given by

χ =

∫

Σ

d2ξ

4π

√
−hR+

∫

∂Σ

ds

2π
k, (47)

with R the Ricci scalar of the worldsheet’s surface and k the geodesic curvature of its boundary.

– For instance, the tree-level and one-loop worldsheet topologies of the oriented string are

sector tree-level one-loop

open disk D
2 with (b, g) = (0, 1), χ = 1 cylinder C2 with (b, g) = (0, 2), χ = 0

closed sphere S
2 with (b, g) = (0, 0), χ = 2 torus T2 with (b, g) = (1, 0), χ = 0

• Incorporating all of the above statements results in a heuristic expression for n-string scattering,

Sji(ki) =
∑

compact
topologies

∫
DX

∫
Dh

Voldiff×Weyl
e−SP−λχ

n∏

i=1

Vji(ki), (48)

where χ (added to the action without affecting dynamics) modifies the usual weighting factor e−SP to
take into account the worldsheet topology. This is before gauge-fixing, hence the factor Vol−1

diff×Weyl.

5.2 Metric moduli of Riemann surfaces

• P † defines the adjoint of the conformal Killing operator P . It maps two-tensors tab to vectors via
(P †t) = ∇btab. If there exists a symmetric, traceless t0 such that P †t = 0, then for an arbitrary
transformation ǫa, we have 0 = 〈ǫ,P †t0〉 = (P ǫ|t0), meaning P ǫ is orthogonal to t0 for all ǫa, i.e.
no transformation can be found to obtain the two-tensor t0. Such tensors are calledmetric moduli.
They represent deformations of the metric that cannot be reached by any diffeomorphism or Weyl
rescaling. Similar to the ghost e.o.m. P c

ab cc = 0 which identifies normalizable ghost solutions ca as
conformal Killing vectors, the antighost e.o.m. shows that the normalizable zero-modes of the bab
are in one-to-one correspondence with the metric moduli.

• A Riemann surface is a one-dimensional complex manifold (can be thought of as a deformed
version of the complex plane). Its degrees of freedom are given by the number of metric moduli.

• The Riemann-Roch theorem goes on to state that the number µ = dim(kerP †) of moduli and
κ = dim(kerP ) of conformal Killing vectors of (orientable) Riemann surfaces fulfill

µ− κ = −3χ and

{

µ = 0 if χ > 0,

κ = 0 if χ < 0.
(49)

13



• Deriving the gauge-fixed S-matrix via the Faddeev-Popov procedure yields the prescription:

1. For each conformal Killing vector field ǫa on the worldsheet, we fix one vertex operator Vji(ki, ξi)

at ξ̂i and replace the integral over the insertion point
∫

Σ d2ξi by a ghost field cai (ξ̂i) also at ξ̂i.
Alternatively we can keep the integral but divide by the volume of the remaining gauge group.

2. For each modulus ta, we insert an antighost field via (b|∂aĥ) and integrate over the fundamental
domain

∫

F
dta (which ensures only topologically inequivalent worldsheets enter the path integral).

– For example, the sphere S
2 is the Riemann surface of maximal Euler number. Since χ > 0, it is

moduli-free µ = 0, i.e. no antighost insertions are necessary in S-matrix calculations on S
2 (this

holds for all tree-level scatterings in string theory). κ = 3χ = 6 shows that the sphere is endowed
with six conformal Killing vector fields. We count real degrees of freedom, so this is consistent with
the gauge group on S

2 being PSL(2,C) with three independent complex parameters (ab− cd
!
=

1), each of infinite range. With less than three integrated vertex operators, nothing cancels
this infinity in the S-matrix denominator. Hence, the oriented closed string 0-, 1-, and 2-point
functions vanish at tree-level, meaning no vacuum energy, tadpole, and mass renormalization.

5.3 Duality and UV finiteness

• In string theory, amplitudes are completely symmetric in all channels (s, t, u) and exhibit an infinite
number of (simple) poles (due to the appearance of Γ-functions such as Γ(−1− α′

4 s)) corresponding
to resonances for every mass in the string spectrum, a property called channel duality.

