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We discuss a method to analytically continue functional renormalization group equa-
tions from imaginary Matsubara frequencies to the real frequency axis as developed
in [1]. In this formalism, we investigate the analytic structure of the flowing action
and the propagator for a theory of scalar fields with O(N) symmetry. We go on to
show how it is possible to derive and solve flow equations for real-time properties such
as particle decay widths. The treatment is fully Lorentz-invariant and enables an
improved, self-consistent derivative expansion in Minkowski space.
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1. Introduction
Field-theoretic infinities first arose in Lorentz’s work [2] on classical electrodynamics of point
particles in the early 20th century. Over the ensuing decades, divergencies proved so persistent and
prevalent all across quantum field theory (QFT) that physicists were forced to develop elaborate
machinery to extract sensical predictions out of a minefield of singularities. This line of research
resulted in the methods of renormalization and regularization. For years the community saw these
as objectionable means by which to work around an inability to develop a more well-behaved
description of reality. By mid-century, it had reached a point where many physicists thought QFT
had to be discarded outright since so many of its predictions aborted in infinities.
Over the course of the 1970s, this view underwent a dramatic shift. In 1971 Wilson published

a seminal paper [3] on what is now known as the Wilsonian interpretation of renormalization.
According to Wilson, infinities in field theory are merely the result of feeding a fundamentally
flawed assumption – the pretense of knowing the fundamental laws of physics down to arbitrarily
small distance scales – into the otherwise functioning machinery of QFT. Instead, Wilson argued,
we are ignorant of the correct microscopic degrees of freedom and the laws governing their dynamics.
Hence we should view our models of reality as no more than effective descriptions of nature that
remain approximately valid down to some cutoff scale at which new physics emerges.
The ensuing change of perspective was so far-reaching that nowadays QFT is heralded as the

most successful achievement of theoretical physics to date. Renormalization and regularization are
generally accepted as essential tools that allow us to predict nature on experimentally accessible
scales even though our models breakdown at smaller distances.
And yet despite its profound impact on our understanding of modern physics, the Wilsonian

renormalization group largely failed to manifest itself in actual applications. Over the first
20 years, it remained a mostly formal construct until the unceasing strive for a capable and
versatile approach to non-perturbative problems in QFT culminated in Wetterich’s 1993 functional
formulation of renormalization [4]. This has since proven a workable handle for applying Wilson’s
renormalization group to practical computations and specific models.

These days applications range from cold gases [5–11] and critical phenomena [12–22] to quantum
chromodynamics [23–27] and quantum gravity [28–41]. The functional renormalization group
(FRG) has proven especially successful in scenarios that are difficult to treat with other methods
such as massless degrees of freedom induced by spontaneous symmetry breaking (Higgs mechanism)
or the question of asymptotic safety in quantum gravity. It now stands among the most powerful
tools to solve non-perturbative problems in modern physics.
However, certain shortcomings remain. So far, the formalism has been explored mostly in

Euclidean space where it describes either static, classical statistical field theories or quantum fields
in the imaginary-time formalism. Besides avoiding the path-integral’s notorious real-time sign
problem, Euclidean space offers the important practical advantage that most propagators and
higher correlation functions exhibit but a single isolated singularity at vanishing momentum [1].
This state of affairs leaves something to be desired, however. Real-time physics takes place

in Minkowski, not Euclidean space. We therefore expect the FRG’s spectrum of applications to
benefit immensely from an extension to this new domain. After all, real-time correlation functions
hold the key to dynamical observables such as the spectral function which contains information
about resonances, the mass spectrum and transport coefficients of a theory [42].

Initial attempts at gathering real-time information from the FRG kept the formalism confined
to Euclidean space, used its machinery to compute imaginary-time observables at the macroscopic
scale k = 0 and resorted to numerical techniques such as Padé approximants or the maximum
entropy method to perform the analytic continuation to Minkowski space based on limited
numerical Euclidean data. Not only does this constitute an ill-defined problem, these approaches
also entail a bias about the continuation and require highly accurate Euclidean data. As a result,
this approach suffers from a systematic as well as a numerical constraint [42]. The reconstruction
problem can only be overcome by a real-time formulation of the theory.
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There is no fundamental obstruction that prevents us from extending the FRG to Minkowski
space [1]. However, in practice a number of problems arise. Because the Lorentz-invariant four-
momentum square p2 = −p2

0 + p2 is no longer positive semi-definite, the question arises which
modes actually correspond to the infrared and which to the ultraviolet. This renders the problem
of how to construct an appropriate regulator function non-trivial, particularly if Lorentz invariance
is to be preserved. Also, the Euclidean space flowing action Γk can be shown to approach the
microscopic action S for large cutoff scales which serves as a convenient initial condition for the
Wetterich equation. This is not necessarily the case in Minkowski space.

In this work, we give a detailed introduction to an approach developed in [1] with which to
overcome these difficulties and calculate dynamical properties from real-time functional renor-
malization. The formalism uses a linear response framework where the analytic continuation
from imaginary Matsubara frequencies to real frequencies is carried out on the level of the flow
equations rather than on the final result at k = 0, since the former are available in analytic form
while the latter can only be attained numerically. This procedure is then applied to the scalar
O(N) model.
We proceed as follows. Sec. 2 recounts the basics of Wetterich’s functional formulation of

renormalization. Sec. 3 focuses on its peculiarities in Minkowski space. The analytic continuation
of flow equations is carried out in sec. 4. Secs. 5 and 6 respectively present the Matsubara
summation and momentum integration performed in terms of conveniently defined threshold
functions. Finally, sec. 7 holds numerical results and sec. 8 states our conclusions.

2. Theoretical Foundations
In 1973, Wegner and Houghton [43] were the first to combine Wilson’s intuitive understanding
of renormalization with the functional methods of quantum field theory. Over the following two
decades, this initially rather formal marriage was developed further [44] and rendered viable for
practical applications in 1993 by Wetterich’s discovery of an exact evolution equation [45] for the
so-called flowing action Γk. It serves as the central object in FRG to determine the properties
of a theory, including its excitation spectrum, symmetries, dynamics and conserved quantities.
Wetterich’s surprisingly intuitive functional differential equation for Γk demonstrated that the scale
dependence of the flowing action is generated solely by one-loop fluctuations of the regularized
propagator.

Γk is constructed from the microscopic action S by adding to it an infrared regulator Rk with
associated renormalization scale k. This is where scale dependence enters the formalism. The
modification bestows upon Γk the remarkable property of continuously interpolating between the
microscopic action S = limk→Λ Γk at high energies (Λ is some ultraviolet cutoff that regularizes the
theory) and the quantum effective action Γ = limk→0 Γk at macroscopic scales – a process known
as transition to complexity. True to the spirit of Wilson’s original formulation of renormalization,
Rk implements during this procedure a smooth decoupling of high-momentum modes while also
acting as an infrared regulator in theories with massless particles – a major advantage when
dealing with spontaneous symmetry breaking in the O(N) model.
This section briefly introduces the most important aspects of Euclidean space functional

renormalization. Setting out from the Feynman path integral, sec. 2.1 derives Wetterich’s equation
for a system of scalar fields φa, a ∈ {1, . . . , N}. Secs. 2.2 and 2.3 list important properties of the
flowing action Γk and the regulator Rk. Sec. 2.4 presents different truncation schemes that make
practical applications of this formalism possible. Finally, in sec. 2.5 we construct an exact flow
equation for the effective potential Uk – the most important quantity when it comes to equilibrium
physics such as the ground state and the low-lying mass spectrum.
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2.1. Wetterich Equation
We discuss the derivation of Wetterich’s functional renormalization group equation following [12,
45]. The partition function for a theory of N scalar fields φa(x), a ∈ {1, . . . , N} in d Euclidean
dimensions with microscopic action S[φ] in the presence of the source Ja(x) reads

Z[J ] =
∫
Dφ e−S[φ]+J ·φ, (1)

We specify the action together with some ultraviolet reference scale Λ much larger than all other
physical scales [46]. (Λ will be the scale at which we initialize our flow equations.) The scalar
product sums over field components and integrates over all space

J · φ =
∫
x
Ja(x)φa(x) =

∫
p
J̃a(p) φ̃a(−p), (2)

where ∫
x

=
∫
Rd

ddx,
∫
p

=
∫
Rd

ddp
(2π)d , (3)

and φ̃a(−p) = φ̃∗a(p) for real scalar fields. To save on notation, we won’t continue to indicate
spacetime dependence nor Fourier transforms φ̃ explicitly and take φ and J index-free as vectors
in N -dimensional field space.

Expectation values and correlation functions are obtained from Z[J ] through functional differ-
entiation,

ϕ = 〈φ〉 = 1
Z

δZ

δJ
= 1
Z

∫
Dφφ e−S[φ]+J ·φ, (4)

〈
φn
〉

= 1
Z

δnZ

δnJ
= 1
Z

∫
Dφφn e−S[φ]+J ·φ, (5)

earning Z[J ] the name generating functional. A more efficient description is possible in terms of
only the connected correlation functions. These in turn are generated by the Schwinger functional

W [J ] = lnZ[J ]. (6)

For instance, the connected two point correlator - a.k.a. the propagator - is given by

G = δ2W [J ]
δ2J

= δ

δJ

( 1
Z

δZ

δJ

)
= 1
Z

δ2Z

δ2J
− 1
Z2

δZ

δJ

δZ

δJ

=
〈
φφ
〉
− ϕϕ ≡

〈
φφ
〉
c
.

(7)

Gab(x, y) is an N ×N matrix correlating the field φa at spacetime point x with φb at y.
We now modify the Schwinger functional by introducing a renormalization scale-dependent

cutoff term ∆Sk that vanishes in the infrared,

Wk[J ] = lnZk[J ] = ln
∫
Dφ e−S[φ]+J ·φ−∆Sk[φ], (8)

where the renormalization scale k has units of inverse length and can be intuitively understood to
specify at which scale we probe a theory. Small k correspond to large distances, large k to small
distances. ∆Sk[φ] is a quadratic functional of the field φ

∆Sk[φ] = 1
2 φ ·Rk · φ = 1

2

∫
x,y

φa(x)Rk,ab(x, y)φb(y). (9)
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with Rk acting as a momentum-dependent mass. We will see that Rk serves both as an infrared
and ultraviolet regulator in our description. For an O(N)-symmetric scalar theory, it is diagonal
both in momentum space and with respect to field indices,

Rk,ab(x, y) = δab δ(x− y)Rk(−∂2
x). (10)

Since the scale dependence of Wk[J ] stems solely from ∆Sk, it’s k-derivative (at fixed source J) is

∂kWk[J ]
∣∣
J

(8)= − 1
Zk

∫
Dφ

(
∂k∆Sk[φ]

)
e−S[φ]+J ·φ−∆Sk[φ]

= −1
2
〈
φ · ∂kRk · φ

〉 (7)= −1
2
(
〈φ · φ〉c + ϕ · ϕ

)
· ∂kRk.

(11)

For the connected part 〈φ · φ〉c we can insert the functional derivative (7),

〈φ · φ〉c ≡W (2)
k = δ2Wk

δ2J
= δϕ

δJ
(12)

to rewrite (11) as Polchinski’s equation [44],

∂kWk[J ]
∣∣
J

= −1
2 Tr

[
W

(2)
k ∂kRk

]
− 1

2 ϕ · (∂kRk) · ϕ, (13)

where Tr integrates over position (or momentum1) space and sums over the field indices a, b,

Tr
[
(∂kRk)W

(2)
k

]
=
∫
x,y

W
(2)
k,ab(x, y) ∂kRk,ab(x, y). (14)

We can construct the flowing action Γk[ϕ] from the modified Schwinger functional by subtracting
from its Legendre transform

Γ̃k[ϕ] = sup
J

(
J · ϕ−Wk[J ]

)
where ϕ = δWk

δJ
, (15)

the same cutoff term we added to Wk,

Γk[ϕ] = Γ̃k[ϕ]−∆Sk[ϕ]. (16)

Γk[ϕ] is also known as the average action [46] because it provides an effective description of
physics at distance scales & k−1 for fields ϕa = 〈φa〉 averaged over a volume k−d. Moreover, it
enables a formulation of quantum theory even more economic than the Schwinger functional.
In perturbation theory, it acts as the generating functional for only the one-particle irreducible
correlation functions, while still encoding all properties of the underlying quantum fields.

Upon functional differentiation with respect to the average field ϕa, the Legendre transform Γ̃k
yields the (scale-dependent) field equation

δ

δϕ
Γ̃k = Jk. (17)

Comparing with (12), we identify

Γ̃(2)
k = δ2Γ̃k

δ2ϕ
= δJk

δϕ
(18)

as the inverse propagator,(
Γ̃(2)
k ·W

(2)
k

)
ab

(x, y) =
∫
z

δJc(z)
δϕa(x)

δϕb(y)
δJc(z)

= δϕb(y)
δϕa(x) = δab δ(x− y). (19)

1In momentum space Tr =
∑

a

∫
ddp/(2π)d, as appropriate for the unit matrix 1 = (2π)dδab δ(p− q).
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Thus
W

(2)
k =

(
Γ̃(2)
k

)−1 =
(
Γ(2)
k +Rk

)−1
. (20)

The k-derivative of Γ̃k (at fixed average field) reads

∂kΓ̃k
∣∣
ϕ

(15)=
(
ϕ− δWk

δJ

)
∂kJ − ∂kWk

∣∣
J

= −∂kWk

∣∣
J
. (21)

At fixed ϕ, J becomes scale-dependent, accounting for the second term in (21). The third is due
to the scale dependence of Rk in Wk while J is held fixed. Inserting (21) into the k-derivative of
(16) gives

∂kΓk[ϕ] = −∂kWk

∣∣
J
− 1

2 ϕ · (∂kRk) · ϕ. (22)

Using (13) and (20), we arrive at Wetterich’s equation

∂kΓk[ϕ] (13)= 1
2 Tr

[
W

(2)
k ∂kRk

] (20)= 1
2 Tr

[(
Γ(2)
k +Rk

)−1
∂kRk

]
. (23)

(23) is a non-linear functional integro-differential equation of one-loop structure that determines the
scale-dependence of the flowing action Γk in terms of fluctuations of the fully-dressed regularized
propagator [Γ(2)

k +Rk]−1. (23) admits a simple diagrammatic representation as a one-loop equation,

∂kΓk = 1
2

N∑
i,j=1

∫
p1,p2

p1

p2

p1

p2

∂kRk,ij(p1, p2)
[
Γ(2)
k +Rk

]−1
ji

(p2, p1) , (24)

(Since ∂kRk,ab(p, q) = ∂kRk(p) (2π)d δab δ(p− q), the trace in (23) effectively sums over just one
index i and integrates over one loop momentum p, as stated in footnote 1.) This one-loop structure
is important when it comes to practical calculations: only one integral has to be computed. In a
rotationally invariant setting, it is even one-dimensional. Compared to perturbation theory where
we have to sum a potentially non-convergent series of diagrams in which each n-loop diagram
requires us to compute n integrals, this amounts to a considerable reduction in complexity [47].
It is worth taking a moment to appreciate the significance of (23). Had we simply applied

perturbation theory to the microscopic action S, we would have obtained a structurally very
similar equation. Indeed, up to one loop, the perturbative expansion of Γk reads

Γk[ϕ]
∣∣
1-loop = S[ϕ] + 1

2 Tr ln
(
S(2)[ϕ] +Rk

)
, (25)

which upon differentiation with respect to k yields

∂kΓk[ϕ]
∣∣
1-loop = 1

2 Tr
[(
S(2)[ϕ] +Rk

)−1
∂kRk

]
. (26)

Despite looking almost identical to (23), replacing S(2)[ϕ] with the fully dressed 2-point function
Γ(2)
k turns the perturbative one-loop expression (26) into an exact identity that incorporates effects

of arbitrarily high loop order as well as genuinely non-perturbative effects [12]! Further noteworthy
features of (23) include [12, 13].
1. Exact flow equations for arbitrarily high n–point functions follow from (23) by functional

differentiation. For instance, the 2-point function is given by

∂kΓ
(2)
k = ∂k

δ2Γk
δ2φ

= −1
2 Tr

[
∂kRk

δ

δφ

([
Γ(2)
k +Rk

]−1 Γ(3)
k

[
Γ(2)
k +Rk

]−1)]
= 1

2 Tr
[
∂kRk

[
Γ(2)
k +Rk

]−1 Γ(3)
k

[
Γ(2)
k +Rk

]−1 Γ(3)
k

[
Γ(2)
k +Rk

]−1

+
[
Γ(2)
k +Rk

]−1 Γ(3)
k ∂kRk

[
Γ(2)
k +Rk

]−1 Γ(3)
k

[
Γ(2)
k +Rk

]−1

− ∂kRk
[
Γ(2)
k +Rk

]−1 Γ(4)
k

[
Γ(2)
k +Rk

]−1
]
.

(27)
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Represented diagrammatically (27) reads

∂kΓ
(2)
k = 1

2 Tr
(

∂kRk Γ(3)
kΓ(3)

k +
∂kRk

Γ(3)
kΓ(3)

k
−

∂kRk

Γ(4)
k

)
. (28)

This alludes to a general property of flow equations for n-point functions: they form a hierarchy;
the flow of Γ(n)

k depends on Γ(n+1)
k and Γ(n+2)

k .

2. To obtain a scaling form of the evolution equation, we may replace ∂k on both sides of (23) by
a partial derivative with respect to the logarithmic scale t = ln(k/Λ) (also referred to as RG
time),

∂t = ∂

∂ ln(k/Λ) = k

Λ
∂

∂(k/Λ) = k ∂k. (29)

3. The presence of the cutoff function Rk renders the momentum integration in Tr both infrared
and ultraviolet finite. In particular, for p2 � k2 Rk serves as an additional mass–like term
Rk ∼ k2 that prevents the propagator

[
Γ(2)
k +Rk

]−1 from becoming singular at p = 0. This
makes the formalism suitable for dealing with theories plagued by infrared divergencies when
treated perturbatively. These include scalar theories in d < 4 or at non-zero temperature near a
second order phase transition as well as non-abelian gauge theories [46]. For instance, (23) can
be applied to systems with spontaneously broken O(N) symmetry despite the appearance of
massless Goldstone bosons if N > 1. Their standard loop expansion is highly infrared divergent,
making these massless excitations notoriously difficult to treat with other methods [48].

4. Since ∂kRk(p) appears in the numerator of (23), its fast decay for p2 � k2 results in UV
finiteness of the momentum integration that is part of the trace Tr. Together with the IR
regulating properties of Rk(p) in the denominator, this means that only momenta p2 . k2 of
the order of or smaller than the renormalization scale contribute substantially to the flow at
scale k. The divergent loop diagrams of perturbation theory are thus avoided.
An important consequence is the decoupling of massive modes M at low energies. Once
k2 �M2, fluctuations of massive modes are strongly suppressed by ∂kRk(p) ≈ 0. They were
integrated out during earlier stages of the flow where M ≈ k < Λ, resulting in renormalized
couplings for the low-energy theory. If k is lowered further, there will be essentially no change
in Γk due to fluctuations of these modes [1]. In this way, the flow equations automatically lead
to the emergence of effective theories for the low-energy degrees of freedom [12, 13]!
Unfortunately, this also means that given a low-energy theory, we cannot know whether the
underlying fundamental theory (at scales larger than M) involves massive excitations or not.
Below the scale M there would remain no signal of such a mode.

5. The crucial requirement for practical application of (23) to non-perturbative systems is the
availability of sufficiently simple and yet physically relevant truncation schemes. Determining
which terms in an expansion of Γk can safely be discarded and which operators must be kept
in order to capture important behavior requires sophisticated physical insight into a model.2

In this context the close resemblance of (23) to a perturbative expression turns out to be of
great use. We can benefit from the fact that for many situations of interest the propagator
(Γ(2)
k )−1 is approximately known, allowing us to devise a simple form for Γ(2)

k that depends on
only a handful of scale-dependent parameters (typically masses, couplings, decay widths and
wave function renormalizations) while still describing the relevant physics. (The success of the
entire method ultimately depends on a clever guess for the exact propagator, which in turn

2Of course, if we make use of prior knowledge obtained with other methods during this process our formalism
looses its claim to being a first-principles-only approach – at least in practical applications.
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can depend on the proper choice of degrees of freedom [46].) We can then project the flow (23)
of Γk onto these parameters and obtain a closed and finite set of ordinary coupled non-linear
differential equations that is much easier to solve than the flow of Γk itself.

6. (23) is equivalent to Wilson’s exact RG equation [3] which describes how the Wilsonian effective
action SWΛ changes with an ultraviolet cutoff Λ. As we saw in its derivation, Polchinski’s
continuum version of Wilson’s equation is even related to (23) by a simple Legendre transform,
a suitable field redefinition and the association Λ = k. Although the formal relation is simple,
the practical calculation of SWk from Γk (and vice versa) can be quite involved.

2.2. Average Action
The average action Γk has a number of properties worth mentioning [12, 13].

1. In perturbation theory, Γ = limk→0 Γk acts as the generating functional of one-particle irre-
ducible correlation functions. Once Γ is known, a theory is basically “solved”. Since it is the
result of integrating out fluctuations on all momentum scales 0 < k < Λ, it contains effective
couplings; physical masses, charges and wave function renormalizations can simply be read off.
It also means the effective action is exact at tree level! Instead of having to manage an infinite
(often times divergent) series of Feynman diagrams to calculate some physical observable (such
as a scattering cross section) it suffices to evaluate tree-level Feynman diagrams [1].

2. If the microscopic action S is invariant under some group G and we construct Γk using an IR
cutoff that respects this symmetry, Γk inherits G-invariance from S for all k (assuming the
absence of quantum anomalies). In particular, it relays this symmetry to the effective action Γ
at k = 0. For example, this is true for translation and rotation invariance if Rk depends only
on the distance (x− y) in position space or p2 in momentum space.

3. The most general form of Γk is given by an infinite series of all field combinations compatible
with the given symmetries. Since each term comes with its own scale-dependent coupling
(see sec. 2.4), Γk in theory contains infinitely many running couplings, making a well-chosen
truncation procedure essential.

4. Physical quantities should be independent of the choice of cutoff Rk. Scheme independence
of final results is a good check for approximations. However, ΓΛ’s position in and Γk’s flow
through theory space are scheme-dependent.

5. Despite their similarities, there is a conceptual difference to the Wilsonian effective action [3].
SΛ
W describes a set of different actions (parameterized by Λ) for a single model. In contrast,

Γk acts as effective action for a set of models; for any scale k, Γk is related to the generating
functional of 1PI n-point functions for a model with a different action Sk = S + ∆Sk. The
Wilsonian effective action does not generate the 1PI Green functions.

