← home

Janosh Riebesell - CV

From April 2024 to June 2025, I worked at Radical AI on vertically integrating MLIPs and robotic labs.
I worked for the Materials Project from Jul 2022 to Dec 2023 where I developed ML foundation models (CHGNet, MACE-MP) and high-throughput workflows for generating more diverse, higher-quality DFT datasets for future models.
I contribute to open source projects and help maintain matbench-discovery, torch-sim, pymatgen, pymatviz, matterviz, atomate2. See the full list.

  Publications Sort by

Less
More
  1. Atomate2: modular workflows for materials science

    A. Ganose, ..., J. Riebesell, ..., A. Jain  —  10.1039/D5DD00019J  — Digital Discovery  —  2025-7  —  5 citations
  2. Matbench Discovery - A framework to evaluate machine learning crystal stability predictions

    J. Riebesell, R. Goodall, ..., K. Persson  —  10.1038/s42256-025-01055-1  — Nature Machine Intelligence  —  2025-6  —  5 citations
  3. LLaMP: Large Language Model Made Powerful for High-fidelity Materials Knowledge Retrieval and Distillation

    Y. Chiang, C. Chou, J. Riebesell  —  arxiv.org/abs/2401.17244  (preprint)  —  2024-1  —  12 citations
  4. A foundation model for atomistic materials chemistry

    I. Batatia, ..., J. Riebesell, ..., G. Csányi  —  arxiv.org/abs/2401.00096v1  (preprint)  —  2023-12  —  171 citations
  5. TorchSim: An efficient atomistic simulation engine in PyTorch

    O. Cohen, J. Riebesell, ..., A. Gangan  —  10.1088/3050-287X/ae1799  — AI for Science  —  2025-  —  2 citations
  6. Accelerated data-driven materials science with the Materials Project

    M. Horton, ..., J. Riebesell, ..., K. Persson  —  10.1038/s41563-025-02272-0  — Nature Materials  —  2025-7
  7. A Foundational Potential Energy Surface Dataset for Materials

    A. Kaplan, ..., J. Riebesell, ..., S. Ong  —  10.48550/arXiv.2503.04070  —  2025-3  —  6 citations
  8. Systematic softening in universal machine learning interatomic potentials

    B. Deng, ..., J. Riebesell, ..., G. Ceder  —  10.1038/s41524-024-01500-6  — npj Computational Materials  —  2025-1
  9. Discovery of high-performance dielectric materials with machine-learning-guided search

    J. Riebesell, T. Surta, ..., A. Lee  —  10.1016/j.xcrp.2024.102241  — Cell Reports Physical Science  —  2024-10
  10. Developments and applications of the OPTIMADE API for materials discovery, design, and data exchange

    M. Evans, ..., J. Riebesell, ..., R. Armiento  —  10.1039/D4DD00039K  — Digital Discovery  —  2024-8  —  15 citations
  11. Jobflow: Computational Workflows Made Simple

    A. Rosen, ..., J. Riebesell, ..., A. Ganose  —  10.21105/joss.05995  — Journal of Open Source Software  —  2024-1  —  18 citations
  12. CHGNet as a pretrained universal neural network potential for charge-informed atomistic modelling

    B. Deng, ..., J. Riebesell, ..., G. Ceder  —  10.1038/s42256-023-00716-3  — Nature Machine Intelligence  —  2023-9  —  397 citations
  13. Crystal Toolkit: A Web App Framework to Improve Usability and Accessibility of Materials Science Research Algorithms

    M. Horton, ..., J. Riebesell, ..., K. Persson  —  10.48550/arXiv.2302.06147  —  2023-2

  Open Source Sort by

  Education

  Languages

  •  English
  •  German
  •  French
  •  Spanish

  Nationality

  •  Canadian
  •  German

  Programming Languages and Tools

(emphasis ≈ proficiency)

  Community

  Hobbies