– As a result, a single worldsheet diagram captures what in QFT requires s-, t−, and u-channel
Feynman diagrams and a sum over resonances of the propagator i

p2−m2 . Compared to point-

particle QFT, this leads to a much faster (exponential) fall off of string amplitudes; a feature
partially responsible for UV finiteness of string loop diagrams. Heuristically, strings behave
differently in the hard-scattering limit because high-energy processes probe on scales of the order
of the string length where the string acts as a nonlocal object.

– Another reason for improved UV behavior is modular invariance, i.e. invariance of the world-
sheet topology under the action of the modular group (e.g. PSL(2,Z) on the torus) which acts
as an intrinsic regulator (UV cutoff) for the theory by excluding divergent areas of the moduli
space from the fundamental domain.

– Some UV divergences do arise in string perturbation but they are no issue for UV finiteness due
to worldsheet duality between the open and closed channel: all UV divergent diagrams turn
out to be IR divergences of dual diagrams. For instance, the cylinder is the worldsheet topology
for both tree-level closed string and one-loop open string scatterings.

5.4 Strings in curved target space

• The non-linear σ-model describes the bosonic string field Xµ propagating on a curved target
space with deviations from the flat metric ηµν generated by a coherent state of its own massless
graviton fluctuations. Including also the other massless excitations into the Polyakov action yields

Sσ =
1

4πα′

∫

Σ
d2ξ

√
h
{[

habgµν (X) + iǫabBµν (X)
]

∂aX
µ∂bX

ν + α′Rφ(X)
}

. (50)

This is the closed σ-model action with gµν the graviton, Bµν the antisymmetric Kalb-Ramond

field (coupled to an equally antisymmetric worldsheet tensor ǫab), and φ the dilaton. φ(X) appears
as a generalization of the hitherto unspecified λ in the topological term

λχ =
λ

4π

∫

Σ
d2ξ

√
−hR → 1

4π

∫

Σ
d2ξ

√
−hRφ(X). (51)

Importantly, the string coupling, which determines the probability of strings to split and reconnect,
is therefore really given by gs = eφ(X), i.e. the coupling is dynamical (not a constant) and determined
by the vacuum expectation value of the string field itself, more precisely that of the dilaton. This
holds generally in string theory (not just for Sσ).
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– Consistency of the σ-model requires the absence of a Weyl anomaly, i.e. the classical scale
invariance must carry over to the quantum theory. This is the case if

βgµν(E) = E
∂

∂E
gµν (X,E) = α′Rµν +O[(α′/Rc)

2]
!
= 0, (E the energy scale) (52)

i.e. if the spacetime metric’s β-function vanishes. Thus consistency to first order in α′
Rc

(with
Rc the radius of the compact target space) requires that gµν is governed by Einstein’s equations
Rµν = 0 for the vacuum (we set all other fields Bµν (X) = φ(X) = 0 to obtain this result).
Continuing the expansion systematically yields stringy higher-curvature corrections to Rµν = 0.

6 Superstring theory

• Bosonic string theory is only a toy model due to its lack of fermionic excitations and unstable
vacuum (signalled by the tachyonic ground state), both of which are in conflict with observations.

6.1 Classical RNS action

• To overcome these problems, superstring theory adds a fermionic part to the Polyakov action SP:

SF[ψ] = − i

4π

∫

Σ
d2ξ ψ̄µ

A γ
α
AB ∂α ψB,µ

lcg
=

i

2π

∫

Σ
d2ξ (ψ+ · ∂−ψ+ +ψ− · ∂+ψ−

). (53)

ψ± are Grassmann-valued Majorana-Weyl, i.e. real and chiral spinors, governed by the Dirac
eq. γα∂αψ = 0 = ∂∓ψ±. By definition, spinors furnish a representation of the Clifford algebra

{γα,γβ}AB = 2ηαβ1AB (A,B spinor indices, α, β ∈ {0, 1} =̂ {τ, σ} WS vector indices.) (54)

The ψ are chiral both in the sense that ψ± = ψ±(ξ
±) and that γψ± = ±ψ±, where γ = γ0γ1.

They have mass dimension [ψ] = 1
2 as opposed to bosons with [X] = −1.