This completes the picture we have of the flowing action: in its transition to complexity, Γk
continuously interpolates from the microscopic action at small scales to the effective action at the
macroscopic level. It moves through an infinite-dimensional theory space, its path determined by
the initial condition S and the choice of regulator Rk. Theory space is spanned by the set of all
symmetry-compatible operators, e.g. φ2, φ4, (∂φ)2, etc. in the case of O(N)-invariant scalar fields
φa. (In fig. 1 the operators are represented by their couplings {λi}i∈N.) Of course, for a practical
treatment to remain manageable requires the truncation of Γk to but a handful of operators.

2.3. Regulator
Despite being just a mathematical tool without physical meaning, Rk is a central object in this
formulation of quantum field theory. To bestow upon Γk the property of interpolating between S
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λ1

λ2 λ3
λ4

R1
R2

R3

Γk=0 = Γ

Γk=Λ1 = S1

Γk=Λ2 = S2

Γk=Λ3 = S3

Figure 1: Flow of Γk through infinite-dimensional theory space for different regulators Ri. The
bare actions Si obey the same symmetries and thus flow to the same quantum effective action Γ.

at k = Λ and Γ at k = 0, it must satisfy

Rk(p)→


k2 for p→ 0,
0 for p→∞,
0 for k → 0,
∞ for k → Λ,

(30)

where p denotes the internal loop momentum on the r.h.s. of the flow equation.

• Rk(p) → k2 > 0 for p → 0 prevents the propagator
[
Γ(2)
k +Rk

]−1 from becoming singular at
p = 0 and thus regularizes the theory in the infrared.

• Rk(p)→ 0 for p→∞ ensures a fast decay of ∂kRk at high loop-momenta, thus rendering the
one-loop flow equation ultraviolet finite.

• Rk(p) k→0−−−→ 0 ensures that the flowing action Γk approaches the effective action Γ at macroscopic
scales,

lim
k→0

Γk[ϕ] (16)= lim
k→0

(
Γ̃k[ϕ]− 1

2 ϕ ·Rk · ϕ
) (15)= sup

J

(
J · ϕ−W [J ]

)
= Γ[ϕ]. (31)

• Rk(p)
k→Λ−−−→ ∞ ensures that Γk flows towards the microscopic action S for k → Λ. (This is

where the necessity to work with a modified Legendre transform becomes apparent.) We resort
again to the functional integral formalism,

e−Γk[ϕ] = exp
(
− sup

J

(
J · ϕ−Wk[J ]

)
+ 1

2 ϕ ·Rk · ϕ
)

(8)=
∫
Dφ exp

(
−S[φ] + J · φ− 1

2 φ ·Rk · φ− J · ϕ+ 1
2 ϕ ·Rk · ϕ

)
=
∫
Dφ exp

(
−S[ϕ+ φ]− 1

2 φ ·Rk · φ+ δΓk
δϕ
· φ
)
,

(32)

where in the last step we shifted the field φ → ϕ + φ, used that Rk,ab ∝ δab is symmetric so
that ϕ ·Rk · φ = φ ·Rk · ϕ, and inserted

δΓk
δϕ
· φ (16)= J · φ− ϕ ·Rk · φ. (33)
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In the microscopic limit limk→ΛRk diverges and the factor e−
1
2φ·Rk·φ approaches the limit

representation of the functional delta distribution3 [12],

δ[φ] ∼ lim
k→Λ

e−
1
2 φ·Rk·φ, (34)

allowing us to evaluate the path integral in (32),

lim
k→Λ

e−Γk[ϕ] =
∫
Dφ δ[φ] e−S[ϕ+φ]+ δΓk

δϕ
·φ = e−S[ϕ]. (35)

Thus
lim
k→Λ

Γk[ϕ] = S[ϕ]. (36)

(36) is a useful result since it serves as an initial condition for the flow equation (23). However,
the property ΓΛ = S is not essential since we may as well use ΓΛ to parametrize the short
distance behavior [12]. When taking Γk from Λ to larger distances, universality ensures that
(up to a few relevant renormalized couplings) the precise form of ΓΛ is irrelevant in any case.
Using ΓΛ instead of S can even become necessary in cases where no physical cutoff is present or
where a UV cutoff would be in conflict with symmetries as in the case of gauge theories.

2.4. Truncations
Solving a functional differential equation like the Wetterich equation (23) exactly is all but
impossible. Fortunately, we can descend from the functional formulation into an infinite system
of coupled ordinary differential equations by projecting (23) to the infinite number of couplings
{λi|i ∈ N} appearing in the most general form of Γk [12, 13, 46]. Of course, an exact solution
of this infinite system is still impossible [46]. To make an explicit treatment feasible, we have to
heavily restrict the space of action functionals to a finite number of dimensions, meaning we can
allow only a handful of relevant couplings in Γk.

This is where (sometimes hard to control) approximations have to be made. Assuming Γk[ϕ] is
invariant under global O(N) transformations, we have several expansion schemes at our disposal.

Derivative expansion The most common way to arrive at a sufficiently simple form of Γk[ϕ] is
to write it as a sum of a few low-order O(N) invariants with order determined by the number
of field derivatives ∂µϕa. The simplest O(N)-invariant ρ = 1

2φaφa contains no derivatives and
appears at order zero in this classification. By allowing Uk(ρ) to be an arbitrary polynomial of ρ,
the effective potential covers this order completely.
Of course, Γk[ϕ] is also constrained by spacetime symmetries. In particular, in a relativistic
setting it has to be Lorentz invariant. But ∂µ is a Lorentz vector and so for Γk to include
Lorentz invariant dynamics, ∂µ needs to be contracted. Unlike gauge fields Aµ, scalar fields
don’t carry spacetime indices. Neither do they furnish spinor representations of Clifford algebras
with spacetime-indexed generators γµ, like fermions do. Therefore, the only way to include a
derivative in Γk[ϕ] in a Lorentz-invariant fashion is by contracting it with another ∂µ. Thus,
first-order O(N)-invariant of scalar fields must already contain two spacetime derivatives. There
are two O(N)-invariants we can construct in this way,4

∂µϕa ∂
µϕa and ∂µρ ∂

µρ. (37)

By the product rule, acting with derivatives on powers of the fields higher than ϕa and ρ just
gives sums of these two building blocks. We will, however, include wave function renormalizations
Zk(ρ) and Yk(ρ) as prefactors to (37) and these may contain arbitrary order-zero invariants.
3The usual normalization includes a prefactor δ[φ] = limk→Λ

√
Rk/(2π) e− 1

2φ·Rk·φ which we swept under the rug
since it results only in a (divergent) additive constant − 1

2 ln[RΛ/(2π)] to S that doesn’t affect the dynamics.
4By partial integration under the action with vanishing boundary terms, (37) is equivalent to ϕa ∂2ϕa and ρ ∂2ρ.
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Since we mean to truncate our expansion early, we’ll stop here. Putting everything together, we
get a flowing action of the form [12]

Γk[ϕ] =
∫
x

[
Uk(ρ) + 1

2 Zk ∂µϕa ∂
µϕa + 1

4 Yk ∂µρ ∂
µρ+O(∂4)

]
. (38)

with ZΛ = YΛ = 1. (38) is known as the derivative expansion. We can slightly enhance (38) by
generalizing Zk and Yk to functions of momentum [1, 13],

Γk[ϕ] =
∫
x

[
Uk(ρ) + 1

2 ∂µϕa Zk(−∂
2) ∂µϕa + 1

4 ∂µρ Yk(−∂
2) ∂µρ+O(∂4)

]
, (39)

(39) has the advantage that it allows to resolve the propagator’s full momentum dependence.
The effective potential Uk(ρ) can further be expanded into a Taylor series around the location of
its minimum,

Uk(ρ) = λ

2
[
ρ− ρ0(k)

]2 + µ

6
[
ρ− ρ0(k)

]3 + . . . (40)

λ(k) = ∂2
ρ Uk(ρ0) and µ(k) = ∂3

ρ Uk(ρ0) are scale-dependent couplings that each span a dimension
of theory space. The lowest order in the derivative expansion, known as the local potential
approximation, is obtained by setting Zk = 1, Yk = 0 so that Γk only includes the effective
potential and a standard kinetic term,

Γk[ϕ] =
∫
x

[
Uk(ρ) + 1

2 ∂µϕa ∂
µϕa

]
. (41)

So far the derivative expansion has proven most successful in practical applications of the flow
equation (23). The reason it works so well at capturing relevant physics while still reducing Γk to
but a handful of scale-dependent parameters is quite intuitive. Transformed into Fourier space,
(39) becomes an expansion in powers of loop-momenta p around the scale k which converges
rapidly thanks to the separation of momentum scales in the flow equation provided by the fast
decay of ∂kRk for large p2 � k2 (see item 4 on page 7). Only momenta p2 ≤ k2 contribute
substantially to the flow and these are captured well by low powers of p.
This is why in practice we usually neglect terms higher than quadratic in the momenta. In
particular, we tend to work with momentum-independent Zk, Yk as in (38) since the main effect
of this extra momentum-dependence is to provide an infrared cutoff scale of order p2 which is
already provided by Rk(p).

Vertex expansion We can also expand Γk in terms of n-point functions around some constant
field ϕc [12, 13]. This approach known as vertex expansion yields

Γk[ϕ] =
∞∑
n=0

1
n!

( n∏
j=0

∫
xj

[
ϕ(xj)− ϕc

])
Γ(n)
k (x1, . . . , xn). (42)

As mentioned in item 1 on page 6, flow equations for Γ(n)
k follow from functional differentiation

of (23). (42) makes particularly clear why.

Canonical dimension expansion A third option very similar to the derivative expansion is to
expand in terms of O(N)-invariants around some constant background field ρc and classify terms
not by the number of derivatives but based on their canonical dimension,

Γk[ϕ] =
∫
x

{
Uk(ρc) + U ′k(ρc)(ρ− ρc) + 1

2U
′′
k (ρc)(ρ− ρc)2 + . . .

− 1
2
(
Zk(ρc) + Z ′k(ρc)(ρ− ρc) + 1

2Z
′′
k (ρc)(ρ− ρc)2 + . . .

)
∂µϕa ∂

µϕa

+ 1
2
(
Żk(ρc) + Ż ′k(ρc)(ρ− ρc) + . . .

)
ϕa(∂µ∂µ)2ϕa

− 1
4Yk(ρc)ρ∂µ ∂

µρ

}
.

(43)
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Here, primes denote derivatives with respect to ρ and dots with respect to the scale t = ln(k/Λ).
The constant field ρc is usually chosen as the minimum of effective potential ρ0(k). If ρ0(k) > 0
the ground state is not O(N)-invariant as can be seen from fig. 2, signaling a theory with
spontaneous symmetry breaking. Since U ′k(ρ0) = 0 ρ0(k) then replaces the coupling U ′k(ρ0)
[12]. In the absence of external sources the value of ρ0(k → 0) determines the order parameter
ϕ0 =

√
2ρ0.

ϕ1

ϕ2

Uk(ρ)

Figure 2: Shape of the effective potential Uk(ρ) in the presence of spontaneous symmetry breaking.
Even if a system starts out in the naive O(N)-invariant vacuum (blue dot), quantum fluctuations
will quickly push it into the real vacuum (red dot) where O(N) is broken down to O(N − 1).

In all three of the above expansion schemes, the basic strategy is to solve the Wetterich equation
in a restricted functional space, not as a series expansion in some small parameter. This is why
the formalism can be applied to non-perturbative systems [47].

2.5. Potential Flow
We consider a set of O(N)-invariant scalar fields φa(x) with average action (39). When it comes
to the ground state, its preserved or spontaneously broken symmetries and the mass spectrum of
excitations, the most important quantity is the effective potential Uk(ρ) [12]. Its scale dependence
is two-fold:

• one contribution stems from the scale dependence of the fields ρ = 1
2ϕaϕa, which we renormalize

according to
ϕr =

√
Zk ϕ, ρr = Zk ρ, (44)

• the other from the scale dependence of Uk(ρ) itself (via the couplings λk,i).

The total scale derivative of Uk therefore receives contributions from two terms,

dUk
dt = ∂Uk

∂ρ

∂ρ

∂t

∣∣∣∣
ρr

+ ∂tUk
∣∣
ρ

= η ρU ′k + ∂tUk
∣∣
ρ
, (45)

where
∣∣
ρr

indicates that ρr is held fixed such that ∂ρ/∂t
∣∣
ρr

= −Z−2
k ρr ∂tZk = η ρ. η = −Z−1

k ∂tZk

denotes the anomalous dimension of the propagator
(
Γ(2)
k

)−1 and ∂tUk
∣∣
ρ
contains the effective

potential’s inherent scale dependence (via the couplings λi) at fixed ρ. Wetterich’s equation (23)
allows us to derive a flow equation for this contribution.
To that end, we relate Uk(ρ) to Γk[ϕ] by evaluating the latter for a constant background field

ϕ(x) = ϕc ∀x. (ϕc may be any constant field. It is not necessarily related to the minimum of
the effective potential ϕ0 =

√
2ρ0. However, in actual calculations, we will often choose ϕc = ϕ0.)

The derivative terms in Γk all drop out, leaving us with

Γk
∣∣
ϕc

=
∫
x
Uk(ρc) = Vd Uk(ρc). (46)
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with ρc = 1
2 ϕ

2
c . Acting on (46) with a scale derivative yields

∂tUk
∣∣
ρc

= V −1
d ∂tΓk

∣∣
ϕc

(23)= 1
2Vd

Tr
[

∂tRk

Γ(2)
k

∣∣
ϕc

+Rk

]
. (47)

To obtain Γ(2)
k

∣∣
ϕc

in momentum space, we first expand Γk in small fluctuations χa(x) around ϕc.
Using O(N) symmetry, we can rotate the fields to have ϕc point in, say, ϕ1-direction,

ϕa(x) = ϕc δa1 + χa(x) with χa(x)� ϕc ∀ a, x. (48)

Then ρ = 1
2ϕ

2
c + ϕc χ1 + 1

2χaχa. Insertion into (39) yields

Γk =
∫
x

[
Uk(ρ)

∣∣∣
ϕc

+ ∂Uk(ρ)
∂χa

∣∣∣∣
ϕc

χa + 1
2
∂2Uk(ρ)
∂χa∂χb

∣∣∣∣
ϕc

χaχb + . . .

+ 1
2∂µχa

[
Zk(ρc,−∂2) + (ρ− ρc)Z ′k(ρc,−∂2) + . . .

]
∂µχa (49)

+ 1
4∂µ(ϕcχ1 + 1

2χaχa)
[
Yk(ρc,−∂2) + (ρ− ρc)Y ′k(ρc,−∂2) + . . .

]
∂µ(ϕcχ1 + 1

2χaχa)
]
.

We are only interested in the part Γk,2 that is quadratic in the small fluctuations χa. Terms less
than quadratic drop out when we perform the functional derivative Γ(2)

k = δ2Γk/δ2χ and terms
higher than quadratic vanish when we evaluate Γ(2)

k

∣∣
ϕc

for constant background χa(x) = 0 ∀ a, x.

Γk,2 =
∫
x

[1
2 m

2
ab χaχb + 1

2 ∂µχa Zk(ρc,−∂
2) ∂µχa + 1

4 ϕ
2
c ∂µχ1 Yk(ρc,−∂2) ∂µχ1

]
, (50)

where we defined the mass matrix

m2
ab = ∂2Uk(ρ)

∂χa∂χb

∣∣∣∣
ϕc

= ∂

∂χa

(
∂Uk
∂ρ

∂ρ

∂χb

)∣∣∣∣
ϕc

= ∂

∂χa

[
U ′k(ρ)(ϕcδb1 + χb)

]∣∣∣
ϕc

= U ′′k (ρ)(ϕcδa1 + χa)(ϕcδb1 + χb) + U ′k(ρ)δab
∣∣∣
ϕc

= 2ρc U ′′k (ρc) δa1δb1 + U ′k(ρc) δab.

(51)

Expanding χ(x) into Fourier modes and using the integral representation of the Dirac delta

χ(x) =
∫
p
χ̃(p) eipx,

∫
x
ei(p−q)x = (2π)d δ(p− q), (52)

we can transform (50) into momentum space (we won’t distinguish between χ(x) and its Fourier
transform χ̃(p) in the sequel),

Γk,2 = 1
2

∫
p
χa(p)

[
m2
ab + p2

[
Zk(ρc, p2) δab + ρc Yk(ρc, p2)δa1δb1

]]
χb(−p). (53)

The 2-point function for constant fields thus reads

Γ(2)
k,ab(p, q)

∣∣∣
ϕc

= δ2Γk,2
δχa(p) δχb(−q)

= 1
(2π)d

[
m2
ad + p2

[
Zk(ρc, p2) δad + ρc Yk(ρc, p2)δa1δd1

]]δχd(−p)
δχb(−q)

= 1
(2π)d

[
m2
ab + p2

[
Zk(ρc, p2) δab + ρc Yk(ρc, p2)δa1δb1

]]
δ(p− q). (54)

Note that the Dirac delta distribution is its own functional inverse,∫
ddk δ(p− k) δ(k − q) = δ(p− q). (55)
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The operator inverse
[
Γ(2)
k +Rk

]−1 is therefore simply given by the algebraic inverse,[
Γ(2)
k (p, q)

∣∣
ϕc

+Rk
]−1
ab

(p, q)

=
[
m2
ab + p2

[
Zk(ρc, p2) δab + ρc Yk(ρc, p2)δa1δb1

]
+Rk(p) δab

]−1
(2π)d δ(p− q)

(56)

Executing the trace over field indices, we get[
Γ(2)
k

∣∣
ϕc

+Rk
]−1

aa
(p, q) =

[ 1
M1

+ N − 1
M0

]
(2π)d δ(p− q), (57)

with
M0 = Zk(ρc, p2) p2 + U ′k(ρc) +Rk(p),
M1 =

[
Zk(ρc, p2) + ρc Yk(ρc, p2)

]
p2 + U ′k(ρc) + 2ρc U ′′k (ρc) +Rk(p).

(58)

Momentum conservation requires p = q inside the closed loop on the r.h.s. of the flow equation (cf.
eq. (24)). As can be seen from (52), (57) thus receives a factor δ(0) = Vd/(2π)d (with Vd = vol(Rd)
the volume of d-dimensional Euclidean space) that cancels with the volume factor in (47), resulting
in the flow equation for the effective potential

∂tUk
∣∣
ρc

= 1
2

∫
p
∂tRk(p)

[ 1
M1

+ N − 1
M0

]
. (59)

There are three important things to note here.

1. The flow equation for Uk is exact [45, 46] since our truncation (39) of Γk contains the most
general terms for quadratic fluctuations around a constant field. As explained above, these are
the only ones that contribute to Γ(2)

k when evaluated at constant background field.

2. Like (23), (59) is a partial differential equation containing derivatives of Uk with respect to the
independent variables k and ρ. But unlike (23) it is no longer functional in nature. In most
cases (59) is solved by turning it into an (infinite) set of coupled ordinary differential equations
with independent variable k [46]. This is achieved by expanding Uk(ρ) into a Taylor series
around some constant ρc. If we are interested in excitations close to the vacuum, an expansion
around ρ0(k) is appropriate. In the limit k → 0, ρ0(0) specifies the macroscopic vacuum and
the ρ-derivatives of Uk the renormalized masses and couplings of the theory.

3. The term M−1
1 in (59) incorporates fluctuations from the massive radial field ϕ1. It contributes

most to the flow at sufficiently high temperatures where ϕ1 excitations are not suppressed by
their non-zero mass. On the other hand, M−1

0 describes fluctuations of the massless Goldstone
bosons. It dominates the flow at low temperatures.

4. As it stands, (59) is not closed. To close it requires flow equations for the ρc- and p2-dependent
wave function renormalizations Zk, Yk [12]. In the local potential approximation (41) we take

Zk(ρc, p2) = Zk, Yk(ρc, p2) = 0, (60)

so that the only thing needed to close (59) is the flow equation

∂tZk = −η Zk, (61)

or equivalently the anomalous dimension η = −∂t ln(Zk).

Introducing the threshold functions

Īj(Z,m2, R) = (δ0j − j)
∫

p

∂tR

(Z p2 +m2 +R)j+1

= ∂̃t

∫
p

{
ln
(
Z p2 +m2 +R

)
j = 0,

(Z p2 +m2 +R)−j j ≥ 1,

(62)
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where the cutoff derivative ∂̃t = ∂t|Γ(2)
k

targets only the explicit scale dependence of the regulator,
we can write the flow equation (59) as

∂tUk
∣∣
ρc

= 1
2 Ī0

(
Zk + ρcYk, U

′
k + 2ρcU ′′k , Rk

)
+ 1

2(N − 1) Ī0
(
Zk, U

′
k, Rk

)
. (63)

The threshold functions (62) have the important property that they decay rapidly for m2 � Zk2

[12, 13]. This implements the decoupling of heavy modes (see item 4 on page 7). They also diverge
for some negative value of m2 which is related to the fact that the effective potential must become
convex for k → 0.

In principle we could attempt to solve (63) as it stands, allowing for a completely general form
of Uk(ρ) [1]. This would require solving a two-dimensional partial differential equation numerically.
Our investigation is mostly conceptual and qualitative in nature, however, and so we contend
ourselves with another restriction to our truncation (and the volume of field space we search for a
solution) by Taylor expanding Uk(ρ) around ρ = ρ0 to quartic order in the fields,

Uk(ρ) = Uk(ρ0) +m2(ρ− ρ0) + λ

2 (ρ− ρ0)2, (64)

with m2 = U ′k(ρ0), λ = U ′′k (ρ0). In the phase ρ0 > 0 of spontaneously broken O(N), U ′k(ρ0)
vanishes by definition. The term quadratic in the fields is then given by −λρ0ρ which implies
m2 = −2λρ0 < 0. The potential thus takes the form

Uk(ρ) =

Uk(0) +m2 ρ+ 1
2λ ρ

2 ρ0 = 0,

Uk(ρ0) + 1
2λ(ρ− ρ0)2 ρ0 > 0.