• The full superstring action SRNS = SP + SF features supersymmetry which relates X and ψ via

δXµ = i
√

α′
2 ǭAψ

µ
A = i

√
α′
2 (ǫ+ψ

µ
− − ǫ−ψ

µ
+), δψµ

A =
ǫB√
2α′

γαAB∂αX
µ = ±

√
2
α′ ǫ∓∂±X

µ, (55)

with ǫ(ξ) = (ǫ+, ǫ−) an infinitesimal Grassmann-valued Majorana spinor subject to the chirality
condition γβγα∂βǫ(ξ) = 0 = ∂∓ǫ±. Outside superspace, i.e. for gauge-fixed action as in (53),
supersymmetry holds only on-shell. The associated conserved Noether charges QA are spinorial and
act as generators {QA, Q̄B} = 2γaABPa with the momentum operator Pa generating translations.

6.2 Super-conformal invariance

• Local diffeomorphism invariance combined with supersymmetry implies local supersymmetry. It
gives rise to supergravity in which also the metric hαβ has a superpartner, the gravitino. The
full action SRNS then enjoys local super-Weyl and diffeomorphism invariance. Moving to flat
gauge, only a residual super-conformal symmetry generated by the energy-momentum tensor
T±± = − 1

α′∂±X · ∂±X − i
2ψ± · ∂±ψ± and the supercurrent J± = −1

2α′ψ± · ∂±X remains in which
supersymmetry is only chiral ǫ± = ǫ±(ξ

±). T±± and J± obey the super-Virasoro constraints
T±±

!
= 0, J±

!
= 0. These must be imposed on solutions of the e.o.m.s even in flat gauge.

6.3 Ramond and Neveu-Schwarz sectors

• All results derived for the bosonic string in section 2 remain valid. The fermionic equation of motion
follows from variation of SF which, after partial integration, yields

δSF = − i

2π

∫ τf

τi

dτ
[
ψ+ δψ+ −ψ− · δψ−

]∣
∣σ=l

0
+
i

π

∫

Σ
d2ξ

[
∂−ψ+ · δψ+ − ∂+ψ− · δψ−

]
. (56)
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To avoid nonlocal physics, the boundary term has to vanish, i.e. ψ+ δψ+−ψ− · δψ−|0
!
= ψ+ δψ+−

ψ− · δψ−|l. For the closed sector, periodic boundaries ψµ
±(σ) = ±ψµ

±(σ+ l) take care of this. Since
ψ

µ
± are spinors on the worldsheet, there is a possibility of picking up a sign by walking around the

string, corresponding to antiperiodic boundaries. Parametrizing ψ±(σ + l) = e2πiφ±ψ±(σ), we call

– φ± = 0 the periodic Ramond sector. It has an integer mode expansion (like bosonic strings)

of the form ψ±(ξ
±) =

√
2π
l

∑

n∈Z b
±
n e

−i 2π
l
nξ± . Its degenerate vacuum |0〉R is a Majorana spinor

with 2
d
2 real components, furnishing a representation of the d-dimensional Clifford algebra.

– φ± = 1
2 the antiperiodic Neveu-Schwarz sector. It features a half-integer mode expansion

ψ±(ξ
±) =

√
2π
l

∑

n∈Z+ 1
2
b±n e

−i 2π
l
nξ± . The vacuum |0〉NS is unique and a spacetime scalar.

– We can independently choose either boundary type for each of the two spinor components ψ+

and ψ− of ψµ
A, yielding four sectors total: the pure R-R and NS-NS sectors describe bosonic

excitations, whereas mixed boundaries of the type R-NS and NS-R contain fermionic excitations.

For the open string, the boundary terms in (56) have to vanish separately. Derivation of the mode

expansions yields identical results up to a change of period from e−i 2π
l
nξ± → e−iπ

l
nξ± .

• Contributions (per dimension) to the normal ordering constant a for different strings are as follows

statistics bosonic fermionic

periodic + 1
24 − 1

24
antiperiodic − 1

48 + 1
48

6.4 GSO projection

• The GSO projection is a method to construct a consistent superstring theory by projecting out
all but a subset of possible vertex operators in the worldsheet CFT. For consistency of the CFT on
the worldsheet, the set A of operators retained must satisfy

– Closure: The OPE of any two operators φi, φj in A may contain only operators φk ∈ A.

– Locality: No OPE of any two operators in A may suffer from branch cuts (absence of mon-
odromies). This is necessary to ensure all OPEs are well-defined, i.e. single-valued everywhere.