(65)

To derive flow equations for the couplings m2, λ and the minimum location ρ0, we project these
parameters onto the flow of Uk. Neglecting the (subleading) ρ-dependence of Zk and Yk5 and
using the recursive relation

∂m2 Īj = (δ0j − j) Īj+1, (66)

taking ρ-derivatives of (63) evaluated at ρc = ρ0 yields

∂tU
′
k

∣∣
ρ0

= 1
2
(
3U ′′k + 2ρ0U

(3)
k

)
Ī1
(
Zk + ρ0Yk, U

′
k + 2ρ0U

′′
k , Rk

)
+ 1

2(N − 1)U ′′k Ī1
(
Zk, U

′
k, Rk

)
, (67)

∂tU
′′
k

∣∣
ρ0

= −1
2
(
3U ′′k + 2ρ0U

(3)
k

)2
Ī2
(
Zk + ρ0Yk, U

′
k + 2ρ0U

′′
k , Rk

)
− 1

2(N − 1)
(
U ′′k
)2
Ī2
(
Zk, U

′
k, Rk

)
+ 1

2
(
5U (3)

k + 2ρ0U
(4)
k

)
Ī1
(
Zk + ρ0Yk, U

′
k + 2ρ0U

′′
k , Rk

)
+ 1

2(N − 1)U (3)
k Ī1

(
Zk, U

′
k, Rk

)
.

(68)

5Terms that would arise from the product rule if we took into account the ρ-dependence of Zk and Yk are all
related to a scale dependence of the kinetic term. They will hence be negligible for small anomalous dimensions
[4].
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The flow equations for m2 and λ follow from (45) together with (67) and (68),

∂tm
2 = ∂

∂ρ

dUk
dt

∣∣∣∣
ρ0=0

= ∂

∂ρ

(
η ρU ′k + ∂tUk

∣∣
ρ0

)∣∣∣∣
ρ0=0

= η
[
U ′k + ρU ′′k

]
+ ∂tU

′
k

∣∣∣
ρ0=0

(67)= η U ′k(0) + 3
2λ Ī1

(
Zk, U

′
k, Rk

)
+ 1

2(N − 1)λ Ī1
(
Zk, U

′
k, Rk

)
= ηm2 + λ

2 (N + 2) Ī1
(
Zk, m

2, Rk
)
,

(69)

∂tλ = ∂2

∂2ρ

dUk
dt

∣∣∣∣
ρ0

= ∂

∂ρ

(
η
[
U ′k + ρU ′′k

]
+ ∂tU

′
k

∣∣
ρ0

)∣∣∣∣
ρ0

= η
[
2U ′′k (ρ0) + ρ0 U

(3)
k (ρ0)

]
+ ∂tU

′
k(ρ0)

∣∣∣
ρ0

(68)= 2η λ− λ2

2
[
9 Ī2

(
Zk + ρ0Yk, 2ρ0λ, Rk

)
+ (N − 1) Ī2

(
Zk, 0, Rk

)]
.

(70)

To obtain a flow equation for ρ0, we take the total scale derivative of U ′k evaluated at ρ0,

0 = dU ′k(ρ0)
dt = U ′′k (ρ0) ∂tρ0 + ∂tU

′
k(ρ0)

∣∣
ρ0
, (71)

which vanishes because the ρ-derivative of the effective potential is zero at its minimum. Solving
(71) for ∂tρ0 and inserting the ρ-derivative of (45), we get

∂tρ0 = − 1
λ
∂tU

′
k(ρ0) (45)= − 1

λ

(
η ρ0 U

′′
k (ρ0) + ∂tU

′
k(ρ0)

∣∣
ρ0

)
(67)= −η ρ0 −

1
2
[
3Ī1
(
Zk + ρ0Yk, U

′
k + 2ρ0U

′′
k , Rk

)
+ (N − 1) Ī1

(
Zk, U

′
k, Rk

)]
.

(72)

This concludes our introductory section on Euclidean functional renormalization. In the next two
sections, we will analytically continue flow equations to extend the formalism to Minkowski space.

3. Functional Renormalization in Minkowski Space
So far, the functional renormalization group in its formulation due to Wetterich [4] has been
applied mainly in Euclidean space to either static, classical statistical field theories (where the
fields depend on spatial position only) or quantum field theories in the Matsubara formalism
where time and frequency become imaginary [1].

While significant progress has been made with this setup over the past 20 years, it is only
applicable to static systems and imaginary-time quantities. In nature, actual dynamical processes
take place in Minkowski space. It thus stands to reason that our understanding of physics,
not to mention the renormalization group itself, particularly where real-time properties such as
propagator residues and decay widths are concerned, would greatly benefit from an extension of
the formalism to this new domain.
Of course, we expect a number of challenges. Most singular structures become visible only in

Minkowski space. (Euclidean space propagators feature singularities too, but only for massless
particles at p = 0 or at Fermi surfaces [1].) Singularities are difficult to treat numerically, making it
convenient to work in Euclidean space where they are fewer. However, singularities in correlation
functions are physical and have crucial repercussions on the behavior of the particles they describe.
For instance, a pole in the propagator corresponds to a stable particle, a branch cut to a resonance,
i.e. an unstable particle.
If we are to fully understand the real-time dynamics of particle propagation and decay on a

fundamental level, we must be able to cope with these analytic structures. Fortunately, functional
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renormalization has the potential to do that and do it well. In the following we develop an analytic
implementation of the FRG that takes poles and branch cuts of the propagator into account in a
fully self-consistent manner.

3.1. Methodology
Different strategies for performing the analytic continuation are conceivable [1, 42, 49–58].

1. The most radical approach reconstructs the formalism from the ground up in Minkowski space
by analytically continuing the Feynman path integral itself (the starting point of our derivation
of the Wetterich equation in sec. 2.1). The advantage of such an approach is its applicability
to even far-from-equilibrium dynamics. Unfortunately, we are immediately faced with severe
technical complications. Factors of i appear at various places, most importantly in the exponent
of the integrand eSM = eiSE , spoiling its interpretation as a weighting factor. Moreover, this
approach requires the technically involved Schwinger-Keldysh closed time contour.

2. A more modest attempt would be to stick to the Euclidean functional integral, work with the
formalism as derived in sec. 2 exclusively in Euclidean space and use analytic continuation
only on the final result after taking the flow down to k = 0. This method has in fact been
successfully pursued [59–61]. The advantage of this procedure is that we use the formalism in
a setting where it is comparatively transparent and well understood [1].
The disadvantage lies in the analytic continuation itself. It can turn out rather difficult
in practice since the Euclidean propagator is known only numerically and only at isolated
points along the imaginary axis, the so-called Matsubara frequencies iωn = 2πiTn, n ∈ N.
Numerical reconstruction based on Padé approximants or the maximum entropy method require
information from many points. As a result, the computational effort gets quite large.
Besides this practical issue, there are some systemic shortcomings. First, knowledge about
spectral properties does not enable us to improve the renormalization group running. Second,
only linear response properties are accessible.

3. A third possibility also keeps the Euclidean space functional integral but performs the analytic
continuation already on the flow equations rather than the final result at k = 0. From an
innovation standpoint, i.e. how much new formalism needs to be developed, it is situated
somewhere between options 1 and 2. This is the approach we pursue in our work. It offers a
number of advantages [1].

i) Because the flow equations for objects such as the effective potential or the propagator
are available in analytic form, we can do the analytic continuation by hand instead of
having to resort to involved numerical techniques.

ii) Real-time properties such as quasi-particle decay widths can be inserted in a self-consistent
manner on the r.h.s. of flow equations. This should notably improve the performance
of truncations. Particularly properties not directly related to the propagator (such as
thermodynamic quantities) are expected to gain enhanced accuracy.

iii) All the usual space-time symmetries, i.e. translational as well as Lorentz (or Galilei)
invariance are manifest. (A convenient choice of the infrared regulator due to Flörchinger
[1] will nevertheless allow us to perform the Matsubara summation in loop expressions
analytically, leading to well behaved expressions on the right hand side of flow equations
where at most an integral over spatial momenta remains to be done numerically.)

iv) Compared to the Schwinger-Keldysh contour, this method is significantly less involved.
v) Since we derive all of our flow equations in Euclidean space where functional renormal-

ization is best understood and has progressed the farthest, we can benefit from existing
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expertise. For example, it is known how the flowing action approaches the microscopic ac-
tion for large cutoff scales (this is not obvious in Minkowski space due to the indefiniteness
of p2 = −p2

0 + p2 ≷ 0) or how to construct useful regulators.
The biggest drawback, on the other hand, is that (like option 2) this approach is based on
linear response theory. It is hence restricted to close-to-equilibrium physics. Even though it can
be applied to weakly non-linear regimes [62], strongly non-linear responses as they dominate
far from equilibrium are beyond its scope.

3.2. Matsubara Formalism
In the Matsubara or imaginary time formalism, quantum fields at non-zero temperature live
on a generalized torus Md+1 = S1 × Rd with circumference β = 1/T in the imaginary time
direction τ = −it. We will refer to this topology as Matsubara space. To understand why time
becomes imaginary, compact and periodic at non-zero temperature, we recall some basic concepts
of statistical mechanics [63]. An equilibrium ensemble at temperature T = 1/β can be described
by its partition function

Z(β) = Tr ρ(β) = Tr e−βH, (73)

where the density operator ρ(β) determines the occupation number of every possible state at
a given temperature and H is a Hamiltonian that specifies the type of system we are dealing
with. (If H = H, where H is the Hamiltonian that appears in the unitary time evolution operator
U = e−iHt, the ensemble is canonical, i.e. it has a fixed particle number but variable energy due
to heat exchange with a bath. If instead H = H − µN with N the number operator and µ the
chemical potential, the ensemble is grand canonical and can exchange energy with a bath as well
as particles with a reservoir.)

The important observables in a statistical setting are ensemble averages 〈O〉β defined as

〈O〉β = 1
Z(β) TrO e−βH. (74)

for any measurable quantity O. Cyclicity of the trace renders such averages periodic under
imaginary time evolution,

〈O(t)〉β = 1
Z(β) Tr e−βHO(t) eβH e−βH

= 1
Z(β) Tr e−βHO(t+ iβ) = 〈O(t+ iβ)〉β.

(75)

This is known as the Kubo-Martin-Schwinger relation. It is a result of the fact that e−βH acts as
a time evolution operator on the compact imaginary time axis 0 ≤ τ = −it ≤ β with the extent of
time determined by the temperature T = β−1.

The Matsubara formalism is based on the idea (originally due to Bloch [64] but first implemented
perturbatively by Matsubara [65]) that ensemble averages like (74) may be written as expectation
values in a Euclidean signature quantum field theory. The trace requires that the bosonic
(fermionic) fields of such a theory be (anti-)periodic in the imaginary time direction,

φ(τ,x) = ±φ(τ + β,x). (76)

In momentum space, this leads to the replacement of continuous frequencies by discrete imaginary
Matsubara frequencies iωn = 2πinT .

The Matsubara formalism has proven useful in studying the behavior of quantum field theories
at non-zero temperature [66]. It has been generalized to theories with gauge invariance and was
essential in the study of a conjectured deconfining phase transition of Yang-Mills theory [25].
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3.3. Analytic Structure

As stated above, our approach is to derive flow equations for n-point functions Γ(n)
k in Euclidean

space. This yields analytic expressions for ∂kΓ
(n)
k at points iωn on the imaginary axis which we

can analytically continue to extend them to the entire complex frequency plane with the exception
of possible poles and branch cuts along the real axis [1]. This last assertion constitutes a severe
restriction to the analytic structure of n-point functions and needs to be justified. We will shed
light on how it originates for the example of the 2-point function Γ(2) ∼ G−1. Its analytic structure
is of particular importance since real-time properties of the propagator G(p) are the main point of
interest in this work. Nonetheless, analogous arguments apply also for n > 2.

As we saw in (54), Γ(2) is of the form

Γ(2)(p, q) = δ2Γ[ϕ]
δϕ(p) δϕ(−q) = (2π)dδ(p− q)G−1(p), (77)

with G(p) the Euclidean propagator in momentum space. Enforcing upon G(p) restrictions
deriving from Poincaré invariance, unitarity and causality6 we obtain the Källen-Lehmann spectral
representation [67]

G(p) =
∫ ∞

0
dµ2 ρ(µ2)

p2 + µ2 , (78)

with real and non-negative spectral weight ρ(µ2) ≥ 0 normalized according to∫ ∞
0

ρ(µ2) dµ2 != 1. (79)

(78) is interesting for several reasons. First, from a field theoretical standpoint, it decomposes the
interacting propagator into a weighted sum of free propagators. Second and more relevant to our
analysis, it allows for a very instructive investigation of the analytic structure of G(p).

In Euclidean space p2 = p2
0 + p2 ≥ 0 is positive semi-definite such that the integrand in (78) is

completely regular, rendering G(p) both real and positive for all p. In Minkowski space, on the
other hand, p2 = −p2

0 + p2 ≷ 0 is indefinite. For p2 < 0, G(p) features singularities on the real
frequency axis located at7

p0 = ±
√

p2 + µ2. (80)

Since µ2 is integrated over, (80) actually signals a continuum of singularities, i.e. a branch cut

−
√

p2
√

p2 Re(p0)Im(p0)

Figure 3: Propagator branch cuts along the real frequency axis extending from ±|p| out to ±∞

spanning from ±|p| out to infinity in both directions along the real p0-axis as depicted in fig. 3.
It is typical for ρ(µ2) to contain both pole and branch cut contributions from single-particle
and bound states, and multi-particle states with continuous energy spectra, respectively. By

6Causality requires that the commutator [φ(x), φ(y)] vanishes for spacelike separation (x− y)2 > 0.
7Although we integrate over µ2 in (78), we are interested in the location of these poles in p0-space rather than
µ-space. This is because to solve flow equations, we have to integrate expressions containing G(p) with respect
to spatial momentum and frequency. To perform the p0-integration (or Matsubara summation at T > 0), we
then need to specify an integration contour in the complex frequency plane that avoids the poles. We can either
slightly deform the contour away from the real axis at p0 = ±

√
p2 + µ2 or add infinitesimal ±iε-terms in the

denominator to shift the poles away from the real axis. See app. A.1 for details.
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the Sokhotski-Plemelj theorem, (78) can be written as (a detailed derivation was relegated to
app. A.1)

G(p) = P
(∫ ∞

0
dµ2 ρ(µ2)

p2 + µ2

)
+ iπ sign(Re p0 Im p0) ρ(−p2), (81)

where P denotes the Cauchy principal value. (81) reveals the branch cut structure in G(p). Since
sign(Im p0) abruptly changes sign when crossing the real axis, G(p) features a cut along the real
frequency axis at all p0 for which ρ(−p2) 6= 0. (81) also shows that G(p) is analytic away from
the real axis. (Since ρ(−p2) = 0 ∀ p2 < 0, i.e. for all p2

0 − p2 ≤ p2
0 < 0 ⇔ p0 ∈ iR, there is no

branch cut on the imaginary axis). An important consequence is that also the inverse propagator
G−1 ∼ Γ(2) has all its poles, zero-crossings and branch cuts on the real axis as well.
Inverting (81), we find that close to the real axis, Im(p0) ≈ 0, the inverse propagator P (p) =

G−1(p) is of the form [1]
P (p) = P1(p2)− is(p0)P2(p2), (82)

with s(p0) = sign(Re p0 Im p0) and

P1(p2) = ReG(p)[
ReG(p)

]2 +
[
ImG(p)

]2 , P2(p2) = ImG(p)[
ReG(p)

]2 +
[
ImG(p)

]2 ,
ReG(p) = P

(∫ ∞
0

dµ2 ρ(µ2)
p2 + µ2

)
, ImG(p) = π ρ(−p2).

(83)

Close to a point p2 = −p2
0 + p2 = −m2/z where P1(p2) vanishes (corresponding to a pole in the

propagator and thus to a particle), we can expand P1 and P2 as

P1(p2) = Z (z p2 +m2) + . . . , P2(p2) = Z γ2(p2) + . . . , (84)

(with Z, z, m2 and γ2 scale-dependent real and positive quantities) such that the propagator takes
the form

G(p) = P−1(p) = 1
Z

z p2 +m2 + is(p0) γ2

(z p2 +m2)2 + γ4 . (85)

(85) describes an unstable particle whose decay is governed by the Breit-Wigner distribution.√
Z z p2 is the center-of-mass energy that produces the resonance,

√
Z m2 the mass of the resonance

and Γ = γ2/m the decay width (width of the distribution at half-maximum). Γ is the inverse of
the mean lifetime τ = 1/Γ. In the limit of vanishing decay width, Γ→ 0, the resonance shows
up as a delta peak in the spectral function ρ(p2) and the particle becomes stable. Since this is
exactly the type of real-time physics we are interested in, we will continue to employ an inverse
propagator of the form (82) and the expansion (84) throughout this work.

Before continuing, we explain why we deem it sufficient to know the form of P (p) only close to
the real axis Im(p0) ≈ 0. Of course in principle the analytic structure of (Pk +Rk)−1 as a function
of complex frequency p0 ∈ iR depends also on the shape of P (p) away from the real axis. However,
especially for small k, high-energy fluctuations due to virtual particles are strongly suppressed and
we expect the propagator G(p) to be dominated by on-shell excitations corresponding to the poles
and branch cuts on the real frequency axis. It should be viewed as part of our truncation that
possible deviations from this structure at higher scales are neglected. Based on this reasoning, we
use (82) and (84) not only close to the real axis but everywhere in the p0-plane. The coefficients
Z, m2 and γ2 are nonetheless determined by their value at the singularity p2 = −m2/z on the
real line where Re

(
P (p)

)
vanishes.

4. Analytic Continuation of Flow Equations
The analytic continuation proceeds differently for different parts of the flowing action. Since
the effective potential Uk is momentum-independent, its analytic continuation is trivial. The
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propagator G(p) and higher-order correlation functions, on the other hand, are momentum-
dependent. Their flow equations are obtained by expanding the flow of Γk around a constant
background field ϕc that fluctuates with a small momentum-dependent part, ϕa(p) = ϕc δa1+χa(p),
χa(p)� ϕc ∀ a, p. In this case, we actually have to work to perform the analytic continuation.
Once G(p) is extended to the entire complex plane, however, we have easy access to its real-time
properties such as the decay width Γ = γ2/m by simply evaluating it for p0 ∈ R.
Working in Minkowski space has some advantages when it comes to devising truncations [1].

By performing the derivative expansion as a Taylor series around on-shell excitations, i.e. around
frequencies and momenta corresponding to a pole or branch cut of the propagator, we expect the
convergence of the expansion to improve. After all, loop expressions on the r.h.s. of flow equations
(as well as on-shell properties of the effective action) are strongly dominated by such singular
structures. Compared to an expansion around vanishing frequency in Euclidean space, higher-order
terms of the derivative expansion in Minkowski space should therefore be much more strongly
suppressed. In most situations, we expect the essential physics to already be well-described by the
lowest-order terms.
This has important consequences. In particular, in many situations it may allow us to use an

algebraic (as opposed to exponential or Litim-type) regulator Rk even though it exhibits a much
milder decay in the ultraviolet. A simple algebraic form of Rk has two major advantages. First,
we may construct Rk in Euclidean space and analytically continue it towards the real frequency
afterwards. Second, it enables us to decompose the propagator (Pk +Rk)−1 in such a way as to
perform the summation over Matsubara frequencies analytically!
In this section we assemble the formalism needed to solve flow equations in Minkowski space.

First, in sec. 4.1 we modify the truncation (39) of Γk so as to cope with additional singular
structures that arise in Minkowski space. Sec. 4.2 introduces the above-mentioned class of
regulators. In sec. 4.3 we go on to derive the momentum-space Feynman rules for that particular
combination of truncation and regulator. With those tools in place, we construct flow equations
for parameters of the effective potential and the propagator in secs. 4.4 and 4.5, respectively.

4.1. Truncation
We consider again the O(N)-invariant scalar field theory of section sec. 2.5, now in d+1 dimensions
with time added to the d Euclidean dimensions of space. As we saw in sec. 2.5, the spectrum of
excitations in the phase with spontaneously broken O(N) consists of a massive radial field ϕ1 and
N − 1 massless Goldstone bosons.
Due to the term ∼ ϕ1ϕ

2
a (a 6= 1) in Γk (more precisely in Uk), the radial mode can decay into

two Goldstone excitations during real-time evolution. This gives rise to a non-vanishing decay
width γ2

1 for the radial mode which makes it a quasi-particle with finite lifetime. The ordered
phase ρ0 6= 0 thus corresponds to a non-zero density of quasi-particles (which we expect to disperse
if we increase the temperature and vacate the ground state).

Except for this new decay channel, the system is very similar to the one treated in sec. 2.5. We
can therefore employ a similar truncation written in terms of unrenormalized fields ϕ̄a(x) as8

Γk[ϕ] =
∮
x

[
Ūk(ρ̄) + 1

2 ϕ̄aQk(−∂
2) ϕ̄a + 1

4 ρ̄ Sk(−∂
2) ρ̄

]
, (86)

where the sum over a ∈ {1, . . . , N} is implied and we introduced the shorthand notation∮
x

=
∫ β

0
dτ
∫
Rd

ddx (87)

to denote integration over Matsubara space Md+1 = S1 × Rd. (Md+1 is a d + 1-dimensional
generalized torus spanned by the Cartesian product of d Euclidean dimensions of space Rd and a

8Up to this point, ϕ and ρ denoted unrenormalized quantities. We now change notation ϕ→ ϕ̄, ρ→ ρ̄.
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circle S1 of temperature-dependent circumference β = 1/T for the cyclic dimension of imaginary
time τ = it.) In momentum space this corresponds to

∑∫
p

= T
∑
p0

∫
p

= T
∑
p0

∫
Rd

ddp
(2π)d , (88)

where
∑
p0 sums over the discrete imaginary Matsubara frequencies p0 ∈ {iωn = 2πiTn|n ∈ Z}.

In (86) we made the crucial assumption that the momentum-dependent parts of the inverse
propagator Qk(p2) and Sk(p2) are of the same analytic structure as the inverse propagator (82)
expanded as in (84) [1]. Removing the momentum-independent mass from (84), this amounts to

Qk(p) = Zk(p2) p2 − is(p0) γ2
k(p2), Sk(p) = Yk(p2) p2 − is(p0) δ2

k(p2). (89)

Note that we are neglecting here possible alterations in the analytic structure of the scale-dependent
propagator due to the frequency dependence of the regulator Rk(p) used to construct Γk. Since
Rk(p)→ 0 for k → 0, any such alterations will disappear at k = 0. However, they will be present
at non-zero k and might even have non-negligible effects at intermediate stages of the flow. It
should be viewed as part of our truncation that we disregard these modifications here.

The functions γ2
k(p2), δ2

k(p2) determine the size of the jump at the branch cut discontinuity in
fig. 3. Since G(p) is completely regular for p2 > 0, γ2

k(p2) and δ2
k(p2) are non-zero only for p2 < 0.

Physically, this ensures causality of the decay process since it requires time-like, i.e. negative p2.
To derive the flow equation for Uk(ρ), we again expand Γk around a constant background,

ϕ̄a(x) = ϕ̄c δa1 + χ̄a(x), ρ̄c = 1
2 ϕ̄

2
c . (90)

Only the part Γk,2 that is quadratic in the fluctuating fields χ̄a(x) contributes to the flow of Uk(ρ).
In momentum space it reads

Γk,2 = 1
2
∑∫
p

χ̄a(p)
[
δab
(
Qk(p2) + Ū ′k(ρ̄c)

)
+ δa1 δb1

(
ρ̄c Sk(p2) + 2ρ̄c Ū ′′k (ρ̄c)

)]
χ̄b(−p). (91)

Just like in (84), we further expand (91) around zero-crossings of

Re
[
Qk(p) + ρ̄cSk(p) + Ū ′k(ρ̄c) + 2ρ̄cŪ ′′k (ρ̄c)

]
and Re

[
Qk(p) + Ū ′k(ρ̄c)

]
, (92)

corresponding to the point on the real frequency axis where the propagators G1(p) and Ga(p)
(a 6= 1) become singular. These are the on-shell excitations of the radial field and the Goldstone
bosons, respectively. Strictly speaking, the location of the zero-crossings depend on the value of
the background field ρ̄c. For the regimes we will study, however, it suffices to expand (92) around
some p2 = −m2 such that the expressions (92) vanish at the minimum ρ0. Since

m2
ab = Ū ′k(ρ̄0) δab + 2ρ0Ū

′′
k (ρ̄0) δa1 δb1 with Ū ′k(ρ̄0) = 0, (93)

the Goldstone bosons (a = b > 1) are massless at the minimum ρ̄0. This puts their expansion
point at p = 0. The discontinuity along the real frequency axis vanishes here, γ2(0) = 0, so that

Qk(p) = Zk(0) p2, (for a = b > 1). (94)

The massive radial field (a = b = 1) we expand around p2 = −m2
1 = −

[
2ρ̄0 Ū

′′
k (ρ̄0)

]2, where
γ2(−m2

1) is non-zero such that

Qk(p) + ρ̄0 Sk(p) =
[
Zk(−m2

1) + ρ̄0 Yk(−m2
1)
]
p2 − is(p0)

[
γ2
k(−m2

1) + ρ̄0 δ
2
k(−m2

1)
]
, (95)

Introducing the abbreviations

Z1 = 1
Zk

[
Zk(−m2

1) + ρ̄0 Yk(−m2
1)
]
, γ2

1 = 1
Zk

[
γ2
k(−m2

1) + ρ̄0 δ
2
k(−m2

1)
]
, (96)
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where we set Zk = Zk(0), an expression analogous to (91) but in terms of renormalized fields

ϕa =
√
Zk ϕ̄a, ρ = Zk ρ̄, Ūk(ρ̄) = Uk(ρ), (97)

can be written as

Γk,2 = 1
2
∑∫
p

χa(p)
{
δab
[
p2 +U ′k(ρc)

]
+ δa1δb1

[
(Z1 − 1) p2 − is(p0) γ2

1 + 2ρcU ′′k (ρc)
]}
χb(−p), (98)

where we pulled a factor Zk out of every term and absorbed it into the fluctuating fields χa =√
Zk χ̄a. By evaluating (98) for ρc = ρ0, we can directly read off the radial mode’s renormalized

mass and decay width,

m1 =
√

2ρ0U
′′
k (ρ0)/Z1, Γ1 = γ2

1/(Z1m1) = γ2
1/
√

2ρ0 U
′′
k (ρ0)Z1 (99)

4.2. Regulator
Our next goal is to find a regulator Rk that allows for analytic continuation of (Pk + Rk)−1 in
truncations where close to the real frequency axis, Im(p0) ≈ 0, Pk is well approximated by (82)
expanded according to (84), i.e.

P = Z
[
z p2 +m2 − is(p0) γ2

]
. (100)

The problem we face is that given the indefiniteness of p2 = −p2
0 + p2 in Minkowski space, it is

unclear which modes correspond to the infrared and which to the ultraviolet part of the spectrum.
Some high frequency p0 ≈ Λ could join with an equally large momentum |p| ≈ Λ to produce a
vanishing p2. Yet Rk still needs to suppress fluctuations from these modes during late stages of
the flow (i.e. at small k) if the derivative expansion is to have any chance at convergence. This
might not seem like such a difficult problem until we recall that we cannot split up p2 and simply
implement the decay for high p0 and high p separately if we wish to keep rotational and Lorentz
invariance. At this point it is still unclear which requirements Rk must fulfill in order to act as an
effective infrared and ultraviolet regulator in Minkowski space.

In Euclidean space by contrast, p2 ≥ 0 establishes an unambiguous order relation for all modes
in the spectrum. Constructing a regulator with the desired properties becomes a simple matter.
Our approach will therefore be to construct a regulator in Euclidean space and use analytic
continuation to extend it to Minkowski space. There are some caveats to this method, however. A
function that is smooth and regular on the imaginary frequency axis may nevertheless feature
poles and discontinuities in other regions of the complex plane. In fact, it stands to reason that
this is even unavoidable if we require Rk to decay rapidly for large imaginary values of p0. We
thus expect analytic continuation to be difficult for most choices of Rk that have proven useful in
Euclidean space. For that reason, we adopt here a special class of regulators due to Flörchinger
[1] which is particularly suited to analytic continuation,

Rk(p) = Z k2∑∞
j=0 cj

( p2

k2
)j = Z k2

c0 + c1
p2

k2 + c2
(
p2

k2

)2
+ . . .

. (101)

The coefficient Z can be chosen for convenience. We will identify it with the wave function
renormalization Zk but it could be any real, positive function of k.
When only a few coefficients cj are non-zero, (101) has a comparatively mild algebraic decay

in the ultraviolet. We still expect it to provide adequate separation of momentum modes due
to the improved convergence of the derivative expansion in Minkowski space. (101) has all
desired properties for Euclidean argument p2

0 + p2 ≥ 0 if the coefficients cj are real and positive.
Regularization of the ultraviolet improves if some cj with large j are non-zero. On the other hand,
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calculations simplify if only a few cj with small j are non-zero. The simplest, non-trivial choice is
c0 = 1, c1 = c > 0, cj = 0 ∀ j > 1. Then

Rk(p) = Z k2

1 + c p
2

k2

, ∂tRk(p) = k ∂kRk(p) = 2k2 Z + k2 ∂tZ

1 + c p
2

k2

+ 2cZ p2(
1 + c p

2

k2
)2 . (102)

This will be our setup in the sequel.

4.3. Feynman Rules

In the truncation (98) the (unrenormalized) propagator Ḡk =
[
Γ̄(2)
k +Rk

]−1 reads

ϕa ϕb

p1 p2Gk,ab(p1, p2)
(p1 = p2)

=
[
Γ̄(2)
k +Rk

]−1
ab

(p1, p2)
∣∣
ϕc

=
[

δ2Γk[ϕ]
δχ̄a(p1) δχ̄b(−p2)

∣∣∣∣
ϕc

+Rk(p1) (2π)d+1 δab δ(p1 − p2)
]−1

(103)

= δ(p1 − p2)
(2π)d+1 Zk


[
Z1 p

2
1 − is(p0,1) γ2

1 + U ′k(ρc) + 2ρc U ′′k (ρc) + k2/(1 + c p2/k2)
]−1

a = b = 1,[
p2

1 + U ′k(ρc) + k2/(1 + c p2/k2)
]−1

a = b > 1,

where we defined the Matsubara space Dirac delta as

δ(p− q) ≡ δ(d+1)
M (p− q) = T

2π δm,n δ
(d)(p− q). (104)

In the zero-temperature limit, we have
∑
n∈Z

T
2π

T→0−−−→
∫∞
−∞ dp0 and δm,n

T→0−−−→ δ(p0 − q0) so that

lim
T→0

δ
(d+1)
M (p− q) = δ(p0 − q0) δ(d)(p− q). (105)

Since we will evaluate n-point functions for constant fields, we consider again the field configuration

ϕa(p) = ϕc δa1 + χa(p), with χa(p)� ϕc ∀ a, p. (106)

in which δϕa(p) = δχa(p) and ρ = 1
2
∑N
a=1

(
ϕc δa1 + χa(p)

)2. The 3-point function is then given by

ϕa

ϕb

ϕc

p1

p2

p3

Γ(3)
k,abc(p1, p2, p3) (p1 + p2 + p3 = 0)

= Γ(3)
k,abc(p1, p2, p3)

∣∣
ϕc

assuming momentum-independent verticesy
=
∑∫
p

δ3Uk(ρ)
δχa(p1) δχb(p2) δχc(p3)

∣∣∣∣
ϕc

(107)

=
∑∫
p

[
U ′′′k

δρ

δχa(p1)
δρ

δχb(p2)
δρ

δχc(p3) + U ′′k
δ2ρ

δχa(p1) δχb(p2)
δρ

δχc(p3) + U ′′k
δ2ρ

δχa(p1) δχc(p3)
δρ

δχc(p2)

+ U ′′k
δ2ρ

δχb(p2) δχc(p3)
δρ

δχa(p1) + U ′k
δ3ρ

δχa(p1) δχb(p2) δχc(p3)

]∣∣∣∣∣
ϕc

,
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The functional derivatives in (107) are

δρ
(
χ(p)

)
δχa(p1)

∣∣∣∣
ϕc

=
[
ϕc δa1 + χa(p)

]
δ(p− p1)

∣∣∣
ϕc

= ϕc δa1 δ(p− p1), (108)

δ2ρ

δχa(p1) δχb(p2)

∣∣∣∣
ϕc

= δab δ(p− p1) δ(p− p2), (109)

δ3ρ

δχa(p1) δχb(p2) δχc(p3)

∣∣∣∣
ϕc

= 0. (110)

The Feynman rule for the 3-point function therefore reads

Γ(3)
k,abc(p1, p2, p3)

∣∣
ϕc

=
[
ϕ3
c U
′′′
k δa1 δb1 δc1 + ϕc U

′′
k

(
δa1 δbc + δb1 δac + δc1 δab

)]
δ(p1 + p2 + p3). (111)

We can immediately read off two non-zero index combinations,

Γ(3)
k,abc(p1, p2, p3)

∣∣
ϕc

= δ(p1 + p2 + p3)


ϕ3
c U
′′′
k + 3ϕc U ′′k a = b = c = 1,

ϕc U
′′
k a = 1, b = c 6= 1,

0 else.
(112)

Else contains the cases

1
1
a

= 1
a

b
= a

a

a
= a

b

b
= a

b

c
= 0, with a 6= b 6= c ∈ {2, . . . , N}. (113)

Thus our theory features two kinds of 3-point interactions: one purely radial and one between a
radial mode and any two identical Goldstone bosons. All other 3-point correlations vanish (within
our approximation). We will see in sec. 4.5 that despite the hierarchy of flow equations (see item 1
on page 6), higher vertices won’t be necessary to compute the flow of parameters of the 2-point
function under the assumption of momentum-independent vertices.

4.4. Potential Flow
Except for an additional discrete frequency dimension and the presence of the discontinuity γ2

1 ,
eqs. (53) and (98) are strikingly similar. We can follow exactly the same steps as in sec. 2.5 to
derive the flow of the effective potential. This time around, the result is

∂tUk
∣∣
ρc

= 1
2
∑∫
p

∂tRk(p)
Zk

[ 1
M̄1

+ N − 1
M̄0

]
, (114)

with
M̄1 = Z1 p

2 − is(p0) γ2
1 + U ′k + 2ρc U ′′k + Rk

Zk
, M̄0 = p2 + U ′k + Rk

Zk
. (115)

Note that (94) and (95) are expansions around points on the real frequency axis. Thus (114)
looses all validity when taken too far from the real axis. In particular, we should not evaluate
it for large imaginary values p0 = 2πiTn with n � 1. Fortunately, performing the Matsubara
summation

∑
p0 in (114) relies on contour integration methods. Due to the analytic structure

of the propagator G(p) discussed in sec. 3.3, this means we only need to evaluate residues and
integrals along branch cuts on the real frequency axis (or close to it for k > 0) where (114) is valid.
By modifying the threshold functions Īj in eq. (62) for renormalized quasi-particles in d + 1

dimensions [1, 68],

Ij(Z, z,m2, γ2, R) = (δj0 − j)
∑∫
p

1/Z ∂tR
(z p2 +m2 − is(p0) γ2 +R/Z)j+1

= ∂̃t
∑∫
p

{
ln
(
z p2 +m2 − is(p0) γ2 +R/Z

)
j = 0,(

z p2 +m2 − is(p0) γ2 +R/Z
)−j

j ≥ 1,

(116)
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we can rewrite (114) as in (63),

∂tUk
∣∣
ρc

= 1
2I0
(
Zk, Z1, U

′
k + 2ρcU ′′k , γ2

1 , Rk
)

+ 1
2(N − 1) I0

(
Zk, 1, U ′k, 0, Rk

)
. (117)

Neglecting again the (subleading) ρ-dependence of Z1 and γ2
1 , the flow equations for the derivatives

of Uk(ρ) expanded as in (65) and evaluated at ρc = ρ0 read

∂tU
′
k

∣∣
ρ0

= 1
2
(
3U ′′k + 2ρ0U

(3)
k

)
I1
(
Zk, Z1, U

′
k + 2ρ0U

′′
k , γ

2
1 , Rk

)
+ 1

2(N − 1)U ′′k I1
(
Zk, 1, U ′k, 0, Rk

)
,

(118)

∂tU
′′
k

∣∣
ρ0

= −1
2
(
3U ′′k + 2ρ0U

(3)
k

)2
I2
(
Zk, Z1, U

′
k + 2ρ0U

′′
k , γ

2
1 , Rk

)
− 1

2(N − 1)
(
U ′′k
)2
I2
(
Zk, 1, U ′k, 0, Rk

)
+ 1

2
(
5U (3)

k + 2ρ0U
(4)
k

)
I1
(
Zk, Z1, U

′
k + 2ρ0U

′′
k , γ

2
1 , Rk

)
+ 1

2(N − 1)U (3)
k I1

(
Zk, 1, U ′k, 0, Rk

)
.

(119)

from which we obtain by the same steps taken in sec. 2.5 the following flow equations for the mass
squared m2, the location of the minimum ρ0(k) and the quartic coupling λ,

∂tm
2 = ηm2 + λ

2 (N + 2) I1
(
Zk, 1, m2, 0, Rk

)
, (120)

∂tρ0 = −η ρ0 −
1
2
[
3 I1

(
Zk, Z1, 2ρ0λ, γ

2
1 , Rk

)
+ (N − 1) I1

(
Zk, 1, 0, 0, Rk

)]
, (121)

∂tλ = 2η λ− λ2

2
[
9 I2

(
Zk, Z1, 2ρ0λ, γ

2
1 , Rk

)
+ (N − 1) I2

(
Zk, 1, 0, 0, Rk

)]
. (122)

4.5. Propagator Flow
To close the system of differential equations eqs. (120) to (122), we need three additional flow
equations for the remaining scale-dependent parameters Zk, γ2

1 and Z1 that are incorporated
self-consistently in our truncation. Our course of action will be to calculate the flow of Γ(2)

k and
then project it to ∂tZk, ∂tγ2

1 and ∂tZ1.
To derive the unrenormalized 2-point function Γ̄(2)

k = Γ(2)
k /Zk, we expand Γk in powers of χ̄a(p),

take two functional derivatives with respect to the unrenormalized fluctuating fields χ̄a(p) and
evaluate the result for constant fields ϕ(x) = ϕc, i.e. χa(p) = 0 ∀ a, resulting in9

Γ̄(2)
k,ab(p, q)

∣∣∣
ϕc

= δ2Γk,2
δχ̄a(p) δχ̄b(−q)

(123)

(98)= Zk

{
δab
[
p2 + U ′k(ρc)

]
+ δa1δb1

[
(Z1 − 1) p2 − is(p0) γ2

1 + 2ρcU ′′k (ρc)
]}δ(p− q)

(2π)d+1

The a = b = 1-component governs propagation of the radial mode ϕ1 (equal incoming and outgoing
momenta ensure momentum conservation),

Γ̄(2)
k,11(q, q)

∣∣∣
ϕc

= P̄r(q)
T

(2π)d δ(0), (124)

where the inverse propagator of the radial mode is given by

P̄r(q) = Ḡ−1
r (q) = Zk

[
Z1 q

2 − is(q0) γ2
1 + U ′k(ρ) + 2ρU ′′k (ρ)

]
. (125)

9The two functional derivatives strip away all terms less than quadratic in the fluctuating fields. Setting χa(p) = 0
afterwards removes any terms higher than quadratic. So we only need to consider the quadratic fluctuations
eq. (98) to obtain the most general form of Γ(2)

k

∣∣
ϕc

(cf. eqs. (53) and (54))
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To project onto Z1, we take the q2-derivative of (125),

Z1 = 1
Zk

∂q2 P̄r(q). (126)

(Z1 and γ2
1 are q-independent within our approximation since we expanded the inverse propagator

around the radial mode’s on-shell energy q2 = −m2
1, cf. eq. (96).) The t-derivative of (126) yields

∂tZ1 = − 1
Z2
k

(∂tZk) ∂q2 P̄r(q) + 1
Zk

∂t ∂q2 P̄r(q) = η Z1 + 1
Zk

∂t ∂q2 P̄r(q). (127)

Similarly, we can project onto γ2
1 [1],

γ1 = 1
Zk

discq0 P̄r(q) (128)

and so
∂tγ1 = η γ1 + 1

Zk
∂t discq0 P̄r(q), (129)

where the discontinuity projector discq0 is defined as

discq0 f(x) = i

2 sign(q0) lim
ε→0+

[
f(q0 + iε)− f(q0 − iε)

]
, (130)

Propagation of the Goldstone bosons is governed by components of Γ(2)
k with a = b > 1,

Γ̄(2)
k,22(q, q)

∣∣∣
ϕc

= P̄g(q)
T

(2π)d δ(0), (131)

with inverse Goldstone propagator

P̄g(q) = Ḡ−1
g (q) = Zk

[
q2 + U ′k(ρ)

]
. (132)

so that
∂tZk = ∂t ∂q2P̄g(q). (133)

The flow equations for Z1, γ2
1 and Zk can therefore be derived by using Wetterich’s equation to

determine an algebraic expression for ∂tΓ(2)
k and inserting that into (127), (129) and (133). A step

by step prescription for the construction of flow equations for n-point functions goes as follows
[13]:

1. Write down all one-loop Feynman diagrams obtained by taking n functional derivatives of (23).
These diagrams incorporate all quantum fluctuations contributing to the scale dependence
of Γ(n). Alternatively, since functional and scale derivatives commute, we can perform the
functional derivatives after casting (23) into a form particularly suited for taking derivatives,

∂tΓk = 1
2 Tr ∂̃t ln(Γ(2)

k +Rk) = ∂̃tΓk[ϕ]
∣∣
1-loop, (134)

with cutoff derivative ∂̃t = ∂t|Γ(2)
k

and renormalization group-improved one-loop contribution to

the flowing action Γk[ϕ]
∣∣
1-loop = S[ϕ] + 1

2 Tr ln(Γ(2)
k +Rk) (cf. eq. (25)).

2. Insert nth functional derivatives of Γk for all n-point functions with n ≥ 3. It is important
to be aware that such vertices may be momentum-dependent even if they were constant on
the classical level (i.e. as functional derivatives of the microscopic action S = ΓΛ). Unless
prohibited by symmetries there will also be contributions from higher vertices that are absent
in S. This is a consequence of the partial integration of momentum modes with q2 > k2 in Γk.
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3. Insert for all propagator lines the full regularized propagator Gk = (Γ(2)
k +Rk)−1 (evaluated at

fixed field ϕc).

4. If we used (134), reapply the ∂̃t-derivative which acts on the integrand of the one-loop momentum
integrals. This will increase the number of diagrams since it generates multiple diagrams with
identical topology but regulator insertions attached to different internal lines [69]. It also
renders momentum integrals both UV and IR finite. The resulting exact flow equation for Γ(n)

k

is therefore fully regularized.

An example of this procedure, the case n = 2 for a scalar theory, was presented in eqs. (27)
and (28) using a simplified notation that suppresses momentum arguments and field indices. To
gain a more detailed understanding of the type of fluctuations that generate the flow of Γ(2)

k , we
rederive the result here with indices and momenta reinstated. For the one-point function we get10

∂tΓ(1)
k,a(q) = δ

δϕa(q)
1
2 Tr

[
∂tRk

Γ(2)
k +Rk

]
= δ

δϕa(q)
1
2

N∑
i,j=1

∑∫
p1,p2

∂tRk,ij(p1, p2)
Γ(2)
k,ji(p2, p1) +Rk,ji(p2, p1)

= −1
2

N∑
i,j
k,l

∑∫
p1,p2
p′3,p

′
4

∂tRk,ij(p1, p2)
Γ(2)
k,jk(p2, p3) +Rk,jk(p2, p3)

Γ(3)
k,akl(q, p3, p4)

Γ(2)
k,li(p4, p1) +Rk,li(p4, p1)

.

(135)

The integrand in (135) corresponds to the diagram

p2p3

p4 p1

p2p3

p4 p1

p2p3

p4 p1

p2p3

p4 p1

∂kRk,ij(p1, p2)

Gk,jk(p2, p3)

Gk,li(p4, p1)

ϕa

q

Γ(3)
k,akl(q, p3,−p4)

(136)

The sign as well as the additional index summation over k, l and momentum integration over p3,
p4 in (135) stem from the functional chain rule,

δ
[
Γ(2)
k,bc(q2, q3)

]−1

δϕa(q1) =
N∑

i,j=1

∑∫
p′1,p

′
2

δ[Γ(2)
k,bc(q2, q3)]−1

δΓ(2)
k,ij(p1, p2)

δΓ(2)
k,ij(p1, p2)
δϕa(q1)

= −
N∑
i,j
k,l

∑∫
p′1,p

′
2

p′3,p
′
4

1
Γ(2)
k,bk(q2, p3)

δΓ(2)
k,kl(p3, p4)

δΓ(2)
k,ij(p1, p2)

1
Γ(2)
k,lc(p4, q3)

Γ(3)
k,aij(q1, p1, p2)

= −
N∑

i,j=1

∑∫
p′1,p

′
2

Γ(3)
k,aij(q1, p1, p2)

Γ(2)
k,bi(q2, p1) Γ(2)

k,cj(p2, q3)
.