– Modular invariance: The partition function on the two-torus of the theory containing only the
operators in A must be invariant under the action of the modular group PSL(2,Z).

Starting from the same worldsheet CFT, different GSO projections will lead to string theories with
different physical particles. To build models of realistic string vacua, a GSO projection should
eliminate the tachyonic ground state of the string and preserve spacetime supersymmetry.

• For the closed oriented superstring, GSO projection results in Type II A/B theory. They feature
equal numbers of bosons and fermions (128 each at the massless level) as required for supersymmetry,
as well as two spin 3/2 fields, the gravitinos which imply local supersymmetry. Thus, the low-
energy limit of Type II is a supergravity. Worldsheet consistency and vacuum stability imply d = 10.

• There is one crucial difference between the Type II and the Type 0 theories. In Type II, the
(NS−, NS−) sector which contains the tachyonic ground state is projected out. Type II is hence
tachyon-free. Type 0 theories still contain the (NS−, NS−) sector and its tachyon. This does not
render them inconsistent, but dynamically unstable; a universe described by Type 0 rapidly decays
at the beginning of the universe and plays no role in the sequel. Type 0 can therefore be discarded.

• In total, there are only five consistent superstring theories known in d = 10. They are listed in the
following table along with some of their properties.

The superstring was troubled by the existence of five separate theories until in 1995, it was discovered
at the beginning of the second superstring revolution that the theories are related by dualities and
might be different limits of a single underlying so-called M-theory. This remains a conjecture.
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string theory d SUSY generators chiral open strings gauge group tachyon

closed bosonic 26 N = 0 no no none yes
open bosonic 26 N = 0 no yes U(1) yes
type I 10 N = (1, 0) yes yes SO(32) no
type IIA 10 N = (1, 1) no no U(1) no
type IIB 10 N = (2, 0) yes no none no
heterotic HO 10 N = (1, 0) yes no SO(32) no
heterotic HE 10 N = (1, 0) yes no E8× E8 no
M-theory 11 N = 1 no no none no

7 Compactification, T-duality, D-branes

• The superstring in d = 10 gives rise to a fully consistent theory of quantum gravity and Yang-Mills
theory, unique up to dualities. It fulfills all prerequisites we pose on a unified theory of all four
forces. The only problem is that spacetime does not exhibit 10 large dimensions. To connect the
superstring to observations thus requires investigating how the extra 6 spatial dimensions might be
compactified, i.e. wound up so tightly as to escape experiment.

7.1 Kaluza-Klein compactification

• Compactification in superstring theory is the operation R
1,9 → R

1,3 × M6. The compactified
manifold M6 is called internal space. Its structure determines the value of the dilaton φ.

• To see this, consider a massless scalar field theory ∂µ∂
µφ(xµ) = 0 in R

1,d with dimension d rolled up
in a circle of radius R, i.e. xd = xd+2πR. The corresponding compactification is R1,d → R

1,d−1×S
1

with internal space S
1. For a diffeomorphism invariant theory, this has three consequences:

1. The most general ansatz for φ(xµ) that respects the spacetime periodicity is

φ(xµ) =
∑

n∈Z

φn(x
j) ei

n
R
xd

, (57)

with µ ∈ {0, 1, . . . , d}, j ∈ {0, 1, . . . , d− 1}. Insertion into the e.o.m. ∂µ∂
µφ(xµ) = 0 yields

∂j∂
jφn(x

j) =
n2

R2
φn(x

j) ∀n. (58)

Thus, we get an infinite collection of massive scalars φn(x
j) ∀n ∈ Z with m2 = n2

R2 from the
perspective of the d-dimensional theory. These constitute the Kaluza-Klein tower of states.
Only the zeroth Fourier-mode φ0(x

j) is massless and independent of xd.

As R→ 0, the mass of even the lowest state diverges, m2
1 → ∞, meaning the entire tower disap-

pears from the low-energy spectrum. At energies m2 ≪ 1
R

the theory looks just d-dimensional.
This is the realm of the low-energy effective field theory.

2. There appears an extra U(1) symmetry in the d dimensional theory.

3. From the d-dimensional perspective, the gdd-component of the full metric tensor behaves like
a massless scalar field that determines the volume of S1. Such flat scalar fields whose vacuum
expectation values determine geometric properties of the internal space are called moduli fields.