(137)

10A primed integration variable indicates that it does not include the factor T/(2π)d as in eq. (88), but rather∑∫
p′

=
∑

p0

∫
Rd ddp as appropriate for the functional chain rule.
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Taking a further derivative δ/δϕb(q2) of (135) yields the flow equation for the 2-point function,

∂tΓ(2)
k,ab(q1, q2) = 1

2

N∑
i,j,k
l,m,n

∑∫
p1,p2,p′3
p′4,p

′
5,p
′
6

∂tRk,ij(p1, p2) (138)

×
(
Gk,jk(p2, p3) Γ(3)

k,akl(q1, p3,−p4)Gk,lm(p4, p5) Γ(3)
k,bmn(−q2, p5,−p6)Gk,ni(p6, p1) (139)

+Gk,jm(p2, p5) Γ(3)
k,bmn(−q2, p5,−p6)Gk,nk(p6, p3) Γ(3)

k,akl(q1, p3,−p4)Gk,li(p4, p1) (140)

−Gk,jk(p2, p3) Γ(4)
k,abkl(q1,−q2, p3,−p4)Gk,li(p4, p1)

)
, (141)

where

(139) =
p6

p1p2

p3

p4 p5

p6

p1p2

p3

p4 p5

p6

p1p2

p3

p4 p5

p6

p1p2

p3

p4 p5

p6

p1p2

p3

p4 p5

p6

p1p2

p3

p4 p5

∂kRk,ij(p1, p2)
Gk,jk(p2, p3) Gk,ni(p6, p1)

Gk,lm(p4, p5)

ϕa

q1

ϕb

q2

Γ(3)
k,akl(q1, p3,−p4) Γ(3)

k,bmn(−q2, p5,−p6)

, (142)

(140) =

p6p3

p4

p1 p2

p5

p6p3

p4

p1 p2

p5

p6p3

p4

p1 p2

p5

p6p3

p4

p1 p2

p5

p6p3

p4

p1 p2

p5

p6p3

p4

p1 p2

p5

∂kRk,ij(p1, p2)
Gk,jm(p2, p5)Gk,li(p4, p1)

Gk,nk(p6, p3)

ϕa

q1

ϕb

q2

Γ(3)
k,akl(q1, p3,−p4) Γ(3)

k,bmn(−q2, p5,−p6)

, (143)

(141) =

p1p2

p3 p4

p1p2

p3 p4

p1p2

p3 p4

p1p2

p3 p4

∂kRk,ij(p1, p2)

Gk,jk(p2, p3) Gk,li(p4, p1)

ϕa ϕb

q1 q2

Γ(4)
k,abkl(q1,−q2, p3,−p4)

. (144)

(Sums over indices and integrals over momenta apply only to diagrams in which they appear, i.e.
m, n, p5 and p6 are not traced in the third diagram.)
By undoing the cutoff derivative, (138) reduces to

∂tΓ(2)
k,ab(q1, q2) = 1

2

N∑
i,j
k,l

∑∫
p1,p2
p′3,p

′
4

∂̃t

[
Gk,ij(p1, p2) Γ(4)

k,abji(q1,−q2, p1,−p2)

−Gk,ij(p1, p2) Γ(3)
k,akl(q1, p2,−p3)Gk,kl(p3, p4) Γ(3)

k,bli(−q2,−p1, p4)
]

(145)
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= 1
2

N∑
i,j
k,l

∑∫
p1,p2
p′3,p

′
4

∂̃t

(
p1p2 p1p2

Gk,ij(p1, p2)

ϕa ϕb

q1 q2

Γ(4)
k,abji(q1,−q2,−p1, p2)

−
p1p2

p3 p4

p1p2

p3 p4

p1p2

p3 p4

p1p2

p3 p4

Gk,ij(p1, p2)

Gk,kl(p3, p4)

ϕa

q1

ϕb

q2

Γ(3)
k,ajk(q1, p2,−p3) Γ(3)

k,bli(−q2,−p1, p4))
.

Despite what we said in item 2 on page 27, we will now make the simplifying assumption of
momentum-independent vertices. This has two important consequences.

1. The effective vertices Γ(n)
k follow more easily as field derivatives not of the entire effective action

Γk but only its momentum-independent part, i.e. the effective potential Uk(ρ).

2. Since we are working with amputated diagrams, neglecting the momentum-dependence of
vertices renders (144) and the first diagram in (145) q-independent. As a result, it drops out of
all flow equations upon projecting with ∂q2 or discq0 so we don’t need to consider it (nor the
4-point function) further.

Using the Feynman rules derived in sec. 4.3, we can assemble an algebraic expression for the r.h.s.
of (145). For a = b = 1 and q1 = q2 = q (as appropriate for quantum fluctuations generating the
scale dependence of Z1 and γ2

1), the second diagram evaluates to

− 1
2

N∑
i,j
k,l

∑∫
p1,p2
p′3,p

′
4

p1p2

p3 p4

p1p2

p3 p4

p1p2

p3 p4

p1p2

p3 p4

Gk,ij(p1, p2)

Gk,kl(p3, p4)

ϕa

q1

ϕb

q2

Γ(3)
k,ajk(q1, p2,−p3) Γ(3)

k,bli(−q2,−p1, p4)

(a = b = 1, q1 = q2 = q)

= −1
2
(
ϕ3
c U
′′′
k + 3ϕc U ′′k

)2∑∫
p

Gr(p)Gr(q + p)− 1
2(N − 1)ϕ2

c

(
U ′′k
)2∑∫

p

Gg(p)Gg(q + p),

(146)

where Gr and Gg denote the (renormalized) radial and Goldstone propagators,

Gr(p) = 1
Z1p2 + U ′k(ρc) + 2ρc U ′′k (ρc)− is(p0) γ2

1 +Rk(p)/Zk
,

Gg(p) = 1
p2 + U ′k(ρc) +Rk(p)/Zk

(147)

The index summation and momentum integration in (146) were carried out separately, the former
yielding

N∑
i,j,k,l=1

Gij
[
ϕ3
c U
′′′
k δ11 δj1 δk1 + ϕc U

′′
k

(
δ11 δjk + δj1 δk1 + δk1 δj1

)]
×Gkl

[
ϕ3
c U
′′′
k δ11 δi1 δl1 + ϕc U

′′
k

(
δ11 δil + δi1 δl1 + δi1 δl1

)]
=
(
ϕ3
c U
′′′
k + 3ϕc U ′′k

)2
G2
r + (N − 1)ϕ2

c

(
U ′′k
)2
G2
g,

(148)

while for the latter, three of the four momentum integrals are trivial,

∑∫
p1,p2
p′3,p

′
4

δ(q + p2 − p3)G(p1) δ(p1 − p2) δ(−q − p1 + p4)G(p3) δ(p3 − p4) = T δ(0)
(2π)d

∑∫
p

G(p)G(q + p).

(149)
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Notice the T δ(0)/(2π)d which cancels with the one in eqs. (124) and (131). Thus the flow equations
for Z1 and γ1 read

∂tZ1

∂tγ
2
1

}
=
{
η Z1 + ∂q2

η γ2
1 + discq0

}
1
Zk

∂̃t

[
− 1

2
(
ϕ3
c U
′′′
k + 3ϕc U ′′k

)2∑∫
p

Gr(p)Gr(q + p)

− 1
2(N − 1)ϕ2

c

(
U ′′k
)2∑∫

p

Gg(p)Gg(q + p)
]
.

(150)

Using ϕc =
√

2 ρc, the prefactor of the radial propagator arising from the momentum-independent
vertices can be expanded into

1
2
(
ϕ3
c U
′′′
k + 3ϕc U ′′k

)2
= 4ρ3

c

(
U ′′′k

)2 + 12ρ2
c U
′′
k U
′′′
k + 9ρc

(
U ′′k
)2
. (151)

For our choice of a quartic effective potential of the form (65) this reduces to

4ρ3
c

(
U ′′′k

)2 + 12ρ2
c U
′′
k U
′′′
k + 9ρc

(
U ′′k
)2 = 9ρc λ2. (152)

Moving on to derive the flow of Zk, we set a = b = 2. The index summation now yields
N∑

i,j,k,l=1
Gij

[
ϕ3
c U
′′′
k δ21 δj1 δk1 + ϕc U

′′
k

(
δ21 δjk + δj1 δk2 + δk1 δj1

)]
Gkl

[
ϕ3
c U
′′′
k δ11 δi1 δl1 + ϕc U

′′
k

(
δ11 δil + δi1 δl1 + δi1 δl1

)]
= 2ϕ2

c

(
U ′′k
)2
GrGg.

(153)

The structure of Dirac deltas remains the same. Thus the flow equation for Zk is

∂tZk = −1
2∂q2 ∂̃t 2ϕ2

c

(
U ′′k
)2∑∫

p

Gr(p)Gg(q + p). (154)

We now introduce the threshold functions ∂̃tJ ijab = ∂̃t
∑∫
pG

i
a(p)Gjb(q+p), where a, b ∈ {r, g} specify

the type of fields running in the loop (radial or Goldstone mode). In our truncation they take the
following explicit forms,

J ij11 = J ij11(q, z1, z2,m
2
1,m

2
2, γ

2
1 , γ

2
2 , R)

=
∑∫
p

1(
z1p2 +m2

1 − is(p0) γ2
1 +R

)i 1(
z2(p+ q)2 +m2

2 − is(p0 + q0) γ2
2 +R

)j ,
J ij22 = J ij22(q, 1, 1, 0, 0, 0, 0, R) =

∑∫
p

1(
p2 +R

)i 1(
(p+ q)2 +R

)j ,
J ij12 = J ij12(q, z1, 1,m2

1, 0, γ2
1 , 0, R) =

∑∫
p

1(
z1p2 +m2

1 − is(p0) γ2
1 +R

)i 1(
(p+ q)2 +R

)j .
(155)

Using the shorthand notation J11
ab = Jab, we can write the flow equations (150) and (154) for

ρc = ρ0 very compactly,

∂tZ1 = η Z1 − ∂q2 ∂̃t ρ0 λ
2[9 J11 + (N − 1) J22

]
, (156)

∂tγ
2
1 = η γ2

1 − discq0 ∂̃t ρ0 λ
2 [9 J11 + (N − 1) J22

]
, (157)

∂tZk = −∂q2 ∂̃t 2ρ0 λ
2 J12. (158)

To describe on-shell excitations of the radial field, (156) and (157) should be evaluated at the
external energy q2 = 2ρ0 λ

2/Z1, whereas Goldstone bosons are on-shell for q2 = 0 which is where
we evaluate (158). It is worth noting, however, that if we were interested in virtual particles, we
would be free to solve the flow equations (156) to (158) for arbitrary q.
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5. Matsubara Summation
Our goal in this section is to analytically perform the summation over Matsubara frequencies iωn,
n ∈ Z which for T > 0 is part of the trace Tr on the r.h.s. of all flow equations. We will carry
out the summation on the level of the threshold functions Ij and ∂̃tJ ijab. They provide a unified
means of formulating flow equations, allowing us to perform the summation once and apply it to
multiple flow equations by virtue of the recursive relation (66).
In sec. 5.1 we show how the class of regulators introduced in sec. 4.2 enables us to decompose

the regularized propagator Gk(p) = (Pk +Rk)−1 into a sum of free propagators [1]. This will be
the crucial ingredient that allows us to perform the Matsubara summations in Ij in sec. 5.2 and
in Jij in sec. 5.3 analytically.

5.1. Propagator Decomposition
The choices (100) and (102) for the inverse propagator Pk and regulator Rk,

Pk = Zk
[
z p2 +m2 − is(p0) γ2

]
, Rk(p) = Zk k

2

1 + c p
2

k2

(159)

enable us to conveniently decompose the regularized propagator (Pk + Rk)−1 [1]. A detailed
calculation can be found in app. A.2. Here we only quote the final result,

1
Pk +Rk

= 1
Zk

(
β+

p2 + α+k2 + β−

p2 + α−k2

)
, (160)

with dimensionless complex scale-dependent coefficients

α± = 1
2

(1
c

+ m̃2

z
− i s(p0) γ̃

2

z

)
±
(
A+ i s(p0)B

)
,

β± = 1
2 z ±

(
C + i s(p0)D

)
,

(161)

where m̃2 = m2/k2, γ̃2 = γ2/k2 and

A = 1
2i

[√√√√ 1
c z
− 1

4

(1
c
− m̃2

z
− iγ̃2

z

)2
−

√√√√ 1
c z
− 1

4

(1
c
− m̃2

z
+ iγ̃2

z

)2]
, (162)

B = 1
2

[√√√√ 1
c z
− 1

4

(1
c
− m̃2

z
− iγ̃2

z

)2
+

√√√√ 1
c z
− 1

4

(1
c
− m̃2

z
+ iγ̃2

z

)2]
, (163)

C = −
A
(

1
c −

m̃2

z

)
+B γ̃2

z

4 z (A2 +B2) , D =
B
(

1
c −

m̃2

z

)
−A γ̃2

z

4 z (A2 +B2) . (164)

(160) closely resembles the sum of two free propagators, which significantly simplifies calculations.
Choosing the branch cut of the complex square root along the negative real axis ensures that A,
B, C and D are always real. (Even though we set c0 = 1, c1 = c > 0, cj = 0 ∀ j > 1 to obtain this
result, a similar decomposition is possible for the whole class of regulators (101).)
We showed in sec. 3.3 that the propagator P−1

k (p) may exhibit poles and branch cuts only on
the real frequency axis. The same cannot be said for the regularized propagator (Pk + Rk)−1.
Since Rk brings with it its own analytic structure, (Pk +Rk)−1 will in general feature singularities
away from the real frequency axis [1]. In our case (160), for γ̃2/z − B < 0 and s(p0) = 1 there
are poles at p0 = ±

√
p2 + α+k2. A Källen-Lehmann spectral representation of the form (78) is

therefore not possible for (Pk +Rk)−1. Although a proof is still pending, this is believed to be a
generic feature of cutoff functions that serve as effective UV regulators in Minkowski space [1].
Notably, (Pk +Rk)−1 also has a branch cut. However, assuming all integrals along this branch cut
are dominated by nearby poles on the different Riemann sheets, it will not inhibit our analytic
treatment.
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5.2. Effective Potential
We now perform the Matsubara summation for the simplest threshold function I0 [68]. We
can afterwards extend the result to higher-orders Ij with j ≥ 1 by using the relation (66),
∂m2Ij = (δj0 − j) Ij+1. I0 was defined as (cf. eq. (116))

I0(Zk, z,m2, γ2, Rk) = T
∑
p0

∫
p

∂tRk/Zk
z p2 +m2 − is(p0) γ2 +Rk/Zk

=
∑∫
p

∂tRk
Pk +Rk

= ∂̃t
∑∫
p

ln(Pk +Rk).
(165)

We denote the difference between I0 evaluated at some intermediate renormalization scale k and
in the ultraviolet Λ as ∆I0,11

∆I0 =
∫ k

Λ
d̃t I0 =

∑∫
p

[
ln(Pk +Rk)− ln(PΛ +RΛ)

]
(166)

= −
∑∫
p

{
ln 1
Zk

[
β+

p2 + α+k2 + β−

p2 + α−k2

]
− ln 1

ZΛ

[
β+

p2 + α+Λ2 + β−

p2 + α−Λ2

]}
,

where we inserted the decomposition (160). The tilde on d̃t indicates that we integrate with
respect to the explicit scale dependence in Rk only. Since the second term in ∆I0 is k-independent,
we can at any time easily recover I0 by taking the ∂̃t derivative of ∆I0.

Using ZΛ = 1 ≈ Zk, β+ + β− = 1
z and α+ β− + α− β+ = 1

c z (see (275)), we can write

− ln
(

β+

p2 + α+k2 + β−

p2 + α−k2

)
= ln

[
(p2 + α+k2)(p2 + α−k2)

]
− ln

[
β+(p2 + α−k2) + β−(p2 + α+k2)

]
= ln(p2 + α+k2) + ln(p2 + α−k2)− ln

(1
z p

2 + 1
cz k

2),
(167)

(and similarly for the Λ-term) so that ∆I0 can also be written

∆I0 =
∑∫
p

[
ln(p2 + α+k2) + ln(p2 + α−k2)− ln(p2 + 1

c k
2)

− ln(p2 + α+Λ2)− ln(p2 + α−Λ2) + ln(p2 + 1
c Λ2)

]
,

(168)

The terms in (168) can be pairwise combined into integrals,

T
∑
p0

ln(p2 + α+k2)− ln(p2 + α+Λ2) =
∫ p2+α+k2

p2+α+Λ2
dx2 T

∑
n∈Z

1
ω2
n + x2 , (169)

and similarly for the other four terms. (Recall that p2 = −p2
0 + p2 where p0 ∈ {iωn = 2πiTn|n ∈

Z}.) The Matsubara summation can then be expressed as the complex contour integral,

T
∑
n∈Z

1
ω2
n + x2 =

∮
C

dp0
2πi

1
−p2

0 + x2
[
nB(p0) + 1

2
]
, (170)

where
nB(p0) = 1

ep0/T − 1
(171)

is the Bose-Einstein distribution and C is the path shown in fig. 4.
11This step serves as a type of implicit Pauli-Villars regularization with the heavy mass term replaced by the

momentum-dependent RΛ(p) in the inverse propagator [13].
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Re(p0)
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iω3

0

C

poles of 1
−p2

0+x2

p1

p2

Figure 4: Counterclockwise path C around the imaginary p0-axis but excluding poles of (−p2
0+x2)−1

In (170), we used that nB(p0) has only simple poles located at all Matsubara frequencies iωn,
n ∈ Z. At p0 = i ωn = i2πTn, we have ep0/T = e2πi n = 1 and so the denominator in (171) vanishes.
Using l’Hôpital’s rule, we find that the residue at all poles is the temperature T ,

lim
p0→i ωn

p0 − i ωn
ep0/T − 1

= lim
p0→i ωn

T

ep0/T
= T ∀n ∈ Z. (172)

The +1
2 was merely added to antisymmetrize nB(−p0) + 1

2 = −
[
nB(p0) + 1

2
]
. Applying (170) to

all terms in ∆I0 we get

∆I0 =
∫

p

(∫ p2+α+k2

p2+α+Λ2
+
∫ p2+α−k2

p2+α−Λ2
+
∫ p2+k2/c

p2+Λ2/c

)
dx2

∮
C

dp0
2πi

nB(p0) + 1
2

−p2
0 + x2 . (173)

We now deform the contour C into a circle and take the radius to infinity. This will enclose the
poles of (−p2

0 + x2)−1 scattered throughout the complex plane. Their contribution is removed
again by enclosing them in clockwise contours as shown in fig. 5.

Re(p0)

Im(p0)

iω−3

iω−2

iω−1

iω1

iω2

iω3

0

C

poles of 1
−p2

0+x2

p1

p2

C1

C2

Figure 5: Sum of contours equivalent to C in fig. 4
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Since the integrand (170) falls off faster than 1/p0, contributions from the circle C at infinity
vanish. This contour is thus equivalent to the one in fig. 6 where we discarded C and blew up C1
and C2 to enclose the entire p0-plane save for the imaginary axis.

Re(p0)

Im(p0)

iω−3

iω−2

iω−1

iω1

iω2

iω3

0

C1C2

poles of 1
−p2

0+x2

p1

p2

Figure 6: Contour enclosing the entire plane except for the imaginary axis

It is important in this context that α± depends on s(p0) as this implies x = x
(
s(p0)

)
. The

contour in (170) therefore encloses both poles and branch cuts. If there were only poles, we could
simply invoke the residue theorem to turn the infinite sum over Matsubara frequencies (170) into
a finite sum over the residues at the poles p0 = ±x of (−p2

0 + x2)−1. This would give

T
∑
n∈Z

1
ω2
n + x2 = −

∑
p0=±x

Res
nB(p0) + 1

2
−p2

0 + x2 = −nB(−x)− nB(x)
2x = coth(x/2T )

2x . (174)

(The residues appear with a sign due to the clockwise contour.) Evaluating the contribution from
the branch cuts, however, requires additional work. Using

1
−p2

0 + x2 = 1
2x

( 1
p0 + x

− 1
p0 − x

)
(175)

and substituting dx2 = 2x dx, (169) becomes

T
∑
n∈Z

ln(p2 + α+k2)− ln(p2 + α+Λ2)

=
∫ √p2+α+k2

√
p2+α+Λ2

dx
∮
C1+C2

dp0
2πi

[ 1
p0 + x

− 1
p0 − x

][
nB(p0) + 1

2
]
.

(176)

Note that the integral boundaries receive a square root when substituting dx2 → dx.
We can now use the structure of s(p0) plotted in fig. 7 to split the contour integral into two

parts, the first being branch-cut free and the second with branch cut structure manifest.

(176) = 1
2

∫
C1+C2

dp0
2πi

[∫ √p2+α++k2

√
p2+α++Λ2

+
∫ √p2+α+−k2

√
p2+α+−Λ2

]
dx
[ 1
p0 + x

− 1
p0 − x

][
nB(p0) + 1

2
]

(177)

+ 1
2

∫
C1+C2

dp0
2πi s(p0)

[∫ √p2+α++k2

√
p2+α++Λ2

−
∫ √p2+α+−k2

√
p2+α+−Λ2

]
dx
[ 1
p0 + x

− 1
p0 − x

][
nB(p0) + 1

2
]
.
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Figure 7: Structure of the sign function s(p0) = sign(Re p0 Im p0)

Observe that in the first and third quadrant of the complex plane where s(p0) = 1, the first and
third x-integrals in (177) combine to give (176) while the second and fourth cancel. Conversely, in
the second and fourth quadrant s(p0) = −1 and so the first and third x-integrals cancel while the
second and fourth sum to (176). This split up is beneficial in two ways. Not only does it reveal
the branch cut structure in ∆I0, it also separates the x-integration into parts where s(p0) takes a
definite sign as reflected in the shorthand notation α±± = α±

(
s(p0) = ±1

)
.

We now perform the p0-integration in the upper and lower line of (177) separately. The former
contains only (simple) poles at p0 = ±x. The residues can be computed by the limit formula,

Res
p0=∓x

1
p0 ± x

= lim
p0→∓x

(p0 ± x) 1
p0 ± x

= 1. (178)

The first line thus integrates to[∫ √p2+α++k2

√
p2+α++Λ2

+
∫ √p2+α+−k2

√
p2+α+−Λ2

]
dx
[
nB(x) + 1

2
]

(179)

Due to s(p0), the integral on the second line encloses a branch cut along the real p0-axis in addition
to the poles at p0 = ±x. The contribution from the poles alone is[∫ √p2+α++k2

√
p2+α++Λ2

−
∫ √p2+α+−k2

√
p2+α+−Λ2

]
dx sI(x)

[
nB(x) + 1

2
]
, (180)

where sI(x) = sign(Im x). To isolate the contribution from the branch cut, we integrate along the

Re(p0)

Im(p0) Cb

Figure 8: Contour Cb suitable to evaluate only branch cut contributions

contour Cb in fig. 8. Cb amounts to an integral from 0 to ∞ and one from −∞ to 0. We integrate
twice along these stretches in opposite directions. Usually the resulting contributions cancel. In
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our case, however, sI(p0) = −1 along the lower lines so we get a factor of 2,∫
Cb

dp0
2πi =

∫ 0

−∞

dp0
2πi sI(p0 + iε)︸ ︷︷ ︸

1

+
∫ −∞

0

dp0
2πi sI(p0 − iε)︸ ︷︷ ︸

−1

+
∫ ∞

0

dp0
2πi sI(p0 + iε)︸ ︷︷ ︸

1

+
∫ 0

∞

dp0
2πi sI(p0 − iε)︸ ︷︷ ︸

−1

= 2
∫ 0

−∞

dp0
2πi + 2

∫ ∞
0

dp0
2πi ,

(181)

Exchanging bounds on the first integral and substituting p0 → −p0 (which leaves the integrand
(p0 + x)−1 − (p0 − x)−1 invariant), the total contribution from the cut is therefore[∫ √p2+α++k2

√
p2+α++Λ2

−
∫ √p2+α+−k2

√
p2+α+−Λ2

]
dx 2

∫ ∞
0

dp0
2πi

[ 1
p0 + x

− 1
p0 − x

][
nB(p0) + 1

2
]

(182)

Away from the imaginary axis the Bose-Einstein distribution plotted in fig. 9 becomes approximately
flat, particularly at sufficiently low temperatures. We assume |Re(x)| � 0 (which is satisfied unless
p2 + Re(α±±) k2 < 0 and Im(α±±) k2 ≈ 0) so that the distribution is approximately constant
across the width of the poles in (182). Since p0 is integrated from 0 to ∞, these integrals are
dominated by the poles at p0 = x (as opposed to those at p0 = −x) so we make the simplifying
replacement nB(p0)→ nB(x). This allows us to write
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n
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2 · T

2 · T

Figure 9: Bose distribution plotted over the complex plane and for different temperatures

2
∫ ∞

0

dp0
2πi

[ 1
p0 + x

− 1
p0 − x

]
=
∫ ∞
−∞

dp0
2πi

[ 1
p0 + x

− 1
p0 − x

]
= −sI(x). (183)

Plugging this back into (182), we find that it precisely cancels with the contribution (180) from
the poles. The result of the Matsubara summation in (176) is therefore simply given by (179).
Executing the x-integration we get (179)

∑
p0

[
ln(p2 + α+k2)− ln(p2 + α+Λ2)

]
=
(∫ √p2+α++k2

√
p2+α++Λ2

+
∫ √p2+α+−k2

√
p2+α+−Λ2

)
dx
[
nB(x) + 1

2
]

= 1
2

[√
p2 + α++k2 −

√
p2 + α++Λ2 +

√
p2 + α+−k2 −

√
p2 + α+−Λ2

]

+ T

[
ln
(
e
√

p2+α++k2/T − 1
e
√

p2+α++Λ2/T − 1

)
+ ln

(
e
√

p2+α+−k2/T − 1
e
√

p2+α+−Λ2/T − 1

)]
,

(184)
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where we used ∫ b

a

( 1
ex/T − 1

+ 1
2

)
dx = 1

2(b− a) + T ln
(
eb/T − 1
ea/T − 1

)
. (185)

The second bracket in (184) disappears for T → 0+ so the threshold functions split up into a term
that carries the entire temperature dependence and a T -independent offset. In total, ∆I0 after
Matsubara summation reads

∆I0 =
∫

p

10∑
j=1

wj

[1
2

√
p2 + µj + T ln

(
e
√

p2+µj/T − 1
)]
, (186)

where

j 1 2 3 4 5 6 7 8 9 10
µj α++k2 α+−k2 α−+k2 α−−k2 1

c k
2 α++Λ2 α+−Λ2 α−+Λ2 α−−Λ2 1

c Λ2

wj 1 1 1 1 −2 −1 −1 −1 −1 2

The terms 1
c k

2 and 1
c Λ2 appear with a factor of ±2 because they are independent of s(p0). They

therefore give the same contribution twice in (177) where we performed the split into s(p0) = 1
and s(p0) = −1. We can recover I0 by taking the derivative with respect to explicit k-dependence
of (186)

I0 = ∂̃t ∆I0 =
∫

p

5∑
j=1

wj
2

∂̃t µj√
p2 + µj

[1
2 + 1

1− e−
√

p2+µj/T

]
. (187)

Recall that ∂̃t targets only the explicit scale dependence that was introduced into the regularized
propagator (Pk+Rk)−1 by the regulator Rk = Zk k

2/(1+c p2/k2). The only explicit k-dependence
in α±± is contained in m̃2 = m2/k2 and γ̃2 = γ2/k2. By the chain rule ∂̃t µj thus evaluates to

∂̃tµj = k ∂̃kµj =
{

2k2 α±± − 2m̃2 ∂m̃2α±± − 2γ̃2 ∂γ̃2α±± j ∈ {1, 2, 3, 4},
2k2/c j = 5,

(188)

and zero for j > 5. Higher orders follow from I0 by taking derivatives with respect to m̃2.

5.3. Propagator
We now perform the Matsubara summation for the threshold function ∂̃tJab in terms of which we
formulated the flow equations for Zk, Z1, and γ2

1 . Consider [68]

J11 = J11(q, z1, z2,m
2
1,m

2
2, γ

2
1 , γ

2
2 , R) =

∑∫
p

G1(p)G2(p+ q)

=
∑∫
p

1
z1p2 +m2

1 − is(p0) γ2
1 +R

1
z2(p+ q)2 +m2

2 − is(p0 + q0) γ2
2 +R

.
(189)

The two propagators can be decomposed according to (160),

G1(p) = β+
1

−p2
0 + p2 + α+

1 k
2 + β−1
−p2

0 + p2 + α−1 k
2 , (190)

G2(p+ q) = β+
2

−(p0 + q0)2 + p2 + α+
2 k

2 + β−2
−(p0 + q0)2 + p2 + α−2 k

2 . (191)

We set q = 0 since the external spatial momentum is irrelevant for the Matsubara summation. It
affects neither the poles nor the branch cut structure in a qualitative way. We further defined

α±1 = α±
(
m2

1, γ
2
1 , s(p0), z1, c

)
, β±1 = β±

(
m2

1, γ
2
1 , s(p0), z1, c

)
,

α±2 = α±
(
m2

2, γ
2
2 , s(p0 + q0), z2, c

)
, β±2 = β±

(
m2

2, γ
2
2 , s(p0 + q0), z2, c

)
.

(192)
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Multiplying (190) and (191) we get four terms,

J11 =
∑
i,j∈±

∑∫
p

βi1
−p2

0 + p2 + αi1k
2

βj2
−(p0 + q0)2 + p2 + αj2k

2

=
∑
i,j∈±

∑∫
p

βi1

2
√

p2 + αi1k
2

[
1

−p0 +
√

p2 + αi1k
2
− 1
−p0 −

√
p2 + αi1k

2

]

× βj2

2
√

p2 + αj2k
2

[
1

−(p0 + q0) +
√

p2 + αj2k
2
− 1
−(p0 + q0)−

√
p2 + αj2k

2

]
.

(193)

In the second step, we used the decomposition (175). (193) has four simple poles at

p0 = ±
√

p2 + αi1k
2 and p0 = −q0 ±

√
p2 + αj2k

2, (194)

Due to the presence of s(p0) and s(p0 + q0) in α±1/2, β
±
1/2, the integrand (193) also exhibits branch

cuts.12 To deal with these cuts, we use the structure of s(p0) to decompose the integrand in a
manner very similar to eq. (177) into a sum of four terms J11 = J1 + J2 + J3 + J4, each with a
different branch cut structure parametrized by one of the following factors,

1, s(p0), s(p0 + q0), s(p0) s(p0 + q0). (195)

J1 contains neither s(p0) nor s(p0 + q0) and is thus branch-cut-free. It takes the form

J1 = 1
4
∑
i,j∈±

∑
r,s∈±

∑∫
p

βir1

2
√

p2 + αir1 k
2

[
1

−p0 +
√

p2 + αir1 k
2
− 1
−p0 −

√
p2 + αir1 k

2

]

× βjs2

2
√

p2 + αjs2 k
2

[
1

−(p0 + q0) +
√

p2 + αjs2 k
2
− 1
−(p0 + q0)−

√
p2 + αjs2 k

2

]
.

(196)

The Ji with i > 1 are identical except for additional factors of

J2 : r s(p0), J3 : s s(q0 + p0), J4 : r s s(p0) s(q0 + p0), (197)

to be placed inside the sum and p0-integral. Since J1 contains no cut, we can immediately carry
out the Matsubara summation via contour integration as done previously. This will pick up the
residues at the poles in (194), resulting in

J1 = 1
4
∑
i,j,r,s

∫
p

βir1

2
√

p2 + αir1 k
2

βjs2

2
√

p2 + αjs2 k
2{[

nB
(√

p2 + αir1 k
2
)

+ 1
2

]
(contribution from poles at p0 = ±

√
p2 + αir1 k

2)

×
(

1
−q0 −

√
p2 + αir1 k

2 +
√

p2 + αjs2 k
2
− 1
−q0 −

√
p2 + αir1 k

2 −
√

p2 + αjs2 k
2

(198)

+ 1
−q0 +

√
p2 + αir1 k

2 +
√

p2 + αjs2 k
2
− 1
−q0 +

√
p2 + αir1 k

2 −
√

p2 + αjs2 k
2

)

+
[
nB
(√

p2 + αjs2 k
2
)

+ 1
2

]
(contribution from poles at p0 = −q0 ±

√
p2 + αjs2 k

2)

12Our notation suggests q0 and p0 are real. Keep in mind that p0, q0 are analytically continued frequencies. Their
original domain, the imaginary axis, was extended to the entire complex plane. This enables s(p0) and s(p0 + q0)
to parametrize branch cuts along the real frequency axis.

39



×
(

1
q0 −

√
p2 + αjs2 k

2 +
√

p2 + αir1 k
2
− 1
q0 −

√
p2 + αjs2 k

2 −
√

p2 + αir1 k
2

(199)

+ 1
q0 +

√
p2 + αjs2 k

2 +
√

p2 + αir1 k
2
− 1
q0 +

√
p2 + αjs2 k

2 −
√

p2 + αir1 k
2

)}

= 1
4
∑
i,j,r,s

∫
p

βir1

2
√

p2 + αir1 k
2

βjs2

2
√

p2 + αjs2 k
2

(200)

×

[
nB

(√
p2 + αir

1 k
2
)

+ nB

(√
p2 + αjs

2 k
2
)

+ 1

−q0 +
√

p2 + αir
1 k

2 +
√

p2 + αjs
2 k

2
+
nB

(√
p2 + αir

1 k
2
)
− nB

(√
p2 + αjs

2 k
2
)

−q0 −
√

p2 + αir
1 k

2 +
√

p2 + αjs
2 k

2

−
nB

(√
p2 + αir

1 k
2
)

+ nB

(√
p2 + αjs

2 k
2
)

+ 1

−q0 −
√

p2 + αir
1 k

2 −
√

p2 + αjs
2 k

2
−
nB

(√
p2 + αir

1 k
2
)
− nB

(√
p2 + αjs

2 k
2
)

−q0 +
√

p2 + αir
1 k

2 −
√

p2 + αjs
2 k

2

]
.

In (198), we used antisymmetry of nB(−p0) + 1
2 = −

[
nB(p0) + 1

2
]
to pull out an overall factor of[

nB
(√

p2 + αir1 k
2)+ 1

2
]
in front of all four terms, even though the last two terms originate from the

pole at p0 = −
√

p2 + αir1 k
2 and therefore initially appear with a factor

[
nB
(
−
√

p2 + αir1 k
2)+ 1

2
]
.

This gives rise to a relative sign in front of the last two terms which is compensated by another sign in
front of −

(
−p0−

√
p2 + αir1 k

2)−1. Likewise, in (199) we used nB(−p0−q0)+ 1
2 = −

[
nB(p0+q0)+ 1

2
]

which compensates the sign in front of−
[
−(p0+q0)−

√
p2 + αjs2 k

2]−1. (200) follows from combining
terms in (198) and (199).

The contributions from J2 and J3 vanish to good approximation. The reason is again the same
cancellation between pole and branch cut contributions demonstrated for ∆I0 in eqs. (180), (182)
and (183). To see this explicitly, consider the integral∫

C1+C2

dp0
2πi s(p0) f(p0)

( 1
p0 − E

− 1
p0 + E

)[
nB(p0) + 1

2
]
, (201)

where C1 and C2 enclose the entire complex plane save the imaginary axis as shown in fig. 10.
The poles at p0 = ±E contribute

Re(p0)

Im(p0)

iω−3

iω−2

iω−1

iω1

iω2

iω3

0

C1C2

E

−E

Figure 10: Contour enclosing poles and branch cuts of J2/3 but excluding the Matsubara frequencies

− s(E)
[
f(E) + f(−E)

][
nB(E) + 1

2
]
, (202)
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where we used s(E) = s(−E) and nB(−E) + 1
2 = −

[
nB(E) + 1

2
]
. The overall sign comes from the

clockwise contour. The branch cut is evaluated by shrinking C1 and C2 until all poles scattered
throughout the complex plane are excluded. We can target only the contribution from the branch
cut by again integrating along Cb in fig. 8. This gives

2
[∫ ∞

0
−
∫ 0

−∞

]
dp0
2πi f(p0)

( 1
p0 − E

− 1
p0 + E

)[
nB(p0) + 1

2
]
. (203)

The factor of 2 comes from running back and forth along the real axis. The relative sign derives
from s(p0) since sign(Re p0) < 0 for the left half of the contour. For sufficiently large Re(E)
the first integral is strongly dominated by the pole at p0 = E while the second is dominated by
p0 = −E. That is because, as shown in fig. 9, nB(p0) is approximately constant away from the
real axis, especially at low temperatures. If we assume the same property for f(p0) (in the case of
the Ji, this is even true exactly since they contain no p0-dependence besides the pole structure
and the jump at Re p0 = 0 due to s(p0)), we can replace[

nB(p0) + 1
2
]
→
[
nB(E) + 1

2
]
, f(p0)→ f(E) (204)

in the first integral in (203), and[
nB(p0) + 1

2
]
→
[
nB(−E) + 1

2
]

= −
[
nB(E) + 1

2
]
, f(p0)→ f(−E) (205)

in the second. This gives

2
[∫ ∞

0
f(E) +

∫ 0

−∞
f(−E)

]
dp0
2πi

( 1
p0 − E

− 1
p0 + E

)[
nB(E) + 1

2
]
. (206)

Since the integrand is now symmetric with respect to p0 → −p0, we have 2
∫∞

0 = 2
∫ 0
−∞ =

∫∞
−∞,

and so (206) can be written∫ ∞
−∞

dp0
2πi

[
f(E) + f(−E)

]( 1
p0 − E

− 1
p0 + E

)[
nB(E) + 1

2
]
. (207)

The integral can be closed with a half-circle at infinity and evaluated by means of the residue
theorem, resulting in

s(E)
[
f(E) + f(−E)

][
nB(E) + 1

2
]
, (208)

which precisely cancels the contribution (202) from the poles.
Finally, J4 is proportional to γ2

1γ
2
2 . In many cases, this vanishes exactly. For instance, if (at

least) one of the particles running in the loop is a stable massless Goldstone boson with vanishing
decay width Γ = γ2/m = 0. Even if γ2

1 6= 0 6= γ2
2 are not zero for all p, J4 will only receive

contributions from those p for which both γ2
1(p2) 6= 0 and γ2

2(p2) 6= 0. Since G(p) is without
discontinuities if p2 is positive, such p are few. Thus the value of J4 is expected to be small even
in cases where it is non-zero. It will therefore be neglected. In summary, we have approximately
J11 ≈ J1 and the result of the Matsubara summation in J11 is simply (200).
Looking more closely at the expression (200) reveals that for k > 0, J1 contains not only a

single discontinuity on the real frequency axis but several jumps along lines that are approximately
parallel to the real q0-axis as shown in fig. 11. The cuts are located at

q0 =
√

p2 + αir1 k
2 +

√
p2 + αjs2 k

2 and q0 =
∣∣∣√p2 + αir1 k

2 −
√

p2 + αjs2 k
2
∣∣∣. (209)

(Note that we were dealing with branch cuts in the p0-plane when we decomposed J11 into
J1 + J2 + J3 + J4 and said that J1 is branch cut-free. Now, we are looking at J1’s branch cut
structure in the q0-plane.)
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k → 0

k → 0
Re(q0)

Im(q0)

Figure 11: Branch cut structure of J1 in the q0-plane

The cuts approach the real q0-axis with decreasing k where they merge for k → 0. Instead
of taking into account the complete analytic structure of J1, we approximate the regularized
propagator as having only a single cut on the real q0-axis. To simplify the calculation, we sum the
contributions from the different discontinuities at real q0 even if they are shifted away from the
real axis for k 6= 0. For k → 0 this simplification converges on the correct result and for k > 0 it
yields a reasonable approximation.

We project the cuts to the real q0-axis by replacing in (200)

αir1 → Reαir1 , αjs2 → Reαjs2 . (210)

This gives

discq0 J1 = 1
4
∑
i,j,r,s

∫
p

βir1

2
√

p2 + αir1 k
2

βjs2

2
√

p2 + αjs2 k
2

{[
nB
(√

p2 + αir1 k
2
)

+ nB
(√

p2 + αjs2 k
2
)]

× sign
(
Reαir1 − Reαjs2

)
πδ
(
q0 −

∣∣∣√p2 + Reαir1 k2 −
√

p2 + Reαjs2 k2
∣∣∣)

+
[
nB
(√

p2 + αir1 k
2
)

+ nB
(√

p2 + αjs2 k
2
)

+ 1
]
πδ
(
q0 −

√
p2 + Reαir1 k2 −

√
p2 + Reαjs2 k2

)}
.

(211)

6. Momentum Integration
6.1. Effective Potential
Since the integrand (186) of ∆I0 depends only on the magnitude of p, the d-dimensional momentum
integration is best carried out in spherical coordinates with trivial angular integration [68],∫

p
=
∫
Rd

ddp
(2π)d = Sd

∫ ∞
0

dp
(2π)d p

d−1, Sd = 2πd/2

Γ
(
d
2
) , (212)

where Sd denotes the surface area of the d-dimensional unit sphere and p = |p| is no longer the
4-momentum but the spatial momentum magnitude. The temperature-dependent part of the
p-integral in (186) will be evaluated numerically. Considering only the T -independent part, we
can proceed analytically.

∫
dp pd−1 1

2

√
p2 + µj =


1
16
[
p
√
p2 + µj (2p2 + µj)− µ2

j ln
(
p+
√
p2 + µj

)]
d = 3,

1
6
[
p2 + µj

]3/2
d = 2,

1
4
[
p
√
p2 + µj + µj ln

(
p+
√
p2 + µj

)]
d = 1.

(213)
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Approximating (213) for d = 3 at the upper integration boundary where p2 � µj gives
1
16
[
p
√
p2 + µj (2p2 + µj)− µ2

j ln
(
p+

√
p2 + µj

)]
= 1

16

[
2p4
√

1 + µj
p2

(
1 + µj

2p2

)
− µ2

j ln
(
p+ p

√
1 + µj

p2︸ ︷︷ ︸
≈1

)]

≈ p4

8

(
1 + µj

2p2

)(
1 + µj

2p2

)
−
µ2
j

16 ln(2p) ≈ p4

8 + µjp
2

8 +
µ2
j

32 −
µ2
j

16 ln(2p),

(214)

where we used (1 + x)n ≈ 1 + nx for x� 1. In d = 2, the same boundary contributes

1
6(p2 + µj)3/2 = p3

6

(
1 + µj

p2

)3/2
≈ p3

6 + µjp

4 , (215)

and in d = 1
1
4
[
p
√
p2 + µj + µj ln

(
p+

√
p2 + µj

)]
≈ p2

4 + µj
8 + µj

4 ln(2p). (216)

Since wj = −wj+5 all the leading terms in (214) to (216) without a factor of µj cancel under the
sum over j. Terms containing µj cancel as well up to a shift of the effective potential. To see why,
consider

α++k2 α+−k2 + α−+k2 α−−k2 = 2m2

z
+ 2k2

c
, (217)

and similarly for the (k → Λ)-term. Using the definition (276), we can calculate

(α++)2 + (α+−)2 + (α−+)2 + (α−−)2

=
[1

2

(1
c

+ m̃2

z
− i γ̃

2

z

)
+
(
A+ i B

)]2
+
[1

2

(1
c

+ m̃2

z
+ i

γ̃2

z

)
+
(
A− i B

)]2

+
[1

2

(1
c

+ m̃2

z
− i γ̃

2

z

)
−
(
A+B

)]2
+
[1

2

(1
c

+ m̃2

z
+ i

γ̃2

z

)
−
(
A−B

)]2

=
(1
c

+ m̃2

z

)2
− γ̃4

z2 + 4(A2 −B2)(279)= − 4
cz

+ 2
( 1
c2 + m̃4

z2 −
γ̃4

z2

)
,

(218)

where in the last step we used 4(A2 −B2) = − 4
c z +

(
1
c −

m̃2

z

)2
− γ̃4

z2 . In combination one finds

10∑
j=1

wj µ
2
j = 4

c z
(Λ4 − k4). (219)

This can be neglected since it is independent of m̃2 and γ̃2 and therefore only amounts to a
temperature-independent shift of the effective potential, immaterial for most practical purposes.
Thus, for d ∈ {1, 2, 3}, the contribution from the upper boundary of the momentum integration
vanishes. The lower boundary, on the other hand, is non-zero and contributes with a minus sign,

− 1
16
[
p
√
p2 + µj (2p2 + µj)− µ2

j ln
(
p+

√
p2 + µj

)] p→0−−−→ 1
32µ

2
j ln(µj), d = 3,

− 1
6
[
p2 + µj

]3/2 p→0−−−→ −1
6µ

3/2
j , d = 2,

− 1
4
[
p
√
p2 + µj + µj ln

(
p+

√
p2 + µj

)] p→0−−−→ −1
8µj ln(µj), d = 1,

(220)

and in combination for ∆I0,

∆I0 = Sd
(2π)d

10∑
j=1

wj


1
32µ

2
j ln(µj) d = 3,

−1
6µ

3/2
j d = 2,

−1
8µj ln(µj) d = 1.