• In the presence of compactified dimensions, there exist truly stringy winding states stretching
around the compact dimension. This is a specialty of string theory and not possible with point-
particles. Such states are necessarily closed with independent left-/right-moving modes α±

n and

mass M2 = ω2R2

α′2 , where ω is the winding number. Winding costs energy due to the string tension.

– These winding states exhibit very special behavior in the limit R → 0. While the Kaluza-Klein
tower (a purely field theoretic effect) disappears from the low-energy spectrum, which would
make an originally d+1-dimensional field theory effectively d-dimensional upon compactification,
the winding states become light and excitable due to M2 ∝ R2. Thus a string theory remains
d+ 1-dimensional even after compactification to an internal space with R→ 0.
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• One-dimensional compactification onto S
1 can be generalised to multi-dimensional compactification,

e.g. onto a torus Td = S
1. . . × S

1. Of course, toroidal compactification is yet another special case.
The larger d, the more possibilities for general internal spaces M exist. Of special interest to the
superstring are six-dimensional Calabi-Yau manifolds, on which string propagation is successfully
described by special internal CFTs, so called Gepner models.

7.2 T-duality

• T-duality is the operation n↔ ω and R↔ R′ = α′
R
, which exchanges the momenta of the Kaluza-

Klein tower and the winding states. It is an exact symmetry that (for the closed bosonic string)
acts as parity on right-moving modes of the compactified dimension xd, i.e. pdL → pdL, p

d
R → −pdR

which extends to Xd
L → Xd

L, X
d
R → −Xd

R.

• Physically, since the spectrum and all interactions are left invariant, T-duality relates processes
at R <

√
α′ to those occurring at R >

√
α′. This establishes a minimal distance R =

√
α′, the

self-dual radius. There is no point to distances smaller than R in string theory because we can
always map all processes at smaller scales back to bigger distances.

• For Type IIA/B superstrings, T-duality similarly dons a sign to right-movers, X9
R → −X9

R, ψ
9
R →

−ψ9
R. It also flips their chirality and therefore transforms the various superstring sectors as

(R+,R±) → (R+,R∓), (NS+, R±) → (NS+,R∓). (59)

This exchanges Type IIA and Type IIB theory! More precisely, Type IIB on S
1 with radius R under

T-duality corresponds to Type IIA on S̃
1 with radius α′

R
.

7.3 D-branes as dynamical objects

• D-branes are dynamical objects that gravitate by coupling to closed strings in the NS-NS sector,
i.e. they have mass. Moreover, they are charged under R-R (i.e. periodic string) p-form potentials.

• That D-branes must by dynamical is clear already from their momentum exchange with DD-branes.
However, the linkage goes deeper. The worldvolume of a D-brane undergoes fluctuations. These
are generated by the quantum fluctuations of open string excitations normal to the brane, which
describe massless scalar fields propagating along the brane. These are the above-mentioned modulus
fields whose vacuum expectation values determine the position of branes.

• Describing D-branes via an open + closed string CFT is adequate for small string coupling gs that
allows for a perturbative expansion. For large gs, branes attain large masses and start backreacting
substantially on the geometry of ambient spacetime, thus forming so-called black brane solutions
in supergravity (higher-dimensional generalizations of d = 4 black hole solutions in Einstein gravity).

• Intersecting brane worlds are an important tool in string phenomenology to make contact be-
tween R

1,9 and R
1,3. The key idea behind them is that various D-branes can intersect along some

subspace that contains R1,3, endowing this space with interesting gauge theories and matter content.
In fact, the structure turns out to be naturally that of the standard model! A stack of three branes
DA, DB, DC intersecting along R

1,3 gives rise to a U(NA) × U(NB) Yang-Mills theory plus one
chiral fermion transforming in the bifundamental representation (N̄A, NB). For NA = 3, NB = 2,
NC = 1, this reproduces the gauge group SU(3)× SU(2)× U(1)Y of the standard model.

• While the string consistency conditions single out a unique theory (up to dualities) in 10 dimensions,
every 4-dimensional effective theory obtained from this by compactification corresponds to a choice
of vacuum, i.e. to a dynamical solution of the 10-dimensional theory. The set of all d = 4-solutions
is called the landscape of string vacua.
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