(221)
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The prefactor is

Sd
(2π)d = 1

(2π)d
2πd/2

Γ
(
d
2
) =


1

2π2 d = 3,
1

2π d = 2,
1
π d = 1.

(222)

We thus get the following explicit expressions for the dimensionless threshold functions Ĩj =
k2j−d−1Ij for different values of d [68].

d + 1 = 4 Dropping again the shift of the effective potential (219), ∆Ĩ0 takes the form

∆Ĩ0 = k−4 ∆I0 = k−4
[
m4 − γ4

32π2z2 ln(k2/Λ2) +Kk4 k4 −KΛ
4 Λ4

]
, (223)

Ĩ0 = k−4 ∂̃t ∆I0 = m̃4 − γ̃4

16π2z2 +
(
4− 2m̃2 ∂m̃2 − 2γ̃2 ∂γ̃2

)
K4, (224)

Recall that ∂̃t = k ∂̃k only targets explicit k-dependence of Rk in ∆I0. The kernel Kk3 is defined as

K4 = 1
64π2

4∑
j=1

wjµ
2
j ln(µj)

= 1
64π2

[
(α++)2 ln(α++) + (α+−)2 ln(α+−) + (α−+)2 ln(α−+) + (α−−)2 ln(α−−)

]
.

(225)

Higher orders can be generated by taking derivatives with respect to to m̃2 = m2/k2.

Ĩ1 = ∂m̃2 Ĩ0 = m̃2

8π2z2 +
(
2∂m̃2 − 2m̃2 ∂2

m̃2 − 2γ̃2 ∂m̃2 ∂γ̃2

)
K4, (226)

Ĩ2 = −∂m̃2 Ĩ1 = − 1
8π2z2 +

(
2m̃2 ∂3

m̃2 + 2γ̃2 ∂2
m̃2 ∂γ̃2

)
K4, (227)

Ĩ3 = −1
2 ∂m̃2 Ĩ2 = −1

2
(
2∂3

m̃2 + 2m̃2 ∂4
m̃2 + 2γ̃2 ∂3

m̃2 ∂γ̃2

)
K4, (228)

Ĩ4 = −1
3∂m̃2 Ĩ3 = 1

6
(
4∂4

m̃2 + 2m̃2 ∂5
m̃2 + 2γ̃2 ∂4

m̃2 ∂γ̃2

)
K4. (229)

d + 1 = 3 In two spatial dimensions,

K3 = − 1
12π

4∑
j=1

wjµ
3/2
j = − 1

12π
[
(α++)3/2 + (α+−)3/2 + (α−+)3/2 + (α−−)3/2

]
(230)

in terms of which the threshold functions read

∆Ĩ0 = k−3
(
Kk3 k3 −KΛ

3 Λ3
)
, (231)

Ĩ0 = k−3 ∂̃t ∆I0 =
(
3− 2m̃2∂m̃2 − 2γ̃2 ∂γ̃2

)
K3, (232)

Ĩ1 = ∂m̃2 Ĩ0 =
(
∂m̃2 − 2m̃2 ∂2

m̃2 − 2γ̃2 ∂m̃2 ∂γ̃2

)
K3, (233)

Ĩ2 = −∂m̃2 Ĩ1 =
(
∂2
m̃2 + 2m̃2 ∂3

m̃2 + 2γ̃2 ∂2
m̃2 ∂γ̃2

)
K3, (234)

Ĩ3 = −1
2 ∂m̃2 Ĩ2 = −1

2
(
3 ∂3

m̃2 + 2m̃2 ∂4
m̃2 + 2γ̃2 ∂3

m̃2 ∂γ̃2

)
K3, (235)

Ĩ4 = −1
3 ∂m̃2 Ĩ3 = 1

6
(
5 ∂4

m̃2 + 2m̃2 ∂5
m̃2 + 2γ̃2 ∂4

m̃2 ∂γ̃2

)
K3. (236)
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d + 1 = 2 For a single dimension of space, the threshold functions take the form

∆Ĩ0 = k−2
[
−m

2

4πz ln(k2/Λ2) +Kk2 k2 −KΛ
2 Λ2

]
, (237)

Ĩ0 = k−2 ∂̃t ∆I0 = − m2

2zk2 +
(
2− 2m̃2 ∂m̃2 − 2γ̃2 ∂γ̃2

)
K2, (238)

Ĩ1 = −∂m̃2 Ĩ0 = 1
2z +

(
2m̃2 ∂2

m̃2 + 2γ̃2 ∂m̃2 ∂γ̃2

)
K2, (239)

Ĩ2 = −∂m̃2 Ĩ1 = −
(
2∂2

m̃2 + 2m̃2 ∂3
m̃2 + 2γ̃2 ∂2

m̃2 ∂γ̃2

)
K2, (240)

Ĩ3 = −1
2 ∂m̃2 Ĩ2 = 1

2
(
4 ∂3

m̃2 + 2m̃2 ∂4
m̃2 + 2γ̃2 ∂3

m̃2 ∂γ̃2

)
K2, (241)

Ĩ4 = −1
3 ∂m̃2 Ĩ3 = −1

6
(
6∂4

m̃2 + 2m̃2 ∂5
m̃2 + 2γ̃2 ∂4

m̃2 ∂γ̃2

)
K2, (242)

where

K2 = − 1
8π

4∑
j=1

wjµj ln(µj)

= − 1
8π
[
α++ ln(α++) + α+− ln(α+−) + α−+ ln(α−+) + α−− ln(α−−)

]
.

(243)

d + 1 = 1 Even the case of a time dimension all by itself with zero dimensions of space has
experimental relevance (for instance in the context of quantum dots coupled to reservoirs [1]).
The threshold functions in this case become

∆Ĩ0 = k−1[Kk1 k −KΛ
1 Λ

]
, (244)

Ĩ0 = k−1 ∂̃t ∆I0 =
(
1− 2m̃2 ∂m̃2 − 2γ̃2 ∂γ̃2

)
K1, (245)

Ĩ1 = −∂m̃2 Ĩ0 =
(
∂m̃2 + 2m̃2 ∂2

m̃2 + 2γ̃2 ∂m̃2 ∂γ̃2
)
K1, (246)

Ĩ2 = −∂m̃2 Ĩ1 = −
(
3 ∂2

m̃2 + 2m̃2 ∂3
m̃2 + 2γ̃2 ∂2

m̃2 ∂γ̃2
)
K1, (247)

Ĩ3 = −1
2 ∂m̃2 Ĩ2 = 1

2
(
5 ∂3

m̃2 + 2m̃2 ∂4
m̃2 + 2γ̃2 ∂3

m̃2 ∂γ̃2
)
K1, (248)

Ĩ4 = −1
3 ∂m̃2 Ĩ3 = −1

6
(
7 ∂4

m̃2 + 2m̃2 ∂5
m̃2 + 2γ̃2 ∂4

m̃2 ∂γ̃2
)
K1, (249)

with

K1 = 1
2

4∑
j=1

wj
√
µj = 1

2
[√

α++ +
√
α+− +

√
α−+ +

√
α−−

]
. (250)

6.2. Propagator
Like Ij , J only depends on the magnitude of p, so we again use spherical coordinates in the form

∫
p

= 2π
d
2

Γ
(
d
2
) 1

2

∫ ∞
0

dp2

(2π)d (p2)
d−2

2 , (251)

with dp2 = 2pdp. Integrating the first Dirac delta in (211) gives [68]

q0 =
√

p2 + Reαir1 k2 +
√

p2 + Reαjs2 k2 (252)

which we can solve for p2 to get

p2 = 1
4q2

0

[
q4

0 − 2q2
0
(
Reαir1 + Reαjs2

)
k2 +

(
Reαir1 − Reαjs2

)2
k4
]
. (253)
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Since (252) is a simple root of f(p2) = q0 −
√

p2 + Reαir1 k2 −
√

p2 + Reαjs2 k2, the prefactor
arising from the Dirac delta δ

(
f(p2)

)
= 1
|f ′(p2)|δ(p

2 − q2
0) is

1
|f ′(p2)| =

( 1
2
√

p2 + Reαir1 k2
+ 1

2
√

p2 + Reαjs2 k2

)−1

= 2
q0

√
p2 + Reαir1 k2

√
p2 + Reαjs2 k2,

(254)

and only contributes for q0 >
√

p2 + Reαir1 k2 +
√

p2 + Reαjs2 k2, i.e. for

θ
(
q0 −

√
p2 + Reαir1 k2 −

√
p2 + Reαjs2 k2

)
= 1, (255)

where θ denotes the Heaviside step function. The second Dirac delta gives for e.g. Reαir1 > Reαjs2

q0 =
√

p2 + Reαir1 k2 −
√

p2 + Reαjs2 k2. (256)

It contributes only for 0 = q0 =
∣∣√p2 + Reαir1 k2 −

√
p2 + Reαjs2 k2∣∣.

Interestingly, the corresponding solution for p2 is the same as in (253) and so is the prefactor
|f ′(p2)|−1. (The ranges are such that they are distinct except when one of the αs vanishes.)

In summary, we find after momentum integration

disc J = −1
4
∑

i,j,r,s

π
d
2

Γ
(

d
2
) (p2) d−2

2

(2π)d

√
p2 + Reαir

1 k
2√

p2 + αir
1 k

2

√
p2 + Reαjs

2 k
2√

p2 + αjs
2 k

2

π βir
1 β

js
2

2q0
(257)

×

[[
1 + nB

(√
p2 + αir

1 k
2
)

+ nB

(√
p2 + αjs

2 k
2
)]
θ
(
q0 −

√
p2 + Reαir

1 k
2 −

√
p2 + Reαjs

2 k
2
)

+
[
nB

(√
p2 + αir

1 k
2
)
− nB

(√
p2 + αjs

2 k
2
)]
θ
(√

p2 + Reαjs
2 k

2 −
√

p2 + Reαir
1 k

2 − q0

)
+
[
nB

(√
p2 + αjs

2 k
2
)
− nB

(√
p2 + αir

1 k
2
)]
θ
(√

p2 + Reαir
1 k

2 −
√

p2 + Reαjs
2 k

2 − q0

)]
,

which is to be evaluated at p2 as given in (253). If αir1 ≈ Reαir1 the square root fractions in front
are approximately one. Also, at T = 0 all terms ∝ nB ∝ e−p0/T drop out and (257) simplifies to

disc J
∣∣
T=0 = −1

4
∑
i,j,r,s

π
d
2

Γ
(
d
2
) π βir1 βjs2

2(2π)d q0
θ
(
q0 −

√
p2 + Reαir1 k2 −

√
p2 + Reαjs2 k2

)

×
(
q4

0 − 2q2
0
(
Reαir1 Reαjs2

)
+
(
Reαir1 − Reαjs2

)
k4

4q2
0

) d−2
2
.

(258)

7. Numerical Results
Equations (120) to (122) and (156) to (158) constitute a closed set of integro-differential equations.
After inserting our results of secs. 5 and 6 for the Matsubara summation and momentum integration
of the threshold functions, the system reduces to a coupled set of non-linear ordinary differential
equations which can be solved numerically once we specify initial values for the parameters of our
truncation at the ultraviolet cutoff scale k = Λ. For our calculations we choose

ρ̃0(Λ) = 1
50 , λ(Λ) = 1

2 , γ̃2
1(Λ) = 0, Z1(Λ) = 1, N = 2, (259)

where ρ̃0(Λ) = ρ0(Λ)/Λ2 and γ̃2
1(Λ) = γ2

1(Λ)/Λ2. The resulting real-time flow of the propagator
and the effective potential in the truncation (98) of the scalar O(N)-model at zero temperature in
3 + 1-dimensional spacetime is shown in fig. 12.
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Figure 12: Flow of the O(2) model at T = 0 in 3 + 1 spacetime dimensions

Fig. 12a displays the scale dependence of the effective potential’s minimum location ρ0(k). Near
the ultraviolet cutoff Λ it exhibits a sharp fall-off to about a fourth of its initial value and then
becomes scale independent for k . Λ/e2.

Fig. 12b reveals a weak logarithmic flow of the quartic coupling λ from large values at microscopic
distances to smaller values at k � Λ. The logarithmic running implies λ(k)→ 0 for k → 0 which
indicates that a field theory involving only scalars must be free in four spacetime dimensions. The
underlying effect of charge screening forces the quartic coupling to zero at k = 0, a feature known
as “triviality”.

We also point out that the flow behavior of λ separates into two regimes. Above the transition
region k2 ≈ m2

1, the logarithmic running is significantly stronger since fluctuations of both the
radial and Goldstone modes contribute to the scale dependence. Below k2 ≈ m2

1 contributions from
the radial mode diminish since its fluctuations are suppressed by the non-zero mass m2

1 = 2λρ0/Z1.
Figs. 12c and 12d show the flow of the overall wave function renormalization Zk and its derivative,
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the anomalous dimension η = −1/Zk ∂tZk. The latter exhibits a drop to small negative values
with a minimum at k ≈ Λ/e3 after which it smoothly returns to zero for larger scales.

Of particular importance to our investigation is the flow of the discontinuity γ2
1 shown in fig. 12e,

both for external energies that correspond tp on-shell (q0 = m1) and virtual (q0 = 0) radial
excitations. As we would expect, the on-shell discontinuity adheres to its initial value of zero
until k < q0 = m1 =

√
2λρ0/Z1 at which point it abruptly rises to non-zero values before again

becoming scale independent for k . Λ/e5. The physical origin of the discontinuity γ2
1 in the radial

mode’s propagator is its decay channel into two massless Goldstone bosons via the non-zero Γ(3)
k,1aa,

a ∈ {2, . . . , N}. The flow 12e signals that on-shell radial excitations are unstable at energies
below the mass m1 but become stable once k > m1. On the other hand, for virtual q0 = 0, the
discontinuity γ2

1 is zero on all scales, suggesting that zero-momentum radial fluctuations do not
decay. We emphasize that our computation took this non-zero real-time decay width into account
in a self-consistent manner.
Fig. 12f shows the scale dependence of the radial wave function renormalization Z1. The fact

that Z1 never strays far from unity shows that at zero temperature on-shell radial excitations
renormalize just like the Goldstone bosons.

All results in fig. 12 agree with those obtained in [1].

8. Conclusions and Outlook
We discussed a method to analytically continue functional renormalization group equations from
discrete imaginary Matsubara frequencies to the continuous real frequency axis. This method has
been developed in [1]. The present work contains further details on the derivation of the flow
equations. We showcased how this method works in practice for the example of a theory of N
relativistic scalar fields with O(N) symmetry, putting particular emphasis on the propagator Gr(p)
of the massive radial mode ϕ1 in the regime where spontaneous symmetry breaking reduces the
O(N) to O(N − 1). An important characteristic of such excitations – one that has received little
attention up to this point – is the imaginary discontinuity γ2

1 of the inverse propagator at on-shell
external momenta q2 = m2

1/Z1 = 2ρ0 λ/Z1. It is closely related to a non-zero particle decay width
Γ = γ2

1/m1 describing the fission of a massive radial field into two massless Goldstone bosons.
To obtain a truncation able to account for this new type of singularity in the analytic structure

of the propagator Gk(p), we employed a Minkowski-space derivative expansion of the average
action Γk around singular points of the propagator. This expansion scheme is very close to the
actual dynamics [1] in the sense that loop integrals on the r.h.s. of flow equations are strongly
dominated by the on-shell physical excitations corresponding to these poles and branch cuts. Such
an expansion may therefore exhibit improved convergence behavior compared to a Euclidean space
derivative expansion around vanishing frequency.
We exploited this convenient circumstance by regulating our flow equations with a class of

algebraic regulators due to Flörchinger [1] that would otherwise have been inadequate. These
regulators exhibit a much milder decay in the ultraviolet and consequently inferior separation of
momentum modes compared to typical Euclidean-space (exponential or Litim-type) regulators.
Besides being fully compatible with Lorentz invariance, choosing the simplest representative of
this class of regulators also allowed us to resort to contour integration methods to perform the
summation over Matsubara frequencies both in flow equations for parameters of the effective
potential and the radial propagator analytically. The resulting flow equations proved to be both
infrared and ultraviolet finite without the need for further regularization, supporting our claim of
improved convergence of the derivative expansion in Minkowski space.

An interesting prospect for future applications of this method is the first-principles calculation
of transport properties. Since our formalism is based on a linear response framework, quantities
such as viscosities, conductivities, permittivities, relaxation times, etc. now lie within the scope of
functional renormalization.

48



We were mainly concerned with the investigation of conceptual issues and therefore restricted
our treatment to the simple case of relativistic scalar fields. However, the method can also be
applied to more complicated theories mixing both bosonic and fermionic degrees of freedom
of different spin. With increased effort, it allows the treatment of such systems at arbitrary
temperature and chemical potential.
In summary, the analytic continuation of functional renormalization group equations brings

the renormalization group closer to the physical dynamics in Minkowski space. It enables the
computation of new observables previously inaccessible to the FRG. Thanks to the enhanced
performance of the derivative expansion in Minkowski space we believe it will lead to more accurate
results despite little computational effort.

A. Propagator
A.1. Analytic Structure
The Källen-Lehmann spectral representation can be written

G(p) =
∫ ∞

0
dµ2 ρ(µ2)

p2 + µ2 , (260)

where p2 = −p2
0 + p2 decomposes into real and imaginary parts,

Re(p2) = −Re(p2
0) + p2 = −Re(p0)2 + Im(p0)2 + p2,

Im(p2) = − Im(p2
0) = −2 Re(p0) Im(p0).

(261)

For Im(p0) ≈ 0 and non-vanishing Re(p0) and/or p2, we have |Re(p2)| � | Im(p2)|. Thus close to
the real p0-axis, we recognize a form to which we can apply the Sokhotski–Plemelj theorem for
the real line (P is the Cauchy principal value)

lim
ε→0

∫ b

a
dx f(x)

x+ y ± iε
= P

∫ b

a

f(x)
x+ y

dx ∓ iπ f(−y), (a < y < b) (262)

by identifying

x = µ2, a = 0, b =∞, f(x) = ρ(µ2), y = Re(p2), iε = i Im(p2). (263)

Thus the propagator can also be written

G(p) = P
∫ ∞

0
dµ2 ρ(µ2)

p2 + µ2 + iπ s(p0) ρ(−p2), (264)

where s(p0) = sign(Re p0 Im p0) and we approximated Re(p2) ≈ p2. (264) reveals that the
propagator has a branch cut along the real axis for all values of − Im(p0)2 − p2 for which
ρ(− Im(p0)2 − p2) 6= 0. (Of course, s(p0) also switches sign when moving across the real axis.
However, we cannot infer from this that the propagator also has a branch cut along the imaginary
axis. (264) is valid only close to the real axis and does not allow any insight into the analytic
structure of G(p) for Im(p0) 6≈ 0. In fact, we already know there can’t be a cut on the imaginary
axis. The Källen-Lehmann decomposition (260) clearly shows that the Minkowski-space propagator
is completely regular throughout the complex plane except for p0 ∈ R.)

The propagator’s analytic structure also exhibits poles. To see this, we perform a partial fraction
decomposition,

1
p2 + µ2

!= a

−p0 +
√

p2 + µ2
+ b

−p0 −
√

p2 + µ2

= a(−p0 −
√

p2 + µ2) + b(−p0 +
√

p2 + µ2)
p2

0 − p2 − µ2 ,

(265)
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i.e.
1 != a(p0 +

√
p2 + µ2) + b(p0 −

√
p2 + µ2). (266)

Inserting p0 = ±
√

p2 + µ2, we find the coefficients

a = 1
2
√

p2 + µ2
= −b. (267)

Plugging this back into (260), we can make the pole structure explicit,

G(p) =
∫ ∞

0
dµ2 ρ(µ2)

2
√

p2 + µ2

[
1

−p0 +
√

p2 + µ2 ± iε
− 1
−p0 −

√
p2 + µ2 ± iε

]
. (268)

We added the infinitesimal iε-terms in (268) by hand to move the singularities slightly away
from the real p0-axis. Different combinations of signs for these terms correspond to differently
time-ordered propagators. (+,+) gives the advanced, (−,−) the retarded, (−,+) the time-ordered
(Feynman) and (+,−) the anti-time-ordered propagator.

To complete our discussion, we give a quick proof of the Sokhotski–Plemelj theorem on the real
line where a < y < b. Consider

lim
ε→0

∫ b

a

f(x)
x+ y ± iε

dx = ∓iπ lim
ε→0

∫ b

a

ε f(x) dx
π[(x+ y)2 + ε2] + lim

ε→0

∫ b

a

(x+ y)2

(x+ y)2 + ε2
f(x)
x+ y

dx. (269)

In the first term, limε→0 ε/{π[(x+ y)2 + ε2]} = δ(x+ y) is a nascent delta function, giving simply
∓iπ f(−y) in the limit limε→0. In the second term, (x+y)2

(x+y)2+ε2 approaches 1 for |x+ y| � ε, 0 for
|x+ y| � ε and is symmetric about 0. For limε→0, it thus gives the Cauchy principal value.

A.2. Decomposition
The sum of Pk and Rk defined as in (100) and (102),

Pk = Zk
[
z p2 +m2 − is(p0) γ2

]
, Rk(p) = Zk k

2

1 + c p
2

k2

, (270)

gives [1, 68]

Pk +Rk = Zk
z p4 + p2[m2 − i s(p0) γ2 + z k

2

c

]
+ k2

c

[
m2 − i s(p0)γ2]+ k4

c

p2 + k2

c

. (271)

To obtain an expression that closely resembles a sum of free propagators, the idea is now to
decompose the regularized propagator into

1
Pk +Rk

= 1
Zk

(
β+

p2 + α+k2 + β−

p2 + α−k2

)
, (272)

(272) implies

Pk +Rk = Zk
p4 + p2 (α+ + α−) k2 + α+ α− k4

(β+ + β−) p2 + (α− β+ + α+ β−) k2 . (273)

Comparing (271) and (273), we can read off the relations

α+ + α− = m̃2

z
− i s(p0) γ̃

2

z
+ 1
c
, β+ + β− = 1

z
, (274)

α+ α− = 1
c z

(
m̃2 − i s(p0) γ̃2 + 1

)
, α+ β− + α− β+ = 1

c z
. (275)
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We have four equations and four unknowns. Solving for α±, β± yields

α± = 1
2

(1
c

+ m̃2

z
− i s(p0) γ̃

2

z

)
±
(
A+ i s(p0)B

)
, (276)

β± = 1
2 z ±

(
C + i s(p0)D

)
, (277)

where A, B, C, D are independent of p and in particular of s(p0). Furthermore, B = D = 0 for
γ2 = 0, i.e. for p0 /∈ R+, as we will see below. A and B are obtained by inserting α± from (276)
into the left equality in (275), yielding

α+ α− = 1
4

(1
c

+ m̃2

z
− i s(p0) γ̃

2

z

)2
−
(
A+ i s(p0)B

)2
,

= 1
4

(1
c

+ m̃2

z

)2
− γ̃4

4z2 −A
2 +B2 − i s(p0)

[1
2

(1
c

+ m̃2

z

)
γ̃2

z
+ 2AB

]2
,

!= 1
c z

+ m2

c z k2 − i s(p0) γ2

c z k2 ,

(278)

Equating the real and imaginary parts on both sides of != results in

−A2 +B2 = 1
c z

+ m2

c z k2 −
1
4

(1
c

+ m̃2

z

)2
+ γ̃4

4z2

= 1
c z
− 1

4

(1
c
− m̃2

z

)2
+ γ̃4

4z2 , (279)

2AB = γ2

c z k2 −
1
2

(1
c

+ m̃2

z

)
γ̃2

z

= 1
2

(1
c
− m̃2

z

)
γ̃2

z
. (280)

With these relations, we can express (i A+B)2 and (i A−B)2 as

(i A+B)2 = −A2 +B2 + 2i AB = 1
c z
− 1

4

(1
c
− m̃2

z

)2
+ γ̃4

4z2 + i

2

(1
c
− m̃2

z

)
γ̃2

z

= 1
c z
− 1

4

(1
c
− m̃2

z
− i γ̃

2

z

)2
,

(281)

(i A−B)2 = −A2 +B2 − 2i AB = 1
c z
− 1

4

(1
c
− m̃2

z
+ i

γ̃2

z

)2
. (282)

Taking the square root gives

i A+B = ±

√√√√ 1
c z
− 1

4

(1
c
− m̃2

z
− i γ̃

2

z

)2
, (283)

i A−B = ±

√√√√ 1
c z
− 1

4

(1
c
− m̃2

z
+ i

γ̃2

z

)2
, (284)

and so

A = r

2i

[√√√√ 1
c z
− 1

4

(1
c
− m̃2

z
− iγ̃2

z

)2
+ s

√√√√ 1
c z
− 1

4

(1
c
− m̃2

z
+ iγ̃2

z

)2]
, (285)

B = r

2

[√√√√ 1
c z
− 1

4

(1
c
− m̃2

z
− iγ̃2

z

)2
− s

√√√√ 1
c z
− 1

4

(1
c
− m̃2

z
+ iγ̃2

z

)2]
, (286)

51



where the signs r, s ∈ {±1} can be chosen for convenience.
We choose the branch cut of the complex square root to lie on the negative real axis R−. In

this case, the two square roots in A and B are equal in the limit γ2 → 0 if

1
c z
− 1

4

(1
c
− m̃2

z

)2
≥ 0. (287)

Otherwise, they differ by a factor of −1. Enforcing B → 0 for γ2 → 0 is therefore equivalent to
the choice

s = sign
[ 1
c z
− 1

4

(1
c
− m̃2

z

)2]
. (288)

Note that with the definition (288) A and B are real for s = −1 and imaginary for s = 1.
The choice for r is irrelevant since sending r → −r simply switches α+↔α−. For definiteness,

we choose r = 1 and s as in (288).
Conditions for C and D derive from α+ β−+α− β+ = 1

c z (see (275)) by inserting (276) and (277),[1
2

(1
c

+ m̃2

z
− i s(p0) γ̃

2

z

)
+
(
A+ i s(p0)B

)][ 1
2 z −

(
C + i s(p0)D

)]
+
[1

2

(1
c

+ m̃2

z
− i s(p0) γ̃

2

z

)
−
(
A+ i s(p0)B

)][ 1
2 z +

(
C + i s(p0)D

)]
= 1

2 z

(1
c

+ m̃2

z
− i s(p0) γ̃

2

z

)
− 2AC + 2BD − i s(p0)

[
2BC + 2AD

] != 1
c z
.

(289)

Equating again real and imaginary parts on both sides of != we find

1
2 z

(1
c

+ m̃2

z

)
− 2AC + 2BD = 1

c z
, (290)

γ2

2z2 k2 + 2BC + 2AD = 0. (291)

or in matrix form, (
A −B
B A

)(
C
D

)
= − 1

4 z

(
1
c −

m̃2

z
γ̃2

z

)
. (292)

Inverting
(
A −B
B A

)−1
= 1

A2+B2
(
A B
−B A

)
yields

C = −
A
(

1
c −

m̃2

z

)
+B γ̃2

z

4 z (A2 +B2) , D =
B
(

1
c −

m̃2

z

)
−A γ̃2

z

4 z (A2 +B2) . (293)

For γ2 = 0, we have B = 0 and thus also D = 0.

Explicit expressions Plugging (285), (286) and (293) into (276), we get the following expressions
for α±,

α± = 1
2

(
1
c + m̃2

z − i s(p0) γ̃
2

z

)
± i

2
[
−1 + s(p0)

]√ 1
c z −

1
4

(
1
c −

m̃2

z −
iγ̃2

z

)2

∓ i
2
[
1 + s(p0)

]
sign

[
1
c z −

1
4

(
1
c −

m̃2

z

)2]√ 1
c z −

1
4

(
1
c −

m̃2

z + iγ̃2

z

)2
.

(294)

If instead we choose s = −1 we get

α± = 1
2

(
1
c + m̃2

z − i s(p0) γ̃
2

z

)
± i

2
[
−1 + s(p0)

]√ 1
c z −

1
4

(
1
c −

m̃2

z −
iγ̃2

z

)2

± i
2
[
1 + s(p0)

]√ 1
c z −

1
4

(
1
c −

m̃2

z + iγ̃2

z

)2
.

(295)
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which gives rise to the convenient relation

α±
(
s(p0) = 1

)
= α±∗

(
s(p0) = −1

)
, (296)

or α±+ =
(
α±−

)∗ using the notation introduced in (177). Similarly, we can insert (293) into (277)
to get,

β± = 1
2 z ±

(
−A+ is(p0)B

)(1
c −

m̃2

z + is(p0) γ̃
2

z

)
4z(A2 +B2) (297)

which using (285) and (286) yields the following explicit expressions for β±,

β± = 1
2z ±

1
4z
(

1
c + m̃2

z − i s(p0) γ̃
2

z

)[
i
2
[
1 + s(p0)

]√ 1
c z −

1
4

(
1
c −

m̃2

z + iγ̃2

z

)2−1

+ i
2
[
1− s(p0)

]
sign

[
1
c z −

1
4

(
1
c −

m̃2

z

)2]√ 1
c z −

1
4

(
1
c −

m̃2

z −
iγ̃2

z

)2−1]
,

(298)

whereas for s = −1 we have

β± = 1
2z ±

1
4z
(

1
c + m̃2

z − i s(p0) γ̃
2

z

)[
i
2
[
1 + s(p0)

]√ 1
c z −

1
4

(
1
c −

m̃2

z + iγ̃2

z

)2−1

± i
2
[
1− s(p0)

]√ 1
c z −

1
4

(
1
c −

m̃2

z −
iγ̃2

z

)2−1]
.

(299)

B. Numerical Implementation
All numerical operations were carried out in Mathematica. To implement the closed set of flow
equations (120) to (122) and (156) to (158) numerically, we defined several auxiliary functions.

B.1. Auxiliary functions
A complex square root with branch cut along the negative real axis.

In[1]:= sqrt[(x_)?NumericQ,(y_)?NumericQ] = Piecewise[{{I*Sqrt[-x],Re[x] < 0
&& Re[y] >= 0},{(-I)*Sqrt[-x],Re[x] < 0 && Re[y] < 0}},Sqrt[x]]

Out[1]= i
√

-x Re[x]<0 && Re[y]≥0
-i
√

-x Re[x]<0 && Re[y]<0√
x True

The second argument y decides which branch to take (upper branch if Re(y) ≥ 0, lower if
Re(y) < 0). To allow Mathematica to perform symbolic simplifications on sqrt, we supply

In[2]:= Derivative[1,0][sqrt][x_,y_] = 1/(2*sqrt[x,y]);
Derivative[0,1][sqrt][x_,y_] = 0;

The numerator coefficients α±± of the propagator decomposition (272) are defined as

In[3]:= αααk[1,1][m2_,g2_,z_,c_]:=
1
2

(
1
c

+
m2
z

-
i g2

z
)

+i sqrt[
1

c z
-

1
4

(
1
c

-
m2
z

+
i g2

z
)

2
,-(

1
c

-
m2
z

)];

αααk[1,2][m2_,g2_,z_,c_]:=
1
2

(
1
c

+
m2
z

+
i g2

z
)

-i sqrt[
1

c z
-

1
4

(
1
c

-
m2
z

-
i g2

z
)

2
,

1
c

-
m2
z

];
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αααk[2,1][m2_,g2_,z_,c_]:=
1
2

(
1
c

+
m2
z

-
i g2

z
)

-i sqrt[
1

c z
-

1
4

(
1
c

-
m2
z

+
i g2

z
)

2
,-(

1
c

-
m2
z

)];

αααk[2,2][m2_,g2_,z_,c_]:=
1
2

(
1
c

+
m2
z

+
i g2

z
)

+i sqrt[
1

c z
-

1
4

(
1
c

-
m2
z

-
i g2

z
)

2
,

1
c

-
m2
z

];

αααk[1,0][m2_,g2_,z_,c_]:=
1
2

(
1
c

+
m2
z

)+
1
2

(i sqrt[
1

c z
-

1
4

(
1
c

-
m2
z

+
i g2

z
)

2

,-(
1
c

-
m2
z

)]-i sqrt[
1

c z
-

1
4

(
1
c

-
m2
z

-
i g2

z
)

2
,

1
c

-
m2
z

]);

αααk[2,0][m2_,g2_,z_,c_]:=
1
2

(
1
c

+
m2
z

)-
1
2

(i sqrt[
1

c z
-

1
4

(
1
c

-
m2
z

+
i g2

z
)

2

,-(
1
c

-
m2
z

)]-i sqrt[
1

c z
-

1
4

(
1
c

-
m2
z

-
i g2

z
)

2
,

1
c

-
m2
z

]);

where m2 = m̃2 = m2/k2, g2 = γ̃2 = γ2/k2. Similarly, the numerator β±± coefficients read

In[4]:= βββk[1,1][m2_,g2_,z_,c_]:=
1

2 z
+

i (1
c-m2

z +i g2
z )

(4 z) sqrt[ 1
c z-1

4 (1
c-m2

z +i g2
z )

2
,-(1

c-m2
z )]

;

βββk[1,2][m2_,g2_,z_,c_]:=
1

2 z
-

i (1
c-m2

z -i g2
z )

(4 z) sqrt[ 1
c z-1

4 (1
c-m2

z -i g2
z )

2
,1

c-m2
z ]

;

βββk[2,1][m2_,g2_,z_,c_]:=
1

2 z
-

i (1
c-m2

z +i g2
z )

(4 z) sqrt[ 1
c z-1

4 (1
c-m2

z +i g2
z )

2
,-(1

c-m2
z )]

;

βββk[2,2][m2_,g2_,z_,c_]:=
1

2 z
+

i (1
c-m2

z -i g2
z )

(4 z) sqrt[ 1
c z-1

4 (1
c-m2

z -i g2
z )

2
,1

c-m2
z ]

;

βββk[1,0][m2_,g2_,z_,c_]:=
1

2 z
+

i (1
c-m2

z +i g2
z )

(8 z) sqrt[ 1
c z-1

4 (1
c-m2

z +i g2
z )

2
,-(1

c-m2
z )]

-
i (1

c-m2
z -i g2

z )

(8 z) sqrt[ 1
c z-1

4 (1
c-m2

z -i g2
z )

2
,1

c-m2
z ]

;

βββk[2,0][m2_,g2_,z_,c_]:=
1

2 z
-

i (1
c-m2

z +i g2
z )

(8 z) sqrt[ 1
c z-1

4 (1
c-m2

z +i g2
z )

2
,-(1

c-m2
z )]

+
i (1

c-m2
z -i g2

z )

(8 z) sqrt[ 1
c z-1

4 (1
c-m2

z -i g2
z )

2
,1

c-m2
z ]

;

B.2. Threshold Functions
The T = 0-part of the threshold functions Ij in d+ 1 = 4 spacetime dimensions can be defined as

In[5]:= tfI[0][m2_,g2_,z_,0,c_,4]=
m22-g22

16πππ2z2 +(4 #1-2 m2 ∂∂∂m2#1-2 g2 ∂∂∂g2#1&)[ker[4]];

tfI[1][m2_,g2_,z_,0,c_,4]=-
m2

8πππ2z2 -(2 ∂∂∂m2#1-2 m2 ∂∂∂{m2,2}#1-2 g2 ∂∂∂m2,g2#1&)[ker

[4]];

tfI[2][m2_,g2_,z_,0,c_,4]=
1

8πππ2z2 -(2 m2 ∂∂∂{m2,3}#1+2 g2 ∂∂∂{m2,2},g2#1&)[ker[4]];

tfI[3][m2_,g2_,z_,0,c_,4]=(2 ∂∂∂{m2,3}#1+2 m2 ∂∂∂{m2,4}#1+2 g2 ∂∂∂{m2,3},g2#1&)[ker
[4]];

tfI[4][m2_,g2_,z_,0,c_,4]=-(4 ∂∂∂{m2,4}#1+2 m2 ∂∂∂{m2,5}#1+2 g2 ∂∂∂{m2,4},g2#1&)[ker
[4]];

where the derivatives act on the kernel
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In[6]:= ker[4]=
1

64πππ2

2∑∑∑
i,j
αααk[i,j][m2,g2,z,c]2 Log[αααk[i,j][m2,g2,z,c]];

The temperature-independent part of ∂q2J in d+ 1 = 4 we implemented as

In[7]:= dqTfJ[q0_,m1_,m2_,g1_,g2_,z1_,z2_,0,c_,4]=
1

2(2πππ2)
Re[(-2 #1-q0 ∂∂∂q0#1-2m1

∂∂∂m1#1-2m2 ∂∂∂m2#1-2g1 ∂∂∂g1#1-2g2 ∂∂∂g2#1&)[Module[{a1,a2,b1,b2},
1
4

2∑∑∑
i,j

2∑∑∑
sig1

2∑∑∑
sig2

(a1=αααk[i,

sig1][m1,g1,z1,c];a2=αααk[j,sig2][m2,g2,z2,c];b1=βββk[i,sig1][m1,g1,z1,c];b2=βββk[

j,sig2][m2,g2,z2,c];b1 b2(Piecewise[{{{ (a1-a2)2-(a1+a2)q02

4q04
√

-(a1-a2)2+2(a1+a2)q02-q04
(ArcTan[

q02+a1-a2√
-q04-(a1-a2)2+2q02(a1+a2)

]

+ArcTan[
q02-a1+a2√

-q04-(a1-a2)2+2q02(a1+a2)
])+

1
4q02 -

(a1-a2)(Log[a1]-Log[a2])
8q04 ,

a1-a26=6=6=0}}},{{{ 1
4q02 -

a1 ArcTan[ q02√
4a1q02-q04

]

q02
√

4 a1 q02-q04
,a1-a2==0}}}]))]]];

and for q0 = 0 as appropriate for Goldstone bosons and the flow equation of Zk as

In[8]:= dqTfJ[0,m1_,m2_,g1_,g2_,z1_,z2_,0,c_,4]=
1

2(2πππ2)
Re[(-2 #1-2m1 ∂∂∂m1#1-2m2

∂∂∂m2#1-2g1 ∂∂∂g1#1-2g2 ∂∂∂g2#1&)[Module[{a1,a2,b1,b2},
1
4

2∑∑∑
i,j

2∑∑∑
sig1

2∑∑∑
sig2

(a1=αααk[i,sig1][m1,

g1,z1,c];a2=αααk[j,sig2][m2,g2,z2,c];b1=βββk[i,sig1][m1,g1,z1,c];b2=βββk[j,sig2][

m2,g2,z2,c];b1 b2 Piecewise[{{{-a12+a22+2 a1 a2(Log[a1]-Log[a2])
8(a1-a2)3 ,a1-a26=6=6=0}}},{{{-

1
24a1

,a1-a2==0}}}])]]];

The discontinuous part discq0 J is given by

In[9]:= discTfJ[q0_,m1_,m2_,g1_,g2_,z1_,z2_,0,c_,4]=(q0 ∂∂∂q0#1+2m1 ∂∂∂m1#1+2m2 ∂∂∂m2#1

+2g1 ∂∂∂g1#1+2g2 ∂∂∂g2#1&)[Module[{a1,a2,b1,b2},
2∑∑∑

i,j
(a1=αααk[i,0][m1,g1,z1,c];a2=αααk[

j,0][m2,g2,z2,c];b1=βββk[i,0][m1,g1,z1,c];b2=βββk[j,0][m2,g2,z2,c];
1

16πππq0
(b1 b2)√

(q04-2q02(a1+a2)+(a1-a2)2)/q02 UnitStep[Re[q0]-Re[
√

a1+
√

a2]])]];

B.3. Flow equations
With the above definitions, the flow equations for ρ0, λ, Zk, γ2

1 and Z1 read

In[10]:= ρρρ0Flow[ρρρ0_,λλλk_,ηηηk_,g2_,Z1_,c_,d_,N_]:=-(2+ηηηk)ρρρ0

+(
3
2

tfI[1][2ρρρ0 λλλk,g2,Z1,0,c,d]+
1
2

(N-1)tfI[1][0,0,1,0,c,d])

λλλkFlow[ρρρ0_,λλλk_,ηηηk_,g2_,Z1_,c_,d_,N_]:=2ηηηk λλλk

+λλλk2(
9
2

tfI[2][2ρρρ0 λλλk,g2,Z1,0,c,d]+
1
2

(N-1)tfI[2][0,0,1,0,c,d])

g2Flow[q0_,ρρρ0_,λλλk_,ηηηk_,g2_,Z1_,c_,d_,N_]:=(ηηηk-2)g2
-2ρρρ0 λλλk2(9 discTfJ[q0,2ρρρ0 λλλk,2ρρρ0 λλλk,g2,g2,Z1,Z1,0,c,d]
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+(N-1)discTfJ[q0,0,0,0,0,1,1,0,c,d])

Z1Flow[q0_,ρρρ0_,λλλk_,ηηηk_,g2_,Z1_,c_,d_,N_]:=ηηηk Z1
-2ρρρ0 λλλk2(9dqTfJ[q0,2ρρρ0 λλλk,2ρρρ0 λλλk,g2,g2,Z1,Z1,0,c,d]

-(N-1)dqTfJ[q0,0,0,0,0,1,1,0,c,d])

ZkFlow[Zk_,ρρρ0_,λλλk_,g2_,Z1_,c_,d_]:=2Zk ρρρ0 λλλk2 dqTfJ[0,2ρρρ0 λλλk,0,g2,0,Z1
,1,0,c,d]

and can be solved with

In[11]:= AbsoluteTiming@Module[{runner=0,counter=0,domain={t,-10,0},sol=run[5]},
With[{ηηηk=-Zk′′′[t]/Zk[t],c=1,d=4,N=2},
run[5]=NDSolve[{ρρρ0′′′[t]==ρρρ0Flow[ρρρ0[t],λλλk[t],ηηηk,g2[t],Z1[t],c,d,N],
λλλk′′′[t]==λλλkFlow[ρρρ0[t],λλλk[t],ηηηk,g2[t],Z1[t],c,d,N],
Zk′′′[t]==ZkFlow[Zk[t],ρρρ0[t],λλλk[t],g2[t],Z1[t],c,d],

g2′′′[t]==g2Flow[
√

2 ρρρ0[t] λλλk[t]/Z1[t],ρρρ0[t],λλλk[t],ηηηk,g2[t],Z1[t],c,d,N],

Z1′′′[t]==Z1Flow[
√

2 ρρρ0[t] λλλk[t]/Z1[t],ρρρ0[t],λλλk[t],ηηηk,g2[t],Z1[t],c,d,N],
WhenEvent[-Z1[t]+λλλk[t] ρρρ0[t]>0,"CrossDiscontinuity"],
ρρρ0[0]==0.02‘,λλλk[0]==0.5‘,Zk[0]==1,g2[0]==0,Z1[0]==1},{ρρρ0,λλλk,Zk,g2,Z1},

domain,
StepMonitor:→:→:→counter++ If[Abs[t]>runner,Print[Chop[{counter,Round[t,1],-

Z1[t]+λλλk[t] ρρρ0[t],e2 t ρρρ0[t],λλλk[t],Zk[t],e2 t g2[t],Z1[t]}]];runner++]];
Plot[e2 t ρρρ0[t]/. sol,domain,PlotRange→→→{0,All},AxesLabel→→→{"t",ρρρ0(t)/ΛΛΛ2}]

Plot[λλλk[t]/. sol,domain,AxesLabel→→→{"t",λλλk(t)}]
Plot[-Zk′′′[t]/Zk[t]/. sol,domain,AxesLabel→→→{"t",ηηηk(t)}]
Plot[e2 t g2[t]/. sol,domain,AxesLabel→→→{"t",γγγ1

2(t)/ΛΛΛ2}]
Plot[Z1[t]/. sol,domain,AxesLabel→→→{"t",Z1(t)}]]]

The plot commands contain e2t ρρρ0[t] and e2t g2[t] because we performed the internal calcula-
tions using dimensionless variables ρ̃0(k) = ρ0(k)/k2 = ρ0(k)/(Λ2e2t), γ̃2

1 = γ2
1/k

2 = γ2
1/(Λ2e2t).

We use the event handler WhenEvent[Re[
√

-Z1[t]+ρρρ0[t]λλλk[t]]==0,"CrossDiscontinuity"]

here to take care of a singularity of g2Flow that is due to the term
√

-Z1[t]+λλλk[t]ρρρ0[t] in the

denominator of discTfJ[
√

2ρρρ0[t]λλλk[t],0,0,0,0,1,1,0,1,4] which incorporates fluctuations

of the Goldstone bosons.
√

-Z1[t]+λλλk[t]ρρρ0[t] vanishes near t = −3. The singularity leads
to a divergent derivative g2′′′[t] of the discontinuity γ2

1 of the radial propagator which abruptly
becomes zero (cf. fig. 12e) above a certain renormalization scale k2 > m2

1 because the radial mode
can exist as an on-shell stable particle above those energies.